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Abstract. Let A be a smooth affine domain of dimension d over an infinite perfect field k and
let n be an integer such that 2n� d + 3. Let I ⊂ A[T ] be an ideal of height n. Assume that
I = (f1, . . . , fn)+ (I2T ). Under these assumptions, it is proved in this paper that I = (g1, . . . , gn)

with fi − gi ∈ (I2T ), thus settling a question of Nori affirmatively.

Mathematics Subject Classifications (2000): Primary 13C10, secondary 13B25.

Key words: projective modules, affine domain, unimodular elements.

1. Introduction

Let A be a commutative Noetherian ring and let I be an ideal in A[T ] such that
I/I 2 is generated by n elements. Assume that n� dim(A[T ]/I )+ 2. If I contains
a monic polynomial, then a result of Mohan Kumar (a proof of which is implicit in
the proof of [15], Theorem 5) says that I is a surjective image of a projective A[T ]-
module of rank n with trivial determinant. Subsequently, Mandal improved this
result by showing that I is generated by n elements ([12], Theorem 1.2). Now sup-
pose that A is the coordinate ring of the real three sphere and m is a real maximal
ideal. Let I = mA[T ]. Then, it is easy to see that µ(I/I 2) = 3 = dim(A[T ]/I )+
2. Since m is not generated by three elements (see [8]), I cannot be generated by
three elements. Such examples show that the above result of Mandal is not valid for
an ideal I not containing a monic polynomial without further assumptions. Obvi-
ously, one such natural assumption would be that I (0) is generated by n elements,
where I (0) denotes the ideal {f (0): f (T ) ∈ I } of A. Even then, as shown in ([4],
Example 5.2) I may not be generated by n elements. Therefore, it is natural to ask:
what further conditions are needed to conclude that I is generated by n elements?
Towards this goal, motivated by a result from topology (see Appendix by Nori in
[13]), Nori posed the following question:

QUESTION. Let A be a smooth affine domain of dimension d over an infinite
perfect field k and let n be an integer such that 2n� d + 3. Let I be a prime ideal
of A[T ] of height n such that A[T ]/I and A/I (0) are smooth k-algebras. Let P
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be a projective A-module of rank n and let φ: P [T ] →→ I/(I 2T ) be a surjection.
Then, can we lift φ to a surjection from P [T ] to I?

In this paper, we give an affirmative answer (Theorem 4.13) to this question.
More precisely, we prove the following theorem:

THEOREM. Let k be an infinite perfect field and let A be a regular domain of
dimension d which is essentially of finite type over k. Let n be an integer such that
2n� d + 3. Let I ⊂ A[T ] be an ideal of height n and let P be a projective A-
module of rank n. Assume that we are given a surjection φ: P [T ] →→ I/(I 2T ).
Then there exists a surjection �: P [T ] →→ I such that � is a lift of φ.

Prior to our theorem, the following results were obtained: Mandal ([13],
Theorem 2.1) answered the question in affirmative in the case I contains a monic
polynomial even without any smoothness condition. An example is given in the
case d = n = 3 (see [4], Example 6.4) which shows that the question does not
have an affirmative answer if we do not assume that I contains a monic polynomial
and drop the assumption that A is smooth.

Mandal and Varma ([14], Theorem 4) settled the question, where A is a
regular k-spot (i.e. a local ring of a regular affine k-algebra). Subsequently,
Bhatwadekar and Raja Sridharan ([4], Theorem 3.8) answered the question in the
case dimA[T ]/I = 1.

A few words about the method of the proof. The essential ideas are contained in
the case where P = An is free. To simplify the notation, we denote the ring A[T ]
by R.

Following an idea of Quillen (see [17]), we show that the collection of elements
s ∈ A such that the surjection φs can be lifted to a surjection �: Rs

n →→ Is is an
ideal of A. This ideal, in view of the result of Mandal–Varma (the local case), is
not contained in any maximal ideal of A and, hence, contains 1. Therefore, we are
through.

Denote this collection by S . It is obvious that S is an ideal if we show that for
s, t ∈ S , s+t ∈ S. As in [17], we assume that s + t = 1. Since A is regular, if some
power of s is in I , then, by using Quillen’s splitting lemma for an automorphism
of Rst

n which is isotopic to identity, one can easily show that 1 = s + t ∈ S (for
example see [4], Lemma 3.5). The crux of the proof is to reduce the problem to this
case. We indicate in brief how this reduction is achieved. First we digress a bit.

The surjection φ: Rn →→ I/(I 2T ) can be lifted to �′: Rn →→ I ∩ I ′, where
I ′ is an ideal of R of height n comaximal with I (we say I ′ is residual to I with
respect to φ). A ‘Subtraction principle’ (see Theorem 3.7 and Corollary 4.11) says
that if the surjection (induced by �′) φ1: Rn →→ I ′/(I ′2T ) has a surjective lift
from Rn to I ′, then φ can be lifted to a surjection �: Rn →→ I .

