
International Conference on
Information, Communications and Signal Processing
ICICS ‘97
Singapore, 9-12 September 1997

3D2.4

Lossless Compression of Images Using Minterm Coding

Debashish Pramanik T James Jacob and Jacob Augustine t

Department of Electrical Communication Engineering
Indian Institute of Science,

Bangalore 560012, India

Abstract

Lossless compression of images is important in the fields
like medical imaging and remote sensing. There are
only a small number of good algorithms known to date
for lossless image compression. We present here a loss-
less image compression scheme which uses concepts of
logic coding and auto-adaptive block coding to obtain a
scheme which performs comparable to JPEG standard.
The scheme reaches the best possible value of compres-
sion automatically, unlike the case of JPEG which gives
a range of compression, based on available predictors.

1 Introduction

Lossless compression is mandatory in the case of medical
and satellite images due to well known reasons. Kunt
and Johnsen [5] have proposed a lossless compression
technique called Block Coding for binary images and
have subsequently extended their approach to gray-level
images, by applying it on the bit planes. In Block cod-
ing, each bit plane is divided into smaller blocks of size
n x m, which are classified into three types namely, all-
black, all-white, and mixed, which are coded using prefix
codes ‘l’, ‘10’ and ‘11’. In the case of mixed type block,
the nm pixels of the block are put after the prefix code.
The 2”” different possible bit patterns of a mixed block
can be considered as source messages and coded using a
variable length code (VLC) such as Huffman code. By
making 71 and m as large as possible, better result can
be obtained with Huffman coding. However, for large
alphabet size the design and implementation of Huff-
man code is complicated as it requires the measurement
of 2”” probabilities and table look-up involving a dic-
tionary of large size. In [5] , if the size of the mixed
type block is small enough, it is coded using VLC; oth-
erwise the block is transmitted as it is. The mixed type

*Currently with Silicon Automation Systems Ltd., Bangalore
560 008, India, debuOsas.soft.net

+Currently with Department of Electrical Engineering, Re-
gional Engineering College, Calicut 673 601, India, jacob@wishak.-
recml. e m e t . in

blocks have also been arithmetic coded to increase the
compression ratio in the case of binary images [4].

In an earlier work, Augustine e t al [l] demonstrated
the possibility of compressing mixed type blocks using
Zogic coding. The compression obtained using the tech-
nique on gray-level images were comparable to that of
the lossless mode of JPEG. The approach consists of the
steps of recoding the pixels and Gray coding, bit plane
segmentation and logic coding. Recoding consists of ar-
ranging the intensity values in an image contiguously
and Gray coding substitutes the recoded intensity val-
ues by their equivalent Gray codes. The image is then
decomposed into its individual bit planes and each bit
plane is divided into blocks of size n x m. Each mixed
type block in a bit plane is converted to a switching
function, treating the binary pixel values as the output
of the function. Each function is then minimized using a
two-level logic minimizer such as ESPRESSO [3] and if
minimization results in compression, the minimal two-
level sum of products form of the function is encoded to
get the compressed image.

Logic minimization can be used to handle mixed type
blocks of larger sizes than is practically possible with
Huffman coding and in combination with block coding
can yield significant compression on gray-level images
[2]. However, the main bottleneck in the use of the
logic minimization based method is the large compres-
sion time required by the method, because of the use of
the logic minimizer ESPRESSO and the file manipula-
tion overheads associated with it,

In this paper we will show the potential of simple
minterm coding of the pixel values without going for
logic minimization, thus reducing the time requirements
of compression. The results obtained are better as com-
pared to our previous results of logic coding both in
terms of compression ratio and compression time. The
compression time has improved drastically over our pre-
vious methods. The results are also comparable to the
lossless mode of JPEG in terms of compression ratio.
Unlike JPEG, where one has to experiment with dif-
ferent available predictors to obtain the best compres-
sion possible, our scheme automatically adapts to the

0-7803-3676-3/97/$10.00 0 1997 IEEE

1570

http://debuOsas.soft.net

bit plane statistics to reach the best result.

2 Basic Definitions

We first define a few important terms required for ex-
plaining our compression scheme. A Boolean switching
function F is a mapping F : BN + B, where B =
(0, 1). In the truth table of a switching function of N
variables, there are 2N rows. Each of these rows which
represents an input state vector is called a minterm. In
a switching function, the ON-set is the set of minterms
whose outputs are mapped to 1 and the OFF-set is the
set of minterms whose outputs are mapped to 0. We
define compression ratio as,

(no. of input bytes - no. of output bytes)
no. of input bytes loo%

3 Auto-adaptive Minterm Cod-
ing

We present here a scheme of compression, which uses
the concepts of minterm coding [2] derived from logic
coding, and a variable block sized approach to adapt to
local statistics, derived from auto-adaptive block coding
[5]. An image compression scheme using variable block
size segmentation is presented in [6].

