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Abstract

It is well known that given a Steiner triple system then a quasigroup can be formed by
defining an operation · by the identities x ·x = x and x ·y = z where z is the third point in the
block containing the pair {x, y}. The same is true for a Mendelsohn triple system where the
pair (x, y) is considered to be ordered. But it is not true in general for directed triple systems.
However directed triple systems which form quasigroups under this operation do exist. We
call these Latin directed triple systems and in this paper begin the study of their existence
and properties.
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1 Introduction

The equivalence between Steiner triple systems, on the one hand, and Steiner quasi-
groups and Steiner loops, on the other hand, is well know in both the combinatorial
and the algebraic communities, see for example [6, page 24] and [16, page 124].
Recall the definitions. A Steiner triple system of order n, STS(n), is a pair (V,B)
where V is a set of n points and B is a collection of triples of distinct points, also
called blocks, taken from V such that every pair of distinct points from V appears
in precisely one block. Such systems exist if and only if n ≡ 1 or 3 (mod 6) [11]. A
Steiner quasigroup or squag is a pair (Q, ·) where Q is a set and · is an operation
on Q satisfying the identities

x · x = x, y · (x · y) = x, x · y = y · x.

If (V,B) is an STS(n), then a Steiner quasigroup (Q, ·) is obtained by letting Q = V
and defining x · y = z where {x, y, z} ∈ B. The process is reversible; if Q is
a Steiner quasigroup, then a Steiner triple system is obtained by letting V = Q
and {x, y, z} ∈ B where x · y = z for all x, y ∈ Q, x 6= y. Thus there is a one-
one correspondence between all Steiner triple systems and all Steiner quasigroups
[16, Theorem V.1.11]. A Steiner quasigroup is also known as an idempotent totally
symmetric quasigroup [1, Remark 2.12]. A Steiner loop or sloop is a pair (L, ·) where
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L is a set containing an identity element, say e, and · is an operation on L satisfying
the identities

e · x = x, x · x = e, y · (x · y) = x, x · y = y · x.

If (V,B) is an STS(n), then a Steiner loop (L, ·) is obtained by letting L = V ∪ {e}
and defining x · y = z where {x, y, z} ∈ B. Again the process is reversible.

Less well known is the following correspondence. A Mendelsohn triple system
of order n, MTS(n), is a pair (V,B) where V is a set of n points and B is a col-
lection of cyclically ordered triples of distinct points taken from V such that every
ordered pair of distinct points from V appears in precisely one triple. Such systems
exist if and only if n ≡ 0 or 1 (mod 3), n 6= 6 [14]. Quasigroups and loops can
be obtained from Mendelsohn triple systems by precisely the same procedures as
described above for Steiner triple systems. Note that the law y · (x ·y) = x is usually
called semi-symmetric. So the quasigroups are known as idempotent semisymmetric
quasigroups [1, Remark 2.12]. However the algebraic structures might also appro-
priately be called Mendelsohn quasigroups and Mendelsohn loops ; they satisfy the
same properties as their Steiner counterparts with the exception of commutativ-
ity. Similarly there is a one-one correspondence between Mendelsohn triple systems,
Mendelsohn quasigroups and Mendelsohn loops.

A directed triple system of order n, DTS(n), is a pair (V,B) where V is a set of
n points and B is a collection of transitively ordered triples of distinct points taken
from V such that every ordered pair of distinct points from V appears in precisely
one triple. Such systems exist if and only if n ≡ 0 or 1 (mod 3) [10]. Given a
DTS(n), an algebraic structure (V, ·) can be obtained as above by defining x · x = x
and x · y = z for all x, y ∈ V , x 6= y where z is the third element in the transitive
triple containing the ordered pair (x, y). However the structure obtained need not
necessarily be a quasigroup. If 〈u, x, y〉 and 〈y, v, x〉 ∈ B then u · x = v · x = y. But
as we will see, some DTS(n)s do yield quasigroups. Such a DTS(n) will be called a
Latin directed triple system, and denoted by LDTS(n), to reflect the fact that in this
case the operation table forms a Latin square. We call the quasigroup so obtained
a DTS-quasigroup. In an analogous way to that described above for Steiner triple
systems we may also construct a loop from a LDTS(n); called a DTS-loop.

2 Properties

First we derive a necessary and sufficient condition for a directed triple system to
be Latin.

Proposition 2.1 Let D = (V,B) be a DTS(n). Denote by Sa,b the set of ordered
pairs (x, y) in positions a and b respectively of the triples of B. Then D is a LDTS(n)
if and only if S1,2 = S3,2, S2,3 = S2,1, and S1,3 = S3,1.

Proof. Let D be a LDTS(n) and suppose that 〈x, y, z〉 ∈ B. Then y · z = x. Now
there exists w such that precisely one of 〈y, x, w〉, 〈y, w, x〉, or 〈w, y, x〉 ∈ B. In the
first two cases y · w = x and so w = z which is impossible. Therefore 〈w, y, x〉 ∈ B
and S1,2 ⊂ S3,2. Further x·y = z. Similarly one of 〈w, z, y〉, 〈z, w, y〉, or 〈z, y, w〉 ∈ B.
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Again in the first two cases w · y = z and so w = x, which is also impossible. There-
fore 〈z, y, w〉 ∈ B and so S3,2 ⊂ S1,2. Therefore S1,2 = S3,2. It further follows that
S2,3 = S2,1. Finally since S1,2 ∪ S1,3 ∪ S2,3 = S3,2 ∪ S3,1 ∪ S2,1 and all of the sets Sa,b

are disjoint, it follows that S1,3 = S3,1.

Conversely suppose that 〈x, y, z〉 ∈ B. Then x · y = z. For D to be a LDTS(n) we
require that the equations α · y = z, x · β = z, and x · y = γ have unique solutions,
namely x, y, and z respectively for α, β, and γ. Clearly z is the unique solution for
γ by definition. If x · β = z then precisely one of 〈x, z, β〉, 〈x, β, z〉, or 〈z, x, β〉 ∈ B.
In the first case no such block exists, in the second case β = y, and in the third
case no such block exists because S1,3 = S3,1. If α · y = z then precisely one of
〈α, y, z〉, 〈α, z, y〉, or 〈z, α, y〉 ∈ B. In the first case α = x and in the other two
cases no such block exists because S2,3 = S2,1. Further if 〈x, y, z〉 ∈ B then x · z = y
and y · z = x and we need to show that for each equation, given any two of the
parameters, the third is uniquely determined. The proof is similar to the case for
the equation x · y = z.

The conditions for a LDTS(n) given in the above proposition can be simplified
but we have chosen to present them in this form because they are reminiscent of
those (S1,2 = S2,1, S2,3 = S3,2, and S1,3 = S3,1) for another class of directed triple
systems, so called Mendelsohn directed triple systems, the existence of which was
discussed in [9]. A more succinct necessary and sufficient condition is given in the
next theorem

Theorem 2.2 Let D = (V,B) be a DTS(n). Then D is a LDTS(n) if and only if
〈x, y, z〉 ∈ B ⇒ 〈w, y, x〉 ∈ B for some w ∈ V .

Proof. In the notation of Proposition 2.1, the condition in this theorem is S1,2 ⊂ S3,2

which is trivially implied by the conditions in the proposition. We need to show that
the reverse is also true. Since the cardinalities of the sets S1,2 and S3,2 are equal it
follows that S1,2 = S3,2 which, as observed in the proof of the proposition, implies
the other two conditions.

