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Introduction

The competitive exclusion principle, which states that a

simple unstructured environment containing only a

single resource can support only one competitor (Gause,

1934; Hardin, 1960), is often used as a starting point for

discussions of the evolution and maintenance of micro-

bial diversity (Fredrickson & Stephanopoulos, 1981;

Kassen & Rainey, 2004). A model for such a simple

environment is the chemostat, a vessel with a constant

influx of fresh medium and efflux of spent medium and

cells (Novick & Szilard, 1950a).

Models of competition predict that diversity cannot be

maintained in the chemostat (Stewart & Levin, 1973;

Smith & Waltman, 1995; Pfeiffer et al., 2001) unless the

population is subject to product inhibition (Lenski &

Hattingh, 1986; Hsu & Waltman, 1992; Pfeiffer & Bon-

hoeffer, 2004), cross-feeding (Pfeiffer & Bonhoeffer,

2004) or the dilution rate of the chemostat varies

periodically (Stephanopoulos et al., 1979; Butler et al.,

1985). These models, with the exception of Pfeiffer &

Bonhoeffer (2004), are strictly ecological in the sense

that they do not allow novel variants to appear during

the course of competition. This is an important limitation

because the large size of microbial populations ensures

that novel mutants appear continuously, allowing for

rapid evolution.

The evolutionary extension of the principle of com-

petitive exclusion is the principle of periodic selection which

states that microbial evolution in simple environments is

characterized by sequential selective sweeps that replace

the dominant clone in a population with a fitter

descendent (Muller, 1932; Atwood et al., 1951; Crow &

Kimura, 1965; Dykhuizen, 1990). Although early che-

mostat experiments reported results that were consistent

with periodic selection (Novick & Szilard, 1950b; Atwood

et al., 1951), diversity has been detected in a number of

chemostat experiments using both culturing techniques

(Adams & Oeller, 1986; Wick et al., 2001; Maharjan et al.,

2006) and molecular population genetics (Adams &

Oeller, 1986; Notley-McRobb & Ferenci, 1999a, b;

Kashiwagi et al., 2001; Maharjan et al., 2006).

We postulate that the following well-established bio-

chemical constraints are sufficient to allow creation and

maintenance of microbial diversity in simple habitats:

1. The rate vs. yield trade-off. The laws of thermodynamics

imply the existence of a trade-off between the rate

(moles ATP/time) and yield (moles ATP/mole substrate)
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Abstract

Understanding the evolution of microbial diversity is an important and current

problem in evolutionary ecology. In this paper, we investigated the role of two

established biochemical trade-offs in microbial diversification using a model

that connects ecological and evolutionary processes with fundamental aspects

of biochemistry. The trade-offs that we investigated are as follows:(1) a trade-

off between the rate and affinity of substrate transport; and (2) a trade-off

between the rate and yield of ATP production. Our model shows that these

biochemical trade-offs can drive evolutionary diversification under the

simplest possible ecological conditions: a homogeneous environment contain-

ing a single limiting resource. We argue that the results of a number of

microbial selection experiments are consistent with the predictions of our

model.
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of any given catabolic reaction Pfeiffer et al. (2001). At

the level of entire pathways, trade-offs between the rate

and yield of ATP production have been shown in Candida

utilis, Saccharomyces cerevisiae (Weusthuis et al., 1994;

Otterstedt et al., 2004), Escherichia coli (Novak et al.,

2006) and Pseudomonas fluorescens (see Appendix A)

2. The maximal uptake rate vs. affinity trade-off. Although the

thermodynamic basis of this trade-off has not received

as much attention as the rate vs. yield trade-off, there is

clear evidence for a trade-off between the maximal rate

and affinity of substrate transport in S. cerevisiae (Elbing

et al., 2004) and E. coli (Wirtz, 2002).