In an image bit plane the local statistics vary from place
to place. As a result, the optimum choice of block size
for the purpose of encoding also varies with the local
statistics. Furthermore the block size to be used should
b6 different for the different bit planes of the image,
for the reason that the activity within a bit plane de-
pends on the relative position of the bit plane. More
specifically, as we move toward the MSB (Most signif-
icant bit) bit plane, the activity within the bit planes
decreases and hence we can use larger block sizes. In
contrast, on moving towards the LSB bit plane, the
activity, in general, increases and hence using smaller
blocks will achieve a higher percentage of compressible
blocks, which can in turn result in higher compression.

In auto-adaptive block coding approach similar concepts
are used, but only black, white and mixed blocks of size
2 x 2 pixels are the ones which are considered. Inclusion
of other block types makes the Huffman tree too large
and hence mixed block sizes other than 2 x 2 are not
considered. We present an approach to include different
sized mixed blocks along with blocks of black or white
type, without increasing the length of the Huffman tree
significantly. Although we do not cover all the possibili-
ties of the mixed block type for any given block size, we
will be covering a large proportion of the blocks which
are compressible.

4 Compression Scheme

In order to restrict the set of block size choices we will be
using only 8 x 8,8 x 4, 4 x4 and 2 x 2 block sizes. We start
with 8 x 8 block size andl if required go down to 2 x 2 block
size to adapt to the local statistics. Individual blocks of
size 8 x 8, 8 x 4 and 4 x 4 are compressed by using our
minterm coding scheme. We do not use minterm coding
for the 2 x 2 blocks, as the relative overhead required
is high. Instead we use Huffman coding for the 2 x 2
blocks.

A block (other than 2 >(2) is categorized into one of the
four possible classes:

0 completely black

0 completely white

e compressible by minterm coding

0 incompressible

For a block which is neither black nor white we try
minterm coding. If the number of black or white pixels
(either ON-set or OFF-set minterms) within the block.
is less than or equal to a certain maximum (typically
one or two), then we encode the block as a minterm
block and also write the minterms on the coded stream.
As is evident the minterm coding scheme is a form of
co-ordinate coding scheme. The minterms represent the
distance of the ones or the zeros from the apex of the
block. Since the concepts have been derived from logic
coding, we call it minterm coding.

The use of minterm coding has the effect that it covers
a large proportion of blocks which are neither black nor
white, but are nearly uniform (resulting in small number
of either ON-set or OFIF-set minterms). Since a limit of
small number of minterms is used for any block size, the
length of Huffman tree is also not large.

We start with a 8 x 8 block, check whether the block is
completely black, white or mixed type. If the block is
not of mixed type then the block is encoded as black or
white, as the case may be. If the block is of mixed type,
we try minterm coding;. If the number of minterms of
any one color (black or white) within the block is found
to be less than the maximum number of minterms al-
lowed for that block size, then the block is classified as
a (minterm) Compressible block and we go for minterm
coding of that block. Ckherwise the block is segmented
into two 8 x 4 blocks and the above steps of classify-
ing into black, white, compressible or incompressible
block is repeated. The 8 x 4 blocks are encoded if found
black, white or compressible, otherwise each incompress-
ible block is further segmented into blocks of size 4 x 4
and the process is repeated. If a 4 x 4 block is found
incompressible, then we divide it into four blocks of size

1571

2 x 2 each. Each of these four blocks are Huffman en-
coded as events from among the set of 16 possible events
for a 2 x 2 block.

For optimum bit allocation, Huffman coding is used for
the various possible events. The coding is done with two
different schemes, one generally suited for the higher
bit planes and the other one suited for the lower bit
planes. We discuss below these two coding schemes and
the choice of the scheme used for the different bit planes.

4.1 Coding Scheme I

In this scheme each block is mapped as a possible event
from among the set of the following events.

0 completely black

0 completely white

0 minterm compressible with 1 or 2 ON-set minterms
(two events)

millterms (two events)
0 minterm compressible with 1 or 2 OFF-set

0 incompressible

As can be seen, we have put a limit of two minterms on
the maximum allowed minterms in a block, to qualify
the block as a minterm compressible block. These events
are Huffman coded using the statistics of the bit plane
and then used to encode the type of the block. In this
coding scheme we go level by level. We start with 8 x 8
block size. If it is not an incompressible block then we
simply encode it and then proceed on-to the next 8 x 8
block. In case of the block being minterm compressible
the minterms are also written on the encoded stream.
Otherwise if the 8 x 8 block is incompressible then we
encode it as an incompressible block, segment it into
two 8 x 4 blocks and then encode the two 8 x 4 blocks
individually. If any of the 8 x 4 blocks is encoded as an
incompressible block then for that block we go on for
further segmentation and encoding. The scheme thus
uses a tree structured coding scheme. The segmentation
and hence encoding continues on a branch until we reach
a compressible block on that branch, or until the block
size reduces to 2 x 2. In the latter case we do not try to
determine the nature of the block in the above manner.
The four 2 x 2 blocks of the incompressible 4 x 4 block
are encoded as Huffman events.