Before discussing existence and enumeration results for DTS-quasigroups and
DTS-loops, it is important to point out two fundamental differences between these
and their Steiner and Mendelsohn counterparts. The first concerns flexibility. The
flexible law states that x · (y · x) = (x · y) · x. As is easily verified, both Steiner
quasigroups and loops and Mendelsohn quasigroups and loops all satisfy this law.
But this is not the case for DTS-quasigroups and loops. Next we state and prove a
necessary and sufficient condition for a DTS-quasigroup or loop to satisfy the flexible
law.

Theorem 2.3 A DTS-quasigroup or DTS-loop obtained from a LDTS(n), D =
(V,B) satisfies the flexible law if and only if 〈x, y, z〉 ∈ B ⇒ 〈x, z · x, y · x〉 ∈ B.

Proof. Suppose that 〈x, y, z〉 ∈ B. Then there exists α, β, γ ∈ V such that 〈z, y, α〉,
〈z, β, x〉, 〈γ, y, x〉 ∈ B. Here we allow any of the equalities α = x, β = y, γ = z to
be satisfied in which case all three are. Consider the six possibilities.
(a) x · (y · x) = x · γ; (x · y) · x = z · x = β; hence we require x · γ = β.
(b) y · (x · y) = y · z = x; (y · x) · y = γ · y = x.
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(c) y · (z · y) = y · α = z; (y · z) · y = x · y = z.
(d) z · (y · z) = z · x = β; (z · y) · z = α · z; hence we require α · z = β.
(e) z · (x · z) = z · y = α; (z · x) · z = β · z; hence we require β · z = α.
(f) x · (z · x) = x · β; (x · z) · x = y · x = γ; hence we require x · β = γ.
Thus the flexible law is satisfied if and only if (i) 〈x, β, γ〉 = 〈x, z · x, y · x〉 ∈ B and
(ii) 〈α, β, z〉 = 〈z · y, z · x, z〉 ∈ B. To complete the proof we need to show that the
second condition can be derived from the first. We have that 〈z, y, α〉 ∈ B and the
first condition implies that 〈z, α · z, y · z〉 = 〈z, α · z, x〉 ∈ B so that α · z = β, i.e.
〈α, β, z〉 = 〈z · y, z · x, z〉 ∈ B.

By analogy we will say that a LDTS(n) is flexible if the DTS-quasigroup and
DTS-loop obtained from it satisfies the flexible law. Later, we will also use par-
tial LDTS(n). We define these as partial DTS(n) which satisfy the conditions of
Proposition 2.1 (not Theorem 2.2). These are not the same for partial systems; the
set of directed triples 〈x, a, y〉, 〈y, a, z〉, 〈z, a, x〉 which are a partial DTS(4) satisfy
the condition of Theorem 2.2 but not the conditions of Proposition 2.1 and so are
not a partial LDTS(4). If they are augmented by directed triples 〈y, b, x〉, 〈z, b, y〉,
〈x, b, z〉 then we have a partial LDTS(5). Partial LDTS(n) will be called flexible or
non-flexible depending on whether they satisfy the condition of Theorem 2.3.

The second difference between Latin directed triple systems and Steiner or Mendel-
sohn triple systems is that with the former there is not a one-one correspondence
between the triple systems and the associated quasigroups or loops. Suppose that
we are given the operation table of a DTS-quasigroup or DTS-loop. We wish to
recover the LDTS(n), (V,B), from which it came. Choose x, y, z, x 6= y 6= z 6= x
with x · y = z. Then 〈x, y, z〉 or 〈x, z, y〉 or 〈z, x, y〉 ∈ B. In order to identify which
of these three possibilities is the correct one perform a number of tests:

• if x · z 6= y, then 〈z, x, y〉 ∈ B.

• if z · y 6= x, then 〈x, y, z〉 ∈ B.

• if y · z 6= x and z · x 6= y, then 〈x, z, y〉 ∈ B.

Otherwise, x · z = y, z · y = x, and either y · z = x or z · x = y. The only inference
that can be made is that the set B contains one of the six directed triples formed
by ordering the three points x, y, z, together with its reverse.

In a DTS(n), (V,B), any directed triple 〈x, y, z〉 ∈ B for which also 〈z, y, x〉 ∈ B
will be called bidirectional. The set {x, y, z} will be called a Steiner triple. Other di-
rected triples will be called unidirectional. From the above discussion, if a LDTS(n)
contains a pair of bidirectional directed triples, then these can be replaced by a
different pair of bidirectional triples to form a potentially non-isomorphic LDTS(n)
yet both will generate the same quasigroup and loop. This is illustrated in the fol-
lowing example. Here and in other places throughout the rest of this paper, where
there is no danger of confusion, for simplicity we omit set brackets and commas from
directed triples.

Example 2.4 Let V = {0, 1, 2, 3, 4, 5, 6}.
Define B = {102, 201, 304, 403, 506, 605, 315, 416, 514, 613, 326, 425, 523, 624},
and B′ = {012, 210, 034, 430, 056, 650, 315, 416, 514, 613, 326, 425, 523, 624}.
Both (V,B) and (V,B′) are LDTS(7)s but are clearly non-isomorphic as consideration
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of the distribution of points in the middle position of the directed triples shows.
However both give the same DTS-quasigroup.

0 1 2 3 4 5 6
0 0 2 1 4 3 6 5
1 2 1 0 6 5 3 4
2 1 0 2 5 6 4 3
3 4 5 6 3 0 1 2
4 3 6 5 0 4 2 1
5 6 4 3 2 1 5 0
6 5 3 4 1 2 0 6

The automorphism group of the DTS-quasigroup is the dihedral group D4 of order
8 generated by the permutations (3 5 4 6) and (1 2)(5 6). Note however that this
is not necessarily the automorphism group of the LDTS(7)s. The same group is
the automorphism group of (V,B) but not of (V,B′) which has only the identity
automorphism.

In view of the above, for purposes of enumeration it makes more sense to count
DTS-quasigroups (or DTS-loops; these are in one-one correspondence) rather than
the Latin directed triple systems from which they come. Where there are bidirec-
tional triples, the block set B of a LDTS(n) will be expressed as the union of a
set of Steiner triples, T , and a set of unidirectional directed triples, D. Denote the
cardinality of T by t, (so that the number of bidirectional triples is 2t), and the
cardinality of D by d.

A directed triple system, (V,B), is said to be pure if 〈x, y, z〉 ∈ B ⇒ 〈z, y, x〉 /∈ B.
Pure LDTS(n) give anti-commutative DTS-quasigroups and, because there are no
Steiner triples, there does exist a one-one correspondence between these. At the
other extreme, commutative DTS-quasigroups correspond to the situation where
every directed triple is bidirectional, i.e. where the LDTS(n) consists of the blocks
of a Steiner triple system, each in some order, together with their reverse. In short,
commutative DTS-quasigroups and Steiner quasigroups are the same.

In the next section we present some enumeration results for DTS-quasigroups of
small order. Then in the rest of the paper we discuss existence results. A necessary
condition for the existence of a LDTS(n) is n ≡ 0, 1 (mod 3) and the number of di-
rected triples is n(n−1)/3. For n ≡ 1, 3 (mod 6), there exist Steiner quasigroups of
these orders and, except for n = 3 or 9, by choosing a Steiner triple system containing
a Pasch configuration {a, b, c}, {a, y, z}, {x, b, z}, {x, y, c} and replacing these Steiner
triples by directed triples 〈a, b, c〉, 〈a, y, z〉, 〈x, b, z〉, 〈x, y, c〉, 〈z, y, x〉, 〈c, b, x〉, 〈c, y, a〉, 〈z, b, a〉
a DTS-quasigroup which is non-commutative is obtained. Replacing a Pasch con-
figuration by the above set of directed triples is an important technique which will
be used extensively in the next two sections. Note that the set of directed triples is
a partial LDTS(6) and is flexible. We will denote it by P .