The role of the above trade-offs in microbial compe-

tition has been explored in Stewart & Levin (1973),

Pfeiffer et al. (2001) and whereas Stewart & Levin (1973)

considered only the rate–affinity trade-off, Pfeiffer et al.

(2001) considered only the rate–yield trade-off. Coexist-

ence of microbial strains was not observed in either study

and one dominant strain was found to persistently out-

compete all others.

In this paper, we developed a mathematical model that

describes the evolution of a microbial population subject

to both aforementioned biochemical trade-offs. This

mathematical approach connects ecological and evolu-

tionary dynamics and examines the way in which

ecological factors influence evolution by natural selec-

tion.

Materials and methods

The model

In this section, we present a model describing the

evolution of a microbial population growing on a single

resource in the chemostat. The model tracks changes in

phenotypic distribution of a population of micro-organ-

isms in response to ever-changing environments and

makes use of the following basic assumption:

the rate of change of resource concentration

¼ input� resource consumption� dilution
ð1Þ

the rate of change of population density

¼ growthþ phenotypic mutations� dilution
ð2Þ

Resource consumption and microbial growth
In our model, cells take up an extracellular resource and

convert it into ATP using a simple, unbranched metabolic

pathway (see Pfeiffer & Bonhoeffer (2004) for an illus-

tration). The rate of ATP production in the pathway is

denoted by JATP and is given by

JATP ¼ nATPJS ð3Þ
where JS denotes the rate of the pathway and nATP

denotes the number of ATP molecules produced in the

pathway. As in Pfeiffer & Bonhoeffer (2004) we make a

simplifying assumption that the behaviour of the entire

pathway can be modelled with Michaelis–Menten kin-

etics of a single reaction. Therefore

JS ¼ VmaxS

Km þ S
ð4Þ

where Vmax denotes maximal rate of the pathway and Km

the Michaelis–Menten constant. The pathway rate JS

represents the rate at which product is formed which in

this case is the same as the rate at which substrate is

consumed. Therefore, throughout this paper we refer to

Vmax as the maximal rate of resource uptake and Km as the

measure of affinity for a resource.

Bauchop & Elsden (1960) observed that if microbes are

limited by their energetic resource, the amount of

biomass formed per unit of ATP is approximately

constant and does not depend on the mode of ATP

production. Therefore, as highlighted by Pfeiffer and

Bonhoeffer (2004) if the rate of ATP production increa-

ses, the rate of biomass formation and thus the growth

rate of an organism also increases. This implies that the

microbial growth rate can be represented as a linear

function of the rate of ATP production, namely cJATP

where c is some proportionality constant.

We model the growth of a microbial population of

density N(t) at time t consuming a single limiting

resource of concentration S(t) at time t in the chemostat

in the following way:

_S ¼ DðS0 � SÞ � JSN; ð5Þ

_N ¼ cJATPN � DN: ð6Þ

Parameter D represents the dilution rate describing: (a)

the rate of influx of the resource into the chemostat from

an outside reservoir with the resource concentration S0;

and (b) the rate at which the content of the chemostat,

including both cells and the unused resource, is

removed.

Trade-offs
We assume that microbial strains differ in their values of

Vmax, which is chosen to be the evolving phenotypic trait.

As there is a biologically feasible maximum to any

maximal uptake rate the phenotypic trait Vmax is

assumed to reside in an interval [a,b] where a and b

are nonzero parameters. We also assume that evolution-

ary changes in Vmax are constrained by two well-

established trade-offs.

First, we assume that an increase in Vmax leads to a

decrease in nATP, an assumption that can be written in

the form nATP ¼ g(Vmax) where g is a decreasing function

of Vmax. This is motivated by the rate (JATP) and yield

(nATP) trade-off and was also used in Pfeiffer et al. (2001).