Now, using the fact that t = 1−s ∈ S , we first show the existence of an ideal I1

which is residual to I with respect to φ and satisfying the additional property that
I1 is comaximal with Rs. Then, using the fact that s ∈ S , we show that there exists



A QUESTION OF NORI 331

an ideal I2 which contains a power of s and is residual to I1. Thus, the desired
reduction is achieved.

Since the problem is solved for I2, a repeated application of a ‘Subtraction
principle’ completes the proof.

The explicit completion of the unimodular vector (a2, b, c), given by
Krusemeyer, also plays a crucial role in the above arguments.

2. Preliminaries

In this section we define some of the terms used in the paper and state some results
for later use.

All rings considered in this paper are commutative and Noetherian. All modules
considered are assumed to be finitely generated. For a ring A, the Jacobson radical
of A is denoted by J (A).

Let A be a ring and let A[T ] be the polynomial algebra in one variable T . Then
A(T ) denotes the ring obtained from A[T ] by inverting all monic polynomials. For
an ideal I of A[T ] and a ∈ A, I (a) denotes the ideal {f (a): f (T ) ∈ I } of A.

Let P be a projective A-module. Then P [T ] denotes the projective A[T ]-module
P ⊗ AA[T ] and P(T ) denotes the projective A(T )-module P [T ] ⊗ A[T ]A(T ).

Let B be a ring and P a projective B-module. Given an element ϕ ∈ P ∗ and an

element p ∈ P , we define an endomorphism ϕp as the composite P
ϕ→ B

p→ P .
If ϕ(p) = 0, then ϕp2 = 0 and hence 1 + ϕp is a unipotent automorphism of P .

DEFINITION 2.1. By a ‘transvection’, we mean an automorphism of P of the
form 1 + ϕp, where ϕ(p) = 0 and either ϕ is unimodular in P ∗ or p is unimodular
in P . We denote by E(P ) the subgroup of Aut (P ) generated by all transvections
of P . Note that E(P ) is a normal subgroup of Aut (P ).

DEFINITION 2.2. Let B be a ring and let P be a projective B-module. An auto-
morphism σ of P is said to be ‘isotopic to identity’, if there exists an automorphism
�(W) of the projective B[W ]-module P [W ] = P ⊗B[W ] such that �(0) is the
identity automorphism of P and �(1) = σ .

DEFINITION 2.3. Let B be a ring and P a projective B-module. Elements p1,

p2 ∈ P are said to be ‘isotopically connected’ if there exists an automorphism σ

of P such that σ is isotopic to identity and σ (p1) = p2.

Remark 2.4. Let B be a ring and P a projective B-module. Let σ be an auto-
morphism of P and let σ ∗ be the induced automorphism of P ∗ defined by
σ ∗(α) = ασ for α ∈ P ∗.

If σ ∈ E(P ) then σ ∗ ∈ E(P ∗). If σ is isotopic to identity then so also is σ ∗.
If σ is unipotent then it is isotopic to identity. Therefore any element of E(P )

is also isotopic to identity.
Now suppose that B = A[T ] and P = Q[T ] = Q⊗ AA[T ]. Then, since

EndB(P ) = EndA(Q)[T ], we regard σ as polynomial in T with coefficients in
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EndA(Q) say σ = θ(T ). If θ(0) is the identity automorphism of Q, then, since
�(W) = θ(WT ) is an automorphism of Q[T ,W ] = Q⊗ AA[T ,W ] =
P ⊗ BB[W ], it follows that σ is isotopic to identity.

The following lemma follows from the well known Quillen splitting lemma
([17], Lemma 1) and its proof is essentially contained in ([17], Theorem 1).

LEMMA 2.5. Let B be a ring and let P be a projective B-module. Let a, b ∈ B be
such that Ba + Bb = B. Let σ be a Bab-automorphism of Pab which is isotopic
to identity. Then σ = τa θb, where τ is a Bb-automorphism of Pb such that τ = Id
modulo the ideal Ba and θ is a Ba-automorphism of Pa such that θ = Id modulo
the ideal Bb.

The following result is proved in ([3], Proposition 4.1).

PROPOSITION 2.6. LetB be a ring, I an ideal of B and P a projective B-module.
Then any transvection of P/IP can be lifted to an automorphism of P .

The following result is a consequence of a theorem of Eisenbud–Evans as stated
in ([16], p. 1420).

THEOREM 2.7. Let R be a ring and let P be a projective R-module of rank r.
Let (α, a) ∈ (P ∗ ⊕ R). Then, there exists an element β ∈ P ∗ such that ht Ia � r,
where I = (α + aβ)(P ). In particular, if the ideal (α(P ), a) has height � r, then
ht I � r. Further, if (α(P ), a) is an ideal of height � r and I is a proper ideal of
R, then ht I = r.

The following result is due to Lindel ([11], Theorem 2.6).

THEOREM 2.8. Let B be a ring of dimension d and R = B[T1, . . . , Tn]. Let P be
a projective R-module of rank � max (2, d + 1). Then E(P ⊕R) acts transitively
on the set of unimodular elements of P ⊕ R.