But replacing a single Pasch configuration means that most of the triples will
still be bidirectional. It would be of more interest to construct pure LDTS(n) or at
least ones with relatively few bidirectional triples. In Section 4 we construct flexible
LDTS(n) for n ≡ 1, 3 (mod 6) in which the number of unidirectional triples is
asymptotic to n2/3. Then in Section 5 we turn our attention to non-flexible systems
and determine the complete spectrum for the existence of such LDTS(n). Again
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in the systems that we construct the number of unidirectional triples is asymptotic
to n2/3. We leave existence results for flexible LDTS(n) of even order and pure
LDTS(n) to a future paper.

3 Enumeration

We present the enumeration results for DTS-quasigroups of small order in the fol-
lowing theorem.

Theorem 3.1 The numbers of non-isomorphic DTS-quasigroups of order n = 3, 4, 6, 7, 9, 10, 12
are 1, 0, 0, 2, 4, 0, 2 respectively.

We consider each order in turn.
n = 3. Trivially the only DTS-quasigroup of order 3 is the Steiner quasigroup of
this order.

n = 4. Let V = {0, 1, 2, 3}. Without loss of generality there exists a directed triple
〈0, 1, 2〉. Therefore there also exists a directed triple 〈2, 1, 0〉 or directed triples
〈2, 1, ·〉, 〈2, ·, 0〉, 〈·, 1, 0〉 where the dots, both here and in other places later, repre-
sent yet to be assigned points. Neither of these two possibilities can be completed
to form a LDTS(4).

n = 6. Let V = {0, 1, 2, 3, 4, 5}. There will be 10 directed triples in any LDTS(6).
So without loss of generality there are directed triples 〈0, 1, 2〉, 〈0, 3, 4〉, 〈·, 0, 5〉. But
now the unassigned first element in the last block must also be 5.

n = 7. Let V = {0, 1, 2, 3, 4, 5, 6}. Given any directed triple system DTS(n), if
the ordering of the points in the blocks is suppressed then a twofold triple system
TTS(n) is obtained. There exist 4 non-isomorphic TTS(7)s which are listed in [6,
page 61]. It is a straightforward exercise to take each of these in turn and try to
construct LDTS(7)s by ordering the blocks. Perhaps it is appropriate to note here
that there are 2368 non-isomorphic DTS(7)s, [7], but the extra constraint on Latin
directed triple systems makes the exercise considerably easier. However the enu-
meration can be shortened as follows. In a LDTS(n), (V,B), for x ∈ V , denote by
f(x),m(x), l(x), the number of occurrences of the point x in the first, middle, and
last positions respectively in unidirectional triples of B. Obviously f(x) = l(x) for
all x. Also Σx∈V f(x) = Σx∈Vm(x) = n(n − 1)/3 − 2t, where t is the number of
Steiner triples.

Now consider the 4 non-isomorphic TTS(7)s from [6] in turn. It will be conve-
nient to do so in reverse order. System #4 has t = 0. So for each point x,
(f(x),m(x)) = (3, 0), (2, 2), (1, 4) or (0, 6). But neither m(x) = 2 nor f(x) = 1
as this would imply that the directed triples come from Steiner triples. So f(x) = 3
or 0. But the number of unidirectional triples, 14, is not divisible by 3 and so there
is no LDTS(7) from this possibility.

System #3 has one Steiner triple {0, 1, 2}. So for the three points 0, 1, 2 we have
(f(x),m(x)) = (2, 0) or (0, 4) and for the other four points (f(x),m(x)) = (3, 0) or
(0, 6). There are two possibilities. The first is that 0, 1, 2 have (f(x),m(x)) = (2, 0),
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3, 4 have (f(x),m(x)) = (3, 0), and 5, 6 have (f(x),m(x)) = (0, 6). But then the
ordered pairs (5, 6) and (6, 5) cannot occur. The second possibility is that 0, 1, 2
have (f(x),m(x)) = (0, 4) and 3, 4, 5, 6 have (f(x),m(x)) = (3, 0). But this cannot
be completed without introducing further Steiner triples. (The problem is equiva-
lent to decomposing the complete directed graph on 4 vertices into three directed
4-cycles which is not possible.)

System #2 has three Steiner triples {0, 1, 2}, {0, 3, 4}, {0, 5, 6}. The six points other
than 0 have (f(x),m(x)) = (2, 0) or (0, 4). So there are four points of the first type
and two points, say 1 and 2, of the latter type. Without loss of generality the uni-
directional triples are 〈3, 1, 5〉, 〈4, 1, 6〉, 〈5, 1, 4〉, 〈6, 1, 3〉, 〈3, 2, 6〉, 〈4, 2, 5〉, 〈5, 2, 3〉,
〈6, 2, 4〉 and the DTS-quasigroup is the one given in the example in the previous
section. It is flexible.

Finally system #1 has seven Steiner triples, i.e. it is two copies of identical STS(7)s
and gives the Steiner quasigroup of order 7.

n = 9. It is possible, but extremely tedious and time-consuming, to enumerate
DTS-quasigroups of order 9 by hand. Perhaps a better approach is to adopt the
same technique as for order 7 and use a computer. There exist 36 non-isomorphic
TTS(9)s, [15], [13]. These are listed in [6, page 63]. It is a straightforward procedure
to take each of them in turn and attempt to order the blocks in order to construct a
LDTS(9). We find that there are in fact four DTS-quasigroups of order 9, including
the Steiner quasigroup of this order. Details of the other three are given below,
referenced as examples.

Example 3.2 Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8}.
Define T = {{0, 1, 8}, {2, 5, 8}, {3, 6, 8}, {4, 7, 8}, {2, 4, 6}, {3, 5, 7}} and
D = {207, 706, 605, 504, 403, 302, 213, 314, 415, 516, 617, 712}.
Then (V,B) is a flexible LDTS(9) with d = 12 and 2t = 12.
The automorphism group of the DTS-quasigroup is the dihedral group D6 of order
12 generated by the permutations (2 3 4 5 6 7) and (0 1)(2 3)(4 7)(5 6).

Example 3.3 Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8}.
Define T = {{0, 1, 8}, {2, 3, 4}, {2, 7, 8}, {3, 6, 8}, {4, 5, 8}, {5, 6, 7}} and
D = {026, 035, 047, 125, 137, 146, 520, 531, 621, 640, 730, 741}.
Then (V,B) is a non-flexible LDTS(9) with d = 12 and 2t = 12.
For example (0 · 2) · 0 = 6 · 0 = 4, whilst 0 · (2 · 0) = 0 · 5 = 3.
The automorphism group of the DTS-quasigroup is the dihedral group D3 of order
6 generated by the permutations (2 3 4)(5 7 6) and (0 1)(3 4)(5 6).