Secondly, we assume that an increase in Vmax leads to a

decrease in the affinity of the cell for its resource which
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can be written as Km ¼ f(Vmax), where f denotes an

increasing function of Vmax. For f to represent the rate–

affinity trade-off we also need to ensure that for small S,

JS increases as Vmax increases at least for some values of

Vmax in the phenotypic domain [a,b] (see Appendix B for

details). Taking the rate–yield and rate–affinity trade-offs

into account, eqns 3 and 4 become

JATP ¼ gðVmaxÞ
VmaxS

f ðVmaxÞ þ S
and JS ¼ VmaxS

f ðVmaxÞ þ S0
ð7Þ

respectively.

Note that the model presented in this paper can easily be

extended to a two-dimensional phenotypic domain

where the yield nATP and the affinity Km are the evolving

phenotypes whose evolutionary changes are constrained

by the same two biochemical trade-offs. In that case Vmax

would be a decreasing function of nATP but an increasing

function Km. However, for simplicity we restrict our

study to a one-dimensional phenotypic domain with

Vmax as the evolving phenotype.

Phenotypic mutations
As microbes usually reproduce asexually, our model is

restricted to clonal reproduction. However, if a muta-

tion occurs during reproduction a parent cell will give

rise to an offspring with a value of Vmax different to its

own.

We assume that mutations have only small pheno-

typic effect and we represent them in the following

way. Consider a set of n values for the phenotypic trait

Vmax denoted by a ¼ V 1
max � V 2

max � � � � � V n
max ¼ b. If

a mutation occurs during reproduction of a cell with

phenotype V i
max then there is an equal probability of 1/2

that the phenotype of the mutant offspring will either be

V j�1
max or V jþ1

max. As V 1
max and V n

max are on the edge of the

phenotypic domain they represent a special case whereby

a parent with phenotype V 1
max (V n

max) can only give rise to

a mutant offspring with phenotype V 2
max (V n�1

max ). This is

known as a no-flux boundary condition.

Evolutionary model
Next we explain how to include mutations from clonal

reproduction described above into the ecological setting

of eqns 5 and 6. Our approach is similar in nature to the

adaptive dynamics method (Metz et al., 1996) with a

difference that here mutations are intrinsically built into

the model. Contrary to this, the adaptive dynamics

method considers ecological and evolutionary time scales

separately and a mutant phenotype is only added into the

system once the ecological interactions have reached a

steady state.

Consider a microbial population with n competing

strains each with a different value of Vmax and let Ni

denote the density of a strain with phenotype V i
max for

i ¼ 1,…,n. If we assume that phenotypic mutations occur

at a rate e, the ecological model 5 and 6 can be

transformed into the following evolutionary model:

dS

dt
¼ DðS0 � SÞ �

Xn

i¼1

JS
i Ni; ð8Þ

dN1

dt
¼ eðN2 � N1Þ þ cJATP

1 N1 � DN1; ð9Þ

dNi

dt
¼ e

1

2
Ni�1 þ

1

2
Niþ1 � Ni

� �
þ cJATP

i Ni � DNi;

for i ¼ 2; . . . ; n� 1

ð10Þ

dNn

dt
¼ eðNn�1 � NnÞ þ cJATP

n Nn � DNn ð11Þ

where JATP
i and JS

i are defined as in eqn 7 with Vmax

replaced by V i
max. The diversity of a population will be

measured through the number of local maxima in the

distribution of population densities according to their

phenotype.

Note that for n sufficiently large the above system of

ordinary differential eqns 8–11 can be written as a

system of partial differential equations (PDEs) (see

Appendix C for details). The PDE approach has its

origins in the work of Fisher (1930) and Kimura (1983)

and more recently it has been used to study evolution

in both the mathematical (Calsina & Perell’o, 1995;

Gudelj et al., 2006) and biophysics (Tsmiring & Levine,

1996) literature. A feature of both eqns 8–11 and eqns

12 and 13 in Appendix C is that there is a nonzero

probability that a mutation can arise anywhere in the

phenotypic domain [a,b] which is well suited for

modelling microbial evolution.