the type of the block is stored in the same code, which
enables us to point directly to the required block size.
The code tree has all the events of the previous code
tree, except for the incompressible block event, but all
the events are repeated for the block sizes of 8 x 8, 8 x 4
and 4 x 4. To point to the 2 x 2 block we also include
the 16 possibilities of the 2 x 2 block as events. The first
2 x 2 block of the incompressible 4 x 4 block is an event
in the code tree discussed above, and the subsequent
three 2 x 2 blocks are events in a separate code tree of
length 16. Here we have now the following set of events
in the first code tree:

0 completely black 8 x 8 block

0 completely white 8 x 8 block

0 8 x 8 block, minterm compressible with 1 or 2
ON/OFF set minterms (4 events)

0 completely black 8 x 4 block

0 completely white 8 x 4 block

0 8 x 4 block, minterm compressible with 1 or 2
ON/OFF set minterms (4 events)

0 completely black 4 x 4 block

0 completely white 4 x 4 block

0 4 x 4 block, minterm compressible with 1 ON/OFF
set minterm (2 events)

0 16 events of the first 2 x 2 block in a 4 x 4 incom-
pressible block

As would have been noticed, we have used a limit of one
minterm only for the 4 x 4 block, unlike the previous
coding scheme where a limit of two minterms is imposed
on all block sizes. The modification helps in getting a
better encoding in case of less compressible bit planes
for which this coding scheme is more suitable.

For encoding any block we do not have to go level by
level. Thus if there is an 8 x 8 incompressible block, then
we don’t represent explicitly that its incompressible, in-
stead encode the 8 x 4 blocks if it is found compressible.
Unlike the previous case, the. size and the nature of the
block are both absorbed in the Huffman code. The po-
sition of the block in the bit plane is determined by its
context in the coded stream, as the encoding (as well as
decoding) proceed along a predetermined structure.

4.3 Choice of the Coding Scheme
4.2 Coding Scheme I1

In the second coding scheme, we do not follow a level by
level approach. Instead the information of the size and

In the last two sections we have proposed two coding,
schemes to be used with the compression scheme. In
the first scheme the individual codewords are smaller,

1572

Imafze lena I boats I air1 I baboon I

since the number of possible Huffman events are smaller,
but at the same time the effective code length for the
smaller block sizes is large as we have to go level by level.
In the second scheme the effective codeword length is
smaller for the smaller blocks (than the first scheme) and
for the larger blocks it is comparatively larger (owing
to the larger code tree in the second case). Thus for
the higher bit planes, where there is a chance of having
large number of bigger sized compressible blocks, it is
advantageous to use the first scheme. On the other hand
the second scheme is more suited for the lower bit planes,
as the compressible block size, in general, is smaller for
the lower bit planes.

For any image, we use a combination of the two coding
schemes. Typically the first three bit planes (towards
the MSB bit plane) are encoded by the first scheme and
the rest by the second scheme, if they are found com-
pressible.

To decide the coding scheme to be used for a certain
bit plane, we need to determine the activity within a
bit plane. A good representation of activity within a bit
plane has been found to be the transition product count,
defined as the product of vertical transition count and
the horizontal transition count. The irertical transition
count is the sum of the transitions along the columns
of the image bit plane. Similarly the horizontal transi-
tion count is the sum of transitions along the rows of
the image bit plane. Here we have used the transition
product count as the parameter to decide the coding
scheme to be used. For 256 x 256 images we have em-
pirically determined the value of 120 x lo6 transitions
as the transition product count threshold for deciding
the coding scheme to be used. The threshold value can
be decided for any given image size by considering the
transition product count statistics of the bit planes from
a representative set of images of this size. Thus the low
activity bit planes (with transition product count below

compression ratio(%)

(lossless mode) compression time(sec)
PVRG- JPEG

decompression time(sec.)

the threshold) are comlpressed with coding scheme I and
the coding scheme I1 is used to compress the high activ-
ity bit planes (with transition product count above the
threshold). It should be further noted that the loss in
compression ratio due to a wrong choice of the coding
scheme for a certain bit plane goes on decreasing as we
move towards the threshold. This makes it clear that
the threshold is not a stringent one and a small change
in the threshold itself would not effect the compression
significantly.