Example 3.4 Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8}.
Define T = {{0, 1, 2}, {3, 5, 7}, {4, 6, 8}} and
D = {308, 316, 324, 403, 415, 427, 504, 518, 526, 605, 617, 623, 706, 714, 728,
807, 813, 825}.
Then (V,B) is a non-flexible LDTS(9) with d = 18 and 2t = 6.
For example (3 · 4) · 3 = 2 · 3 = 6, whilst 3 · (4 · 3) = 3 · 0 = 8.
The automorphism group of the DTS-quasigroup is the group D3 × C3 of order 18
generated by the permutations (1 2)(3 4 5 6 7 8) and (0 1 2)(3 5 7).
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n = 10. Since n is even, m(x) is odd and at least 3. The number of directed triples
is 30 and so it follows that for each point x, (f(x),m(x)) = (3, 3) and there are
no Steiner triples. The directed triples containing each point x have the format
〈a, x, b〉, 〈b, x, c〉, 〈c, x, a〉. From these form oriented triangles (a, b, c). Collectively,
these triangles have the property that they contain a directed edge (α, β) iff they also
contain the directed edge (β, α). Hence they can be sewn together along common
edges to form an orientable surface. It will be a surface rather than a pseudosurface
because f(x) = l(x) = 3, i.e. each vertex has valency 3. Now the Euler character-
istic, #vertices + #faces – #edges = 10 + 10 – 15 which is odd; a contradiciton.
Hence there is no LDTS(10).

n = 12. We first present a construction of LDTS(12)s based on a tetrahedron. Let
the vertex set be {0, 1, 2, 3} and choose a consistent orientation of the faces, say
(0 1 2), (0 3 1), (0 2 3), (1 3 2). Each of the four 3-cycles will be regarded as a
permutation φi ∈ S4, with φi(i) = i.
For every x ∈ {0, 1, 2} define sets of directed triples:

D+
x = {〈(x, j), (x+ 1, j′), (x, φj′(j))〉 : j, j′ ∈ {0, 1, 2, 3}, j 6= j′}

D−x = {〈(x, j), (x+ 1, j′), (x, φ−1
j′ (j))〉 : j, j′ ∈ {0, 1, 2, 3}, j 6= j′}

For every x ∈ {0, 1, 2} choose Dx ∈ {D+
x , D

−
x } and regard D = D0 ∪ D1 ∪ D2

as a set of unidirectional triples. These triples cover every pair ((x, j), (x′, j′))
from the set {0, 1, 2} × {0, 1, 2, 3} for which j 6= j′. By adjoining Steiner triples
{(0, j), (1, j), (2, j)} we obtain a LDTS(12).

For each x ∈ {0, 1, 2} there are two choices for Dx corresponding to the chosen
orientation. However for isomorphism what is important is whether, for given x
and x′, these are the same or opposite. There must always be two that are the
same so without loss of generality let D0 = D+

0 and D1 = D+
1 . There are thus

two isomorphism types depending on the choice of D2. In the example below we
explicitly list the triples of these two systems, constructed as described, where the
ordered pair (x, j) is represented as the integer 4x+ j with 10 written as T and 11
as E.

Example 3.5 Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, T, E}.
Define T = {{0, 4, 8}, {1, 5, 9}, {2, 6, T}, {3, 7, E}},
D+

0 = {052, 063, 071, 160, 172, 143, 270, 241, 253, 342, 350, 361},
D+

1 = {496, 4T7, 4E5, 5T4, 5E6, 587, 6E4, 685, 697, 786, 794, 7T5},
D+

2 = {81T, 82E, 839, 928, 93T, 90E, T38, T09, T1E,E0T,E18, E29}, and
D−2 = {81E, 829, 83T, 92E, 938, 90T, T39, T0E, T18, E09, E1T,E28}.
Let D+ = D+

0 ∪D+
1 ∪D+

2 and D− = D+
0 ∪D+

1 ∪D−2 .
Then (V, T ∪ D+) and (V, T ∪ D−) are both non-flexible LDTS(12)s with d = 36
and 2t = 8.
For example in both systems (0 · 1) · 0 = 7 · 0 = 2, whilst 0 · (1 · 0) = 0 · 6 = 3.
The permutations (1 2 3)(5 6 7)(9 T E) and (0 1)(2 3)(4 5)(6 7)(8 9)(T E), which
together generate the alternating group A4 of order 12, stabilize each of the sets
T , D+

0 , D
+
1 , D

+
2 andD−2 and give the full automorphism group of the DTS-quasigroup

of the LDTS(12), (V, T ∪ D−). The other DTS-quasigroup has an additional per-
mutation automorphism (0 4 8)(1 6 E)(2 7 9)(3 5 T ) to give the full automorphism
group of order 36.
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In fact the two systems are the only two DTS-quasigroups of this order. We state
this formally as a proposition.

Proposition 3.6 Every DTS-quasigroup of order 12 is isomorphic to one of the
two quasigroups given in Example 3.5.

Proof. The proof was obtained by computer with the help of the model builder
Mace4, which is part of the package Prover9 [12]. The procedure can easily be re-
peated by giving an algebraic description of DTS-quasigroups, generating all models
of order 12, and using the isomorphism filter.

n ≥ 13. At n = 13, the combinatorial explosion takes over. The smallest anti-
commutative DTS-quasigroups are of this order. There are 8444 non-isomorphic
such systems and an example is given below. However none of them are flexible.

Example 3.7 Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, T, E,W}.
Define B = D = {103, 142, 201, 247, 2E3, 2W5, 302, 341, 3E6, 3W7, 406, 4T5, 4E9,
4W8, 504, 518, 539, 5T7, 5E2, 5W6, 605, 619, 628, 6T4, 6E7, 6W3, 709, 715, 743,
7T6, 7E8, 7W2, 807, 816, 82T, 835, 8E4, 8W9, 908, 917, 926, 93T, 9E5, 9W4, T0W,
T1E, T29, T38, E0T,E1W,W0E,W1T}.
Then (V,B) is a pure non-flexible LDTS(13).
For example (2 · 3) · 2 = E · 2 = 5, whilst 2 · (3 · 2) = 2 · 0 = 1.

In addition there are 1,197,601 non-flexible and 924 flexible (including the 2 Steiner
quasigroups) DTS-quasigroups which are not anti-commutative.

It remains to identify the smallest anti-commutative, flexible DTS-quasigroups. The
next order to consider is n = 15 but first we develop some structural theory of anti-
commutative, flexible DTS-quasigroups. Let D = (V,B) be a pure flexible LDTS(n).
Suppose that 〈x, u, y〉 ∈ B. Then there exists z, v such that 〈y, u, z〉, 〈y, v, x〉 ∈ B
where z 6= x, v 6= u. So (y ·x) ·y = v ·y and y · (x ·y) = y ·u = z. Therefore v ·y = z,
i.e. 〈z, v, y〉 ∈ B. It follows that B partitions into subsets
{〈x1, u, x2〉, 〈x2, u, x3〉, . . . , 〈xn−1, u, xn〉, 〈xn, u, x1〉, 〈x2, v, x1〉, 〈x3, v, x2〉, . . . ,
〈xn, v, xn−1〉, 〈x1, v, xn〉}, n ≥ 3, which we will call components, with each point
u, v, x1, x2, . . . , xn distinct. These components can be thought of as spheres with u
and v at the poles, both joined to x1, x2, . . . , xn around the equator. In the notation
used above for the case n = 7, for each point x of a LDTS(n), m(x) 6= 1, and further,
if it is pure m(x) 6= 2. Also n− 1−m(x) is divisible by 2 and the above argument
shows that if it is also pure and flexible n− 1−m(x) is divisible by 4. We now have
the following result.

Proposition 3.8 There is no anti-commutative, flexible DTS-quasigroup of order
15.