Results

Creation and maintenance of diversity

If the dilution rate D is larger than a critical value D0, the

microbial population will not be able to persist and

eventually the chemostat will only contain the resource

at concentration S0. However, if the dilution rate D is

smaller than D0, the microbial population will be able to

persist on a single resource and may converge to a

unique steady state (N*1,…,N*n) supported by a resource

of concentration S*. It can be shown that there are no

other points to which the solution can be attracted;

moreover, a mathematical argument shows that this

steady state can be reached exponentially quickly.

Therefore, in the remainder of the section we assume

that D < D0 and explore the phenotypic structure of the

equilibrium state.

The equilibrium population N* ¼ (N*1,…,N*n) of eqns

8–11 can potentially support any number of phenotypic

clouds, provided that f and g satisfy appropriate condi-

tions (see Appendix D for details). This can be illustrated

with the following examples.
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Example 1: Straight line rate–yield
trade-off
Consider f and g to be of the form illustrated in Fig. 1a

and b, respectively, so that the rate–yield relationship

follows a straight line whereas there is no rate–affinity

trade-off as f does not satisfy the condition set in the

Appendix B. In this case long-term diversity is not

possible and the steady-state population can only

support one phenotypic cloud situated either around

0.1 or
ffiffiffiffiffiffiffiffi
D=c

p
depending on the mutation rate e and

the dilution rate D, see Fig. 1c. Note that expressionffiffiffiffiffiffiffiffi
D=c

p
is arrived at using asymptotic analyses similar in

style to the one performed in Gudelj et al. (2006).

Therefore, when D ¼ 0.01, c ¼ 1 and e ¼ 10)7, for

example, the phenotypic cloud is situated around 0.1

(see Fig. 1d for a numerically obtained solution) and

when D ¼ 0.04, c ¼ 1 and e ¼ 10)7 the phenotypic

cloud is situated at 0.2 (see Fig. 1e for a numerically

obtained solution).

This result can be deduced using Maynard-Smith’s

evolutionary theory (Maynard-Smith, 1982) which dem-

onstrates that the evolutionary stable strategy (ESS) will

be situated at Vmax ¼
ffiffiffiffiffiffiffiffi
D=c

p
(see Appendix E for details).

Note that in this case the strain with the highest maximal

rate of resource uptake, b, will not be present in the

population in the long term.

Example 2: Concave f and convex g
trade-offs
Suppose that f is concave and g is convex trade-off of

the form illustrated in Fig. 2a and b respectively. The

number of phenotypic clouds present in the equilibrium

population of eqns 8–11 depends on the mutation rate e
and the dilution rate D as illustrated in Fig. 2c. In this

case, the population can support either one phenotypic

cloud situated around 0.1 (see Fig. 2e) or two pheno-

typic clouds situated around 0.1 and 0.9 (see Fig. 2d).

Long-term diversity depends crucially on the muta-

tion rate e. If e ¼ 0, no mutations occur and the model

8–11 reduces to an ecological system in which n strains

with different phenotypes compete for a single

resource. It is well known that coexistence is not

possible in such systems and one strain out-competes

the others (Smith & Waltman, 1995). The strain with

the largest growth rate will always win the competition

and in this example the winning strain is situated at

Vmax ¼ 0.1.

By setting e > 0 an evolutionary component is intro-

duced into the system and when e and D are in the region

illustrated in Fig. 2c, two phenotypic clouds one around

0.1 and the other around 0.9 are able to coexist.

However, if the mutation rate is sufficiently large the

population will tend towards an almost uniform distri-

bution of phenotypes.

Example 3: Staircase f and g trade-offs
If f and g are of the form illustrated in Fig. 3a and b,

respectively, the population can, in the long term,

support two phenotypic clouds situated around pheno-

types within the interior of the domain Fig. 3c, but not at

the boundary as in Example 2.