Further for the very high activity bit planes (say,
with a value of transition product count greater than
800 x lo6 transit ions), the compression obtained is
almost negligible (the coding scheme I1 being used
for such bit planes). So we have set a threshold of
850 x lo6 transit ions, to decide as to whether to try
compression on that bit plane or not. In case of bit
planes with a transition product count greater than this
value, we store the bit planes as such. This reduces the
total compression time requirements.

22.7- 29.4 24.9- 32.9 30.7- 38.1 6.7- 13.7

0.4 ~z- 1 0.4

0.3 0.3

5 Experimental Results

The compression and decompression techniques have
been implemented in ‘C’ on an IBM RS-6000/580
workstation running under UNIX, and tested on stan-
dard images lena, baboon, boats (nic.funet.fi:/pub-
/graphics/misc/test-images) and girl (eedsp.gatech.edu:
/database/images), of sub-sampled size 256 x 256 pix-
els and 8 bits/pixel. The preprocessing step of recoding
and Gray coding of the pixel values are applied before
splitting each image to its individual bit planes.

Table 1 gives the results of the compression ex-
periment as well as a comparison with the loss-
less mode of JPEG. ’We have used the PVRG-JPEG

1573

(Portable Video Research Group) Codecl.1 (have-
fun.stanford.edu:pub/jpeg/JPEGvl.2.tar.Z). The com-
pression ratios obtained by auto-adaptive logic coding
are comparable to those obtained by JPEG. The result
of logic coding are superior to the best of JPEG results
for girl and baboon, while for other two images our re-
sults are within 1.6% of the best JPEG results.

It should be noted that in our scheme we need not worry
about the encoder to be used, whereas JPEG does not
provide any method of knowing beforehand a suitable
predictor for the image. Variance of the compression
obtained by the set of predictors in case of JPEG is
very large, whereas auto-adaptive logic coding gives a
single value. The time requirements of our prototype
encoder and decoder are presently higher than JPEG,
but can be reduced significantly by efficient coding.

bit plane), and reaches the optimum value of compres-
sion achievable with the scheme, whereas in the case of
JPEG, the variance of compression that can be obtained
with the seven predictors is large and the best possible
predictor for a certain image can not be determined be-
forehand.

The link between the transition product count and the
compression ratio obtained for a bit plane suggests the
use of some reversible Boolean transform techniques t o
reduce the product of transitions within a bit plane.
This can further enhance the compression ratio. The
compression ratio can be further improved by inclusion
of larger block sizes (16 x 16, 16 x 8), especially for the
higher bit planes.

In the above scheme we had used minterm encoding
only. The use of minimization with ESPRESSO can
help to further improve compression but was not used
due to the high time overhead associated with logic min-
imization. The use of some form of relative encoding for
the correlated minterms is another possibility which can
enhance the performance without affecting the time re-
quirements. These are some of the issues which need to
be investigated further.

-
1203

blt plane lredltlon product (In mllllons of IrasIIlona)

Figure 1: Relationship between transition product count
and compression ratio

We have plotted the compression obtained versus the
transition product count for the 32 bit planes of the four
256 x 256 pixel (8 bits per pixel) experimental images
in Figure 1. As can be seen there is a good correlation
between the amount of compression achievable and the
transition product count for the bit plane. The figure
further emphasize the fact that, irrespective of the im-
age, transition product count is closely related to the
compression achievable on a certain bit plane.

6 Conclusion

The method of image compression discussed above
shows a practical way of encoding a large proportion
of blocks other than the black or white blocks, without
increasing the length of Huffman tree to large values.
The performance of the scheme is comparable to JPEG
in terms of compression ratio. Time requirements of the
scheme are presently higher than JPEG but can be re-
duced by &cient coding. The advantage of the scheme
is that it automatically chooses the best possible en-
coder (by choosing one of the two coding schemes for a

References

[l] J. Augustine, W. Feng, A. Makur and J. Jacob,
“Switching Theoretic Approach to Image Compres-
sion,” Signal Processing (Elsevier Science), vol. 44,
pp. 243-246, June 1995.

[2] J. Augustine, “Switching Theoretic Approach to
Image Compression,” Ph.D thesis, Department of
Electrical Communication Engineering, IISc. Ban-
galore, May 1996.

[3] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. L. Sangiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic
Publishers, Boston, 1984.

[4] P. Fkanti, “A fast and efficient compression method
for binary images,” Signd Processing: Image Com-
munication, 6(1994), pp. 69-76.

[5] M. Kunt and 0. Johnsen, “Block Coding of Graph-
ics: A Tutorial Review,” Proc. of The IEEE, vol.

[6] J . Vaisey and A.’Gersho, “Image Compression with
Variable Block Size Segmentation,” IEEE Trans.
on Signal Processing, vol. 40, no. 8, pp. 2040-2060,
1992.

68, NO. 7, pp. 770-786, July 1980.

1574