Proof. The constraints that 14 −m(x) is divisible by 4 and m(x) 6= 2 implies that
m(x) = 14, 10 or 6. Suppose that there are λ, µ and ν points with each of these
three counts, respectively. Then

14λ+ 10µ+ 6ν = 70 and λ+ µ+ ν = 15.

Hence 8λ + 4µ = −20 which is a contradiction because the coefficients cannot be
negative.
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However for n = 16, there does exist an anti-commutative flexible DTS-quasigroup.
It was found by computer using the package Paradox [4].

Example 3.9 Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}.
Define B = D = {801, 107, 70E,E05, 50F, F0B,B08, 198, 791, E97, 59E,F95, B9F,
89B,B36, 638, 83D,D37, 73F, F3E,E3B, 64B, 846, D48, 74D,F47, E4F,B4E,
1E6, 6EA,AE8, 8E2, 2ED,DEC,CE1, 6F1, AF6, 8FA, 2F8, DF2, CFD, 1FC,
03C,C39, 93A,A30, C40, 94C,A49, 04A, 312, 214, 413, 253, 452, 354, 026, 629, 920,
6D0, 9D6, 0D9, 56C,C67, 765, C85, 78C, 587, 27A,A7B,B72, AC2, BCA, 2CB,
1AF, FAD,DA1, FB1, DBF, 1BD}.
Then (V,B) is a pure, flexible LDTS(16). It has only the identity automorphism.

The next order to consider is n = 18 and again we can use the theory developed
above to prove that there is no pure, flexible LDTS(n) of this order.

Proposition 3.10 There is no anti-commutative, flexible DTS-quasigroup of order
18.

Proof. Since 4 divides 17−m(x) and m(x) 6= 1 then m(x) = 17, 13, 9 or 5. Suppose
that there are λ, µ, ν and ρ points with each of these four counts, respectively. Then

17λ+ 13µ+ 9ν + 5ρ = 102 and λ+ µ+ ν + ρ = 18.

Further λ = 0 or 1.
If λ = 1 then

13µ+ 9ν + 5ρ = 85 and µ+ ν + ρ = 17.

Hence 8µ + 4ν = 0 and the only solution is (λ, µ, ν, ρ) = (1, 0, 0, 17). With this
distribution, it is not possible to construct a pure, flexible LDTS(18) composed of
components as required.
If λ = 0 then

13µ+ 9ν + 5ρ = 102 and µ+ ν + ρ = 18.

Hence 8µ + 4ν = 12 so (λ, µ, ν, ρ) = (0, 0, 3, 15) or (0, 1, 1, 16). Again it is not pos-
sible to construct a pure, flexible LDTS(18) composed of components.

For n = 19, the equations lead to a unique distribution. We have that 4 divides
18−m(x) and since m(x) 6= 2 it follows that m(x) = 18, 14, 10 or 6. Proceeding as
before let there be λ, µ, ν and ρ points with each of these four counts, respectively.
Then

18λ+ 14µ+ 10ν + 6ρ = 114 and λ+ µ+ ν + ρ = 19

with again λ = 0 or 1.
If λ = 1 then

14µ+ 10ν + 6ρ = 96 and µ+ ν + ρ = 18.

Hence 8µ+ 4ν = −12 and there is no solution.
If λ = 0 then

14µ+ 10ν + 6ρ = 114 and µ+ ν + ρ = 19.

Hence 8µ + 4ν = 0 and the only solution is (λ, µ, ν, ρ) = (0, 0, 0, 19). This leaves
open the possibility of an anti-commutative, flexible DTS-quasigroup with a cyclic
automorphism and indeed such a system does exist.

11



Example 3.11 Let V = Z19.
The system is defined by the triples obtained from the following starter blocks under
the action of the mapping i 7→ i+ 1.
The starter blocks for B = D are 〈0, 1, 6〉, 〈6, 1, 9〉, 〈9, 1, 0〉, 〈6, 2, 0〉, 〈0, 2, 9〉, 〈9, 2, 6〉.
Then (V,B) is a pure, flexible LDTS(19).

4 Flexible LDTS

Our constructions of flexible LDTS(n) are of two types. The first of these uses
the well-known so-called “doubling” construction for Steiner triple systems and is
particularly simple. It deals with the residue classes 3, 7 (mod 12). The details are
given in the proof of the following proposition.

Proposition 4.1 There exists a flexible LDTS(n) for all n ≡ 3, 7 (mod 12).

Proof. Put m = (n − 1)/2 and choose an STS(m), (V,B). Let V ′ = {x′ : x ∈ V }
and W = V ∪ V ′ ∪ {∞}. Construct a collection of triples B′ as follows. For
all {x, y, z} ∈ B, assign {x, y, z}, {x, y′, z′}, {x′, y, z′}, {x′, y′, z} ∈ B′. Further let
{x, x′,∞} ∈ B′ for all x ∈ V . Then (W,B′) is an STS(n). In order to obtain a
LDTS(n) replace each Pasch configuration as above by the set P of directed triples
and retain the sets containing the point∞ as Steiner triples. Because the LDTS(n)
is constructed of flexible components, i.e. just the flexible partial LDTS(6), P , and
the trivial squag on 3 points, it is also flexible. The number of unidirectional triples,
d = (n− 1)(n− 3)/3 and the number of bidirectional triples, 2t = n− 1.

The second construction of LDTS(n) uses a standard technique (Wilson’s fun-
damental construction). For this we need the concept of a group divisible design
(GDD). Recall that a 3-GDD of type gu is an ordered triple (V,G,B) where V is a
base set of cardinality v = gu, G is a partition of V into u subsets of cardinality g
called groups and B is a family of triples called blocks which collectively have the
property that every pair of elements from different groups occur in precisely one
block but no pair of elements from the same group occur at all. We will also need
3-GDDs of type gum1. These are defined analogously, with the base set V being of
cardinality v = gu+m and the partition G being into u subsets of cardinality g and
one set of cardinality m. Necessary and sufficient conditions for 3-GDDs of type gu

were determined in [3] and for 3-GDDs of type gum1 in [5]; a convenient reference
is [8] where the existence of all the GDDs that are used can be verified.

We will also need the following system.

Example 4.2 Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, T, E,W}.
Define T ={{0, 4, 5}, {1, 7, 9}, {1, T,W}, {3, 5, 8}, {3, 7,W}, {5, 9, T}} and
D = {103, 142, 156, 18E, 201, 243, 257, 28W, 302, 341, 60E, 629, 63T, 647, 65W, 681,
706, 74T, 75E, 782, 80T, 849, 908, 92E, 936, 94W,T07, T26, T3E, T48, E0W,E2T,
E39, E46, E51, E87,W09,W4E,W52,W86}.
Then (V,B) is a flexible LDTS(13) with d = 40 and 2t = 12.

We can now prove the following proposition.

Proposition 4.3 There exists a flexible LDTS(n) for all n ≡ 1, 9 (mod 12).
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Proof. The proof is divided into different residue classes.
(a) n ≡ 1 (mod 12). Take a 3-GDD of type 6s, s ≥ 3. Inflate each point by a factor
2 and adjoin an extra point ∞. On each inflated group, together with the point ∞,
place a flexible LDTS(13) given in Example 4.2. On each inflated block place the set
P of directed triples 〈a, b, c〉, 〈a, y, z〉, 〈x, b, z〉, 〈x, y, c〉, 〈z, y, x〉, 〈c, b, x〉, 〈c, y, a〉, 〈z, b, a〉,
with the three sets of points {a, x}, {b, y}, {c, z} as the inflated points in the three
groups. We will use P in this manner throughout. This simple construction gives a
flexible LDTS(12s+1), s ≥ 3. A count shows that d = (n−1)(n−3)/3 and 2t = n−1.