Examples 1–3 above demonstrate that the number and

the location of the phenotypes will depend not only on

the shape of the trade-off functions, but also on the

mutation rate e and the dilution rate D and the popula-

tion can support a number of different phenotypes

throughout the phenotypic domain.

Discussion

We have developed a mathematical model to study

evolutionary diversification in microbial populations

that is motivated by the need to integrate ecological

interactions with evolutionary dynamics as highlighted

by Metz et al. (1996) and the recognition that funda-

mental biochemical constraints may play an important

role in microbial evolution (Pfeiffer et al., 2001; Friesen

et al., 2004; Kreft, 2004; Pfeiffer & Bonhoeffer, 2004).
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Fig. 1 Trade-offs for Vmax 2 [0.1,0.9]: (a) f(Vmax) ¼ Vmax, (b) g(Vmax) ¼ 1)Vmax. The structure of the steady state solution N* ¼ (N*1,…,N*n)
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V n
max 2 ½0:1; 0:9� with n ¼ 500, S0 ¼ 3, c ¼ 1.
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Our model predicts that evolutionary diversification is

possible under the simplest possible ecological condi-

tions: a homogeneous environment containing a single

limiting resource.

The long-term diversity of a population will depend

on an ecological, biochemical and an evolutionary

component, namely the dilution rate, the geometry of

the trade-off functions and the mutations that result

from clonal reproduction. The simplest trade-offs that

support long-term diversity are illustrated in Fig. 2a

and b where the rate–yield trade-off is convex and the

maximal uptake rate–affinity trade-off is concave. In

this situation selection in the chemostat will ultimately

result in either: (1) the dominance of a single-type

gleaner that has a low maximal rate of resource

uptake; or (2) the coexistence of gleaners with glutton

that have a high maximal rate of resource uptake.

However, once dilution rate is fixed coexistence occurs

only if the mutation rate is sufficiently high.

Let us briefly explain why this occurs by the following

examination of eqns 8–11 at equilibrium. To begin with

we make a note that the shape of the trade-offs in Fig. 2a

and b means that a change in the biochemical pathway

that leads to an increase in the maximal rate of resource

uptake is initially very costly to the cell as it leads not

only to a significant decrease in the affinity of the cell for

the resource, but also to a significant decrease in the yield

of ATP production. However, once the maximal rate of

resource uptake has increased beyond a moderate value,

further increases can be achieved at very little additional

cost. This leads to the presence of two local fitness

maxima, whereby one is a global maximum situated at

the lowest value of the maximal rate of resource uptake

and one a sub-optimal local maximum situated at the

highest value of the maximal uptake rate. Sufficiently

large mutation rate will allow sub-optimal phenotypes to

be maintained alongside the fittest type. In a competition

model, sub-optimal strategies would not persist in this

way which is why the phenotype with the highest

maximal uptake rate disappears as the mutation rate is

reduced.

Unfortunately, the values of phenotypic mutation rates

that lead to the coexistence of multiple phenotypic

clouds in our study are difficult to compare with real

rates due to a lack of available data. One way of obtaining

real phenotypic mutation rates could be through muta-

tion rates per gene which are much better documented

and are known to be in a range of 10)6–10)9 per

generation (Drake, 1991). Given that multiple genes

contribute to the same phenotypic trait, it would be

reasonable to expect that phenotypic mutation rates will

be larger than per-gene mutation rates.

In this paper mutations are assumed to have only small

phenotypic effects which could be seen as overly

simplistic as it is well known that mutations in micro-
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organisms can also have large phenotypic effects. How-

ever, the evolutionary outcome observed in this work

will not change if mutations with large phenotypic effects

are introduced into the model, as long as one assumes

that they arise less frequently than those with small

effects. Moreover, the model could easily be adapted to

take into account a wide range of mutational structures

with different phenotypic effects as the appropriate data

becomes available.