(b) n ≡ 9 (mod 24). Take a 3-GDD of type 43s+1, s ≥ 1. Inflate each point by a
factor 2 and adjoin an extra point ∞. On each inflated group, together with the
point ∞, place a flexible LDTS(9) given in Example 3.2. On each inflated block
place the set of directed triples P . This gives a flexible LDTS(24s+ 9), s ≥ 1 with
d = (n− 1)(2n− 9)/6 and 2t = 3(n− 1)/2.

(c) n ≡ 21 (mod 24). Take a 3-GDD of type 43s+161, s ≥ 1. Inflate each point
by a factor 2 and adjoin an extra point ∞. On each inflated group of cardinality
8, together with the point ∞, place a flexible LDTS(9) given in Example 3.2 and
on the inflated group of cardinality 12, together with the point ∞, place a flexible
LDTS(13) given in Example 4.2. On each inflated block place the set of directed
triples P . This gives a flexible LDTS(24s+ 21), s ≥ 1 with d = (2n2 − 11n+ 45)/6
and 2t = 3(n− 5)/2.

(d) The above constructions complete the proof of the proposition except for the
two values n = 21 in (c) and n = 25 in (a). These too can be constructed by GDD
techniques. For n = 21 take a 3-GDD of type 33. Inflate each point by a factor 2
and adjoin three extra points ∞1,∞2,∞3. On each inflated group, together with
the three extra points, place a flexible LDTS(9) given in Example 3.2 in such a
way that the triple {∞1,∞2,∞3} is identified with the same Steiner triple in each
LDTS(9). On each inflated block place the set of directed triples P . This gives a
flexible LDTS(21) with d = 108 and 2t = 32. For n = 25 take a 3-GDD of type 43.
Inflate each point by a factor 2 and adjoin an extra point∞. On each inflated group,
together with the point∞, place a flexible LDTS(9) given in Example 3.2. On each
inflated block place the set of directed triples P . This gives a flexible LDTS(25)
with d = 164 and 2t = 36.

Combining the results of the above two propositions we have proved the following
result.

Theorem 4.4 There exists a flexible LDTS(n) for all n ≡ 1, 3 (mod 6).

5 Non-flexible LDTS

Our constructions of non-flexible LDTS(n) use a variety of techniques and divide
into different residue classes. The first proposition deals with the case where n is
divisible by 3 and is a modification of the well-known Bose construction. First we
recall some basic definitions.

Two Latin squares L and M are said to be mutually orthogonal if L(x, y) =
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L(x′, y′) and M(x, y) = M(x′, y′) implies that x = x′ and y = y′. A Latin square
L is said to be self-orthogonal if it is mutually orthogonal to its transpose L′. The
diagonal of a self-orthogonal Latin square is a transversal, i.e. it contains every
element precisely once; thus by relabelling the elements, a self-orthogonal Latin
square can be made idempotent, i.e. L(i, i) = i.

Proposition 5.1 There exists a non-flexible LDTS(n) for all n ≡ 0 (mod 3), except
n = 3, 6.

Proof. Let m = n/3 and L be a self-orthogonal Latin square of side m, with the
rows, columns, and entries in Zm and labelled in such a way as to be idempotent.
Such a square exists for all m 6= 2, 3, 6, [2]. Denote the entry in row x, column y by
x ? y.
Let V = Zm × Z3. Let D, the set of unidirectional triples, be

〈(x, i), (x ? y, i+ 1), (y, i)〉, x, y ∈ Zm, x 6= y, i ∈ Z3

and T , the set of Steiner triples, be

{(x, 0), (x, 1), (x, 2)}, x ∈ Zm.

Then (V,B) = (V,D ∪ T ) is a LDTS(n). For m = 1 it produces the squag of order
3. We show that for m 6= 1 it is not flexible. Choose any x, y ∈ Zm, x 6= y.
Now [(x, i) · (y, i)] · (x, i) = (x ? y, i+ 1) · (x, i) = (z, i) where z ? x = x ? y.
Also (x, i) · [(y, i) · (x, i)] = (x, i) · (y ? x, i+ 1) = (w, i) where x ? w = y ? x.
If w = z then (x ? y, y ? x) = (z ? x, x ? z) which violates L being self-orthogonal.
Hence w 6= z and the LDTS(n) is non-flexible. The number of unidirectional triples,
d = 3m(m−1) = n(n−3)/3 and the number of bidirectional triples, 2t = 2m = 2n/3.

It remains to consider the three values of m for which there does not exist a self-
orthogonal Latin square. By Theorem 3.1, for m = 2, there is no LDTS(6). For m =
3, non-flexible LDTS(9)s are given in Examples 3.3 and 3.4. For m = 6, we remark
that the full force of self-orthogonality is not required in the above construction.
Using the idempotent anti-symmetric Latin square below will produce a LDTS(18)
which is non-flexible.

0 1 2 3 4 5
0 0 5 4 1 3 2
1 4 1 5 0 2 3
2 3 0 2 5 1 4
3 2 4 1 3 5 0
4 5 3 0 2 4 1
5 1 2 3 4 0 5

[(0, 0)·(1, 0)]·(0, 0) = (5, 1)·(0, 0) = (4, 0), whilst (0, 0)·[(1, 0)·(0, 0)] = (0, 0)·(4, 1) =
(2, 0).

Next we deal with the case where n ≡ 1 (mod 6). The following example is a
non-flexible LDTS(13).

Example 5.2 Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, T, E,W}.
Define T ={{0, 7, 8}, {1, 8, T}, {3, 8, 9}, {6, 8,W}, {4, 7,W}, {4, 9, T}} and
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D = {012, 046, 053, 0E9, 0WT, 145, 1WE, 213, 240, 256, 2T7, 2E8, 2W9, 310, 34E,
357, 3T6, 3W2, 548, 5ET, 5W1, 619, 643, 650, 6T2, 6E7, 716, 759, 7T3, 7E2, 842,
8E5, 917, 952, 9E6, 9W0, TE0, TW5, E41, EW3}.
Then (V,B) is a non-flexible LDTS(13) with d = 40 and 2t = 12.
For example (0 · 1) · 0 = 2 · 0 = 4, whilst 0 · (1 · 0) = 0 · 3 = 5.

Proposition 5.3 There exists a non-flexible LDTS(n) for all n ≡ 1 (mod 6), except
n = 7.

Proof. We have already noted that there is no non-flexible LDTS(7) and a non-
flexible LDTS(13) is given in the above example. Let m ≥ 3 and put n = 6m+1. Let
(V,B) = (V,D ∪ T ) be a non-flexible LDTS(3m), constructed as in the proof of the
previous proposition. We form a LDTS(6m + 1) as follows. Let V ′ = {x′ : x ∈ V }
and W = V ∪ V ′ ∪ {∞}. Construct a collection of triples B′ as follows. For all
〈x, y, z〉 ∈ D, assign 〈x, y, z〉, 〈x, y′, z′〉, 〈x′, y, z′〉, 〈x′, y′, z〉 ∈ D′. In addition for all
{x, y, z} ∈ T assign 〈x, y, z〉, 〈x, y′, z′〉, 〈x′, y, z′〉, 〈x′, y′, z〉, 〈z′, y′, x′〉, 〈z, y, x′〉,
〈z, y′, x〉, 〈z′, y, x〉 ∈ D′. Further let {x, x′,∞} ∈ T ′, the set of Steiner triples in the
LDTS(6m + 1), for all x ∈ V . Let B′ = D′ ∪ T ′. Then (W,B′) is a non-flexible
LDTS(n) with d = (n− 1)(n− 3)/3 and 2t = n− 1.

Next we deal with the case where n ≡ 4 (mod 12). First we give three examples
for the cases n = 16, 28, 40. The first of these is used in the proposition below, the
proof of which again uses GDD techniques. The other two examples give the values
which the method misses.

Example 5.4 Let V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}.
Define T ={{0, 1, 2}, {0, 3, 4}} and
D = {135, 14A, 1C6, 236, 25C, 297, 2D8, 2F4, 468, 47B, 4D2, 4FC, 506, 537, 541,
5AF, 5B9, 5ED, 60F, 631, 692, 6A7, 6CD, 6E5, 705, 71F, 732, 78E, 796, 7AD, 80C,
819, 83A, 852, 86B, 8D4, 90D, 91E, 938, 945, 9BF, 9CA,A08, A2B,A39, A4E,
AC1, B0A,B18, B2E,B3D,B64, B7C,C0E,C3B,C58, C74, CF2, D07, D1B,
D3F,DA5, DC9, DE6, E0B,E17, E2A,E3C,E49, E8F, F09, F1D,F3E,F87,
FA6, FB5}.
Then (V,B) is a non-flexible LDTS(16) with d = 76 and 2t = 4.
For example (1 · 3) · 1 = 5 · 1 = 4, whilst 1 · (3 · 1) = 1 · 6 = C.

Example 5.5 Let V = Z14 ×Z2.
The system is defined by the triples obtained from the following starter blocks under
the action of the mapping (i, j) 7→ (i+ 1, j).
The starter blocks for T are {(0, 0), (1, 0), (3, 0)} and {(0, 0), (4, 0), (0, 1)}
and for D are 〈(0, 0), (9, 0), (12, 1)〉, 〈(0, 0), (1, 1), (7, 0)〉,
〈(0, 0), (6, 1), (11, 1)〉, 〈(0, 0), (7, 1), (5, 1)〉, 〈(0, 0), (8, 1), (4, 1)〉,
〈(0, 0), (9, 1), (8, 0)〉, 〈(0, 0), (13, 1), (6, 0)〉, 〈(0, 1), (11, 0), (13, 1)〉,
〈(0, 1), (12, 0), (3, 0)〉, 〈(0, 1), (2, 1), (10, 0)〉, 〈(0, 1), (4, 1), (7, 1)〉,
〈(0, 1), (8, 1), (9, 0)〉, 〈(0, 1), (9, 1), (1, 1)〉, 〈(0, 1), (11, 1), (2, 0)〉.
Then (V,B) is a non-flexible LDTS(28) with d = 196 and 2t = 56.
For example [(0, 0) ·(1, 1)] ·(0, 0) = (7, 0) ·(0, 0) = (8, 1), whilst (0, 0) · [(1, 1) ·(0, 0)] =
(0, 0) · (6, 0) = (13, 1).
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Example 5.6 Let V = Z20 ×Z2.
The system is defined by the triples obtained from the following starter blocks under
the action of the mapping (i, j) 7→ (i+ 1, j).
The starter blocks for T are {(0, 0), (1, 0), (3, 0)}, {(0, 0), (4, 0), (9, 0)},
{(0, 0), (8, 0), (0, 1)} and for D are 〈(0, 0), (1, 1), (10, 0)〉, 〈(0, 0), (2, 1), (7, 0)〉,
〈(0, 0), (3, 1), (6, 0)〉, 〈(0, 0), (4, 1), (19, 1)〉, 〈(0, 0), (9, 1), (10, 1)〉,
〈(0, 0), (11, 1), (7, 1)〉, 〈(0, 0), (14, 1), (13, 0)〉, 〈(0, 0), (15, 1), (13, 1)〉,
〈(0, 0), (16, 1), (14, 0)〉, 〈(0, 0), (17, 1), (6, 1)〉, 〈(0, 1), (2, 0), (7, 1)〉,
〈(0, 1), (12, 0), (10, 1)〉, 〈(0, 1), (15, 0), (3, 1)〉, 〈(0, 1), (2, 1), (13, 0)〉,
〈(0, 1), (4, 1), (1, 0)〉, 〈(0, 1), (5, 1), (17, 1)〉, 〈(0, 1), (6, 1), (10, 0)〉,
〈(0, 1), (8, 1), (14, 0)〉, 〈(0, 1), (11, 1), (7, 0)〉, 〈(0, 1), (19, 1), (13, 1)〉.
Then (V,B) is a non-flexible LDTS(40) with d = 400 and 2t = 120.
For example [(0, 0)·(1, 1)]·(0, 0) = (10, 0)·(0, 0) = (11, 1), whilst (0, 0)·[(1, 1)·(0, 0)] =
(0, 0) · (7, 0) = (2, 1).

Proposition 5.7 There exists a non-flexible LDTS(n) for all n ≡ 4 (mod 12),
except n = 4.

Proof. We have already noted that there is no LDTS(4) and non-flexible LDTS(n)
for n = 16, 28, 40 are given above. Take a 3-GDD of type 6s81, s ≥ 3. Inflate each
point by a factor 2. On each inflated group of cardinality 12 place a non-flexible
LDTS(12) constructed as in the proof of Proposition 5.1 and on the inflated group of
cardinality 16 place a non-flexible LDTS(16) given in Example 5.4. On each inflated
block place the set of directed triples P . This gives a non-flexible LDTS(12s+ 16),
s ≥ 3 with d = (n2 − 3n+ 20)/3 and 2t = 2(n− 10)/3.

Now we come to the final case where n ≡ 10 (mod 12). This in turn divides into
three different residue classes, for one of which we will need the following example
of a non-flexible LDTS(22).

Example 5.8 Let V = Z11 ×Z2.
The system is defined by the triples obtained from the following starter blocks under
the action of the mapping (i, j) 7→ (i+ 1, j).
The starter blocks for T are {(0, 0), (1, 0), (3, 0)} and {(0, 0), (4, 0), (0, 1)} and for
D are 〈(0, 0), (5, 1), (8, 1)〉, 〈(5, 0), (0, 0), (3, 1)〉, 〈(1, 1), (0, 0), (10, 1)〉,
〈(2, 1), (0, 0), (5, 0)〉, 〈(3, 1), (0, 0), (2, 1)〉, 〈(3, 1), (0, 1), (4, 1)〉, 〈(4, 1), (0, 0), (6, 1)〉,
〈(6, 1), (0, 0), (1, 1)〉, 〈(9, 1), (5, 1), (0, 0)〉, 〈(10, 1), (0, 0), (4, 1)〉.
Then (V,B) is a non-flexible LDTS(22) with d = 110 and 2t = 44.
For example [(1, 1)·(0, 0)]·(1, 1) = (10, 1)·(1, 1) = (6, 0), whilst (1, 1)·[(0, 0)·(1, 1)] =
(1, 1) · (6, 1) = (2, 0).

Proposition 5.9 There exists a non-flexible LDTS(n) for all n ≡ 10 (mod 12)
except n = 10 and possibly except n = 58.