The exclusion of phenotypic mutations from the model

that occurs on setting e ¼ 0 eliminates any chance of

observing diversity. In this case microbial reproduction

is perfectly clonal and eqns 8–11 reduces to a purely

competitive system where n microbial strains compete for a

single limiting resource. Moreover, in this case coexist-

ence is not possible regardless of the shape of the trade-

off functions and one phenotype always out-competes

the others as observed in Stewart & Levin (1973), Smith

& Waltman (1995) and Pfeiffer et al. (2001). This prop-

erty highlights a significant difference between the

application of competitive and evolutionary mathemat-

ical models.

Biochemical observations and microbial selection

experiments support both the assumptions and predic-

tions of our model. Until now a popular explanation for

diversification in the chemostat has been cross-feeding,

an ecological interaction whereby one clone secretes

secondary metabolites derived from the exogenously

supplied resource, thereby providing a secondary re-

source for scavenger genotypes that are inferior compet-

itors for the primary resource (Rosenzweig et al., 1994;

Treves et al., 1998; Pfeiffer & Bonhoeffer, 2004). How-

ever, several lines of evidence demonstrate that cross-

feeding does not provide a general explanation for

microbial diversification in simple environments; for

instance: (1) molecular studies of adaptation in chemo-

stat experiments have found extensive polymorphism in

genes related to the utilization of primary nutrients

(Notley-McRobb & Ferenci, 1999a, b; notley99b, Ka-

shiwagi et al., 2001; Maharjan et al., 2006); and (2)

diversification has occurred under culture conditions that

are known to minimize metabolite secretion (Adams &

Oeller, 1986; Weikert et al., 1997).

In accordance with the outcomes of our model, many

experimental studies have reported that selection in the

chemostat results in the evolution of increased affinity

for the limiting substrate but with the difference that any

obvious diversification into metabolic variants has not

been observed (Dykhuizen & Hartl, 1981; Wick et al.,

2001; Jansen et al., 2004, 2005). Unfortunately, the

power of these experiments to detect diversification is

typically low because the mutations responsible for

adaptation are not typically known and diversification

is only recognized when it results in associated changes

in colony morphology. To overcome this limitation,

Kashiwagi et al. (2001) constructed isogenic strains of

E. coli that varied at the glutamine synthesase locus and

then selected in chemostats containing glutamate as the

sole nitrogen source. The outcome of selection was the

repeated diversification into glutamine synthesase alleles

with different affinities for glutamate. Critically, compe-

tition experiments established that these polymorphisms

were stably maintained by negative frequency-depend-

ent selection.

The results presented in this paper are also in agree-

ment with a recent experimental study of Maharjan et al.

(2006) where a clonal population of E. coli was grown on

a single limiting resource in the chemostat. The clonal

population radiated into more than five phenotypic

clusters and the growth yields of the isolates on glucose

varied markedly. Moreover, it was shown that a cross-

feeding polymorphism was not responsible for the

maintenance of the observed diversity.

We require the shape of the trade-off functions to be

nonlinear for diversity to be observed. This is a plausible

scenario as experimental studies have reported concave

trade-offs between the maximal rate and affinity of

substrate transport (Wirtz, 2002; Elbing et al., 2004),

whereas both straight line and nonlinear rate–yield

trade-offs have been reported in yeast, depending on

the pathway being used to produce ATP (Weusthuis

et al., 1994). In cases where sustained divergence did not

occur, transient diversification was a robust outcome of

our model. Although rigorous experimental demonstra-

tion of transient behaviour is a daunting task, some

experimental results are consistent with this scenario

(Weikert et al., 1997).

Our study connects biochemical constraints, ecological

interaction and evolutionary dynamics. It presents a

novel result regarding mechanisms that maintain

coexistence in simple environments which can help to

explain the repeatable evolutionary diversification of

microbial populations during evolution in the chemostat

under conditions where cross-feeding between geno-

types does not occur. Our model considers large and

unstructured populations and as such is best suited to the

study of aquatic microbes rather than those in biofilms or

within eukaryotic cells.
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