Proof. We deal with the different residue classes in turn.
(a) n ≡ 34 (mod 36). Take three copies of a non-flexible LDTS(12s+12), s ≥ 0, con-
structed as in the proof of Proposition 5.1 on point sets {∞, (i, 0) : 0 ≤ i ≤ 12s+10},
{∞, (i, 1) : 0 ≤ i ≤ 12s + 10}, {∞, (i, 2) : 0 ≤ i ≤ 12s + 10} respectively. Now
take an idempotent, antisymmetric Latin square of side 12s + 11, for example a
self-orthogonal Latin square. Adjoin the Steiner triples {(x, 0), (x, 1), (x, 2)}, x ∈
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Z12s+11 and unidirectional triples 〈(x, 0), (y, 1), (x?y, 2)〉 and 〈(y?x, 2), (y, 1), (x, 0)〉,
x, y ∈ Z12s+11, x 6= y. This gives a non-flexible LDTS(36s + 34), s ≥ 0, with
d = (n2 − 5n− 2)/3 and 2t = 2(2n+ 1)/3.

(b) n ≡ 10 (mod 36). This case is similar to the previous one but starting with three
copies of a non-flexible LDTS(12s+4), s ≥ 1, constructed as in the proof of Proposi-
tion 5.7. This gives a non-flexible LDTS(36s+ 10), s ≥ 1, with d = (n2−5n+ 58)/3
and 2t = 2(2n− 29)/3, n ≥ 154.

(c) n ≡ 22 (mod 36). The method used in the previous two cases is inapplicable
here because of the non-existence of a LDTS(12s + 8). We revert to a GDD tech-
nique. Take a 3-GDD of type 92s111, s ≥ 2. Inflate each point by a factor 2. On
each inflated group of cardinality 18 place a non-flexible LDTS(18) constructed as
in the proof of Proposition 5.1 and on the inflated group of cardinality 22 place
a non-flexible LDTS(22) given in Example 5.8. On each inflated block place the
set of directed triples P . This gives a non-flexible LDTS(36s + 22), s ≥ 2, with
d = (n+ 8)(n− 11)/3 and 2t = 2(n+ 44)/3 and just leaves the value n = 58 unde-
cided.

It remains only to consider n = 58. We first need the following example which is
of a non-flexible LDTS(24) which contains a LDTS(7) as a subsystem. In fact the
LDTS(24) contains three disjoint LDTS(7)s but we will not need this additional
property.

Example 5.10 Let V = {Z7 ×Z3} ∪ {∞1,∞2,∞3}.
The three disjoint LDTS(7)s are defined by the triples obtained from the following
starter blocks under the action of the mapping (i, j) 7→ (i, j + 1) with ∞1,∞2,∞3

as fixed points.
The starter blocks for the Steiner triples T1 are {(0, 0), (4, 0), (6, 0)},
{(1, 0), (5, 0), (6, 0)}, {(2, 0), (3, 0), (6, 0)} and for the unidirectional triples D1 are
〈(1, 0), (0, 0), (3, 0)〉, 〈(1, 0), (4, 0), (2, 0)〉, 〈(2, 0), (0, 0), (1, 0)〉, 〈(2, 0), (4, 0), (5, 0)〉,
〈(3, 0), (0, 0), (5, 0)〉, 〈(3, 0), (4, 0), (1, 0)〉, 〈(5, 0), (0, 0), (2, 0)〉, 〈(5, 0), (4, 0), (3, 0)〉.
The starter blocks for the remaining Steiner triples T2 are {(0, 0), (3, 1), (3, 2)},
{(3, 0), (4, 1), (6, 2)}, {(2, 0), (6, 1), (4, 2)}, {(0, 0), (0, 1), (0, 2)}, {∞1,∞2,∞3}
and for the unidirectional triples D2 are 〈(1, 0), (0, 1), (1, 2)〉, 〈(1, 0), (2, 1), (5, 2)〉,
〈(1, 0), (0, 2), (6, 1)〉, 〈(1, 0), (2, 2), (1, 1)〉, 〈(1, 0), (4, 2), (5, 1)〉, 〈(2, 0), (0, 1), (2, 2)〉,
〈(3, 0), (1, 1), (4, 2)〉, 〈(3, 0), (2, 2), (6, 1)〉, 〈(4, 0), (0, 1), (4, 2)〉, 〈(4, 0), (0, 2), (5, 1)〉,
〈(4, 0), (2, 2), (3, 1)〉, 〈(5, 0), (0, 1), (5, 2)〉, 〈(5, 0), (2, 1), (4, 2)〉, 〈(5, 0), (6, 1), (1, 2)〉,
〈(5, 0), (2, 2), (5, 1)〉, 〈(5, 0), (3, 2), (1, 1)〉, 〈(6, 0), (0, 1), (6, 2)〉, 〈(6, 0), (2, 1), (1, 2)〉,
〈(6, 0), (5, 1), (3, 2)〉, 〈(1, 0), (6, 2),∞1〉, 〈(3, 0), (2, 1),∞1〉, 〈(5, 0), (0, 2),∞1〉,
〈(1, 0), (3, 1),∞2〉, 〈(2, 0), (0, 2),∞2〉, 〈(5, 0), (4, 1),∞2〉, 〈(3, 0), (5, 2),∞3〉,
〈(4, 0), (1, 2),∞3〉, 〈(6, 0), (0, 2),∞3〉, 〈∞1, (0, 0), (1, 2)〉, 〈∞1, (2, 0), (3, 1)〉,
〈∞1, (6, 0), (5, 2)〉, 〈∞2, (0, 0), (2, 2)〉, 〈∞2, (3, 0), (5, 1)〉, 〈∞2, (4, 0), (1, 1)〉,
〈∞3, (0, 0), (4, 2)〉, 〈∞3, (1, 1), (3, 2)〉, 〈∞3, (5, 0), (6, 2)〉, 〈(4, 0),∞1, (4, 1)〉,
〈(6, 0),∞2, (6, 1)〉, 〈(2, 0),∞3, (2, 1)〉.
Putting T = T1 ∪ T2 and D = D1 ∪ D2, then (V,B) = (V,D ∪ T ) is a non-
flexible LDTS(24) containg three disjoint LDTS(7)s subsystems and with d = 144
and 2t = 40. For example [(1, 0) · (0, 1)] · (1, 0) = (1, 2) · (1, 0) = (2, 1), whilst
(1, 0) · [(0, 1) · (1, 0)] = (1, 0) · ∞1 = (6, 2).
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Proposition 5.11 There exists a non-flexible LDTS(58).

Proof. Define sets N = {(∞, j) : 0 ≤ j ≤ 6}, Mk = {(i, k) : 0 ≤ i ≤ 16},
k = 0, 1, 2. Take three copies of a non-flexible LDTS(24) containing a LDTS(7) as a
subsystem, constructed as in Example 5.10 on point sets N ∪M0, N ∪M1, N ∪M2

respectively with in each case the LDTS(7) on the set N . Now take an idempotent,
antisymmetric Latin square of side 17, for example a self-orthogonal Latin square.
Adjoin the Steiner triples {(x, 0), (x, 1), (x, 2)}, x ∈ Z17 and unidirectional triples
〈(x, 0), (y, 1), (x ? y, 2)〉 and 〈(y ? x, 2), (y, 1), (x, 0)〉, x, y ∈ Z17, x 6= y. This gives a
non-flexible LDTS(58), with d = 960 and 2t = 142.

Collecting together all the results in this section gives the following theorem.

Theorem 5.12 The existence spectrum of non-flexible LDTS(n) is n ≡ 0, 1 (mod
3), n 6= 3, 4, 6, 7, 10.
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