Now we quote a result of Mandal ([13], Theorem 2.1).

THEOREM 2.9. Let A be a ring and let I ⊂ A[T ] be an ideal containing a
monic polynomial. Let P be a projective A-module of rank n� dimA[T ]/I + 2.
Let φ: P [T ] →→ I/(I 2T ) be a surjection. Then φ can be lifted to a surjection
�: P [T ] →→ I .

The following theorem is due to Mandal and Varma ([14], Theorem 4).

THEOREM 2.10. Let A be a regular k spot, where k is an infinite perfect field. Let
I ⊂ A[T ] be an ideal of height � 4 and let n be an integer such that n� dimA[T ]/
I + 2. Let f1, . . . , fn ∈ I be such that I = (f1, . . . , fn)+ (I 2T ). Assume that
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I (0) is a complete intersection ideal of A of height n or I (0) = A. Then I =
(F1, . . . , Fn) with Fi − fi ∈ (I 2T ).

The following proposition is a variant of ([2], Proposition 3.1). We give a proof
for the sake of completeness.

PROPOSITION 2.11. Let B be a ring and let I ⊂ B be an ideal of height n.
Let f ∈ B be such that it is not a zero divisor modulo I . Let P = P1 ⊕B be
a projective B-module of rank n. Let α: P → I be a linear map such that the
induced map αf : Pf →→ If is a surjection. Then, there exists � ∈ E(Pf

∗) such
that (1) β = �(α) ∈ P ∗ and (2) β(P ) is an ideal of B of height n contained in I .

Proof. Note that, since f is not a zero divisor modulo I and αf (Pf ) = If , if '
is an automorphism of Pf ∗ such that δ = '(α) ∈ P ∗, then δ(P ) ⊂ I .

Let S be the set { ) ∈ E(Pf
∗): )(α) ∈ P ∗ }. Then S �= ∅, since the identity

automorphism of Pf
∗ is an element of S . For ) ∈ S , let N()) denote height of the

ideal )(α)(P ). Then, in view of the above observation, it is enough to prove that
there exists � ∈ S such that N(�) = n. This is proved by showing that for any
) ∈ S with N()) < n, there exists )1 ∈ S such that N()) < N()1).

Since P = P1 ⊕ B, we write α = (θ, a), where θ ∈ P1
∗ and a ∈ B. Let

) ∈ S be such that N()) < n. Let )((θ, a)) = (β, b) ∈ P1
∗ ⊕ B. By (2.7), there

exists φ ∈ P1
∗ such that htLb � n − 1, where L = (β + bφ)(P1). It is easy to

see that the automorphism - of P1
∗ ⊕ B defined by -((δ, c)) = (δ + cφ, c) is a

transvection of P1
∗⊕B and -(β, b) = (β+bφ, b). Hence, -) ∈ S and moreover

N()) = N(-)). Therefore, if necessary, we can replace ) by -) and assume
that if a prime ideal p of B contains β(P1) and does not contain b, then we have
ht p� n− 1. Now we claim that N()) = ht β(P1).

We haveN())� n−1. SinceN())=ht (β(P1), b), we have ht β(P1)�N())�
n− 1. Let p be a minimal prime ideal of β(P1) such that ht p = ht β(P1). If b /∈ p

then ht p � n − 1. Hence, we have the inequalities n − 1 � ht β(P1)�N())�
n − 1. This implies that N()) = ht β(P1) = n − 1. If b ∈ p then ht β(P1) =
ht p� ht (β(P1), b) = N())� ht β(P1). This proves the claim.

Let K denote the set of minimal prime ideals of β(P1). Since P1 is a projective
B-module of rank n− 1, if p ∈ K then ht p � n− 1.

Let K1 = {p ∈ K: b ∈ p } and let K2 = K − K1. Note that, since ht β(P1) =
ht (β(P1), b), K1 �= ∅. Moreover, every member p of K1 is a prime ideal of height
< n which contains I1 = (β(P1), b). Therefore, since (I1)f = If and ht I = n, it
follows that f ∈ p for all p ∈ K1.

Since
⋂

p∈K2
p �⊂ ⋃

p∈K1
p, there exists x ∈ ⋂

p∈K2
p such that x /∈ ⋃

p∈K1
p.

Since f ∈ p for all p ∈ K1, we have xf ∈ ⋂
p∈K p. This implies that (xf )r ∈

β(P1) for some positive integer r.
Let (xf )r = β(q). As before, it is easy to see that the automorphism � of

P1
∗ ⊕B defined by �((τ, d)) = (τ, d + τ(q)) is a transvection of P1

∗ ⊕B. Let '
be an automorphism of (P1)f

∗ ⊕ Bf defined by '(η, c) = (η, f rc). Then, since
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E((P1)f
∗ ⊕Bf ) is a normal subgroup of GL((P1)f

∗ ⊕Bf ), �1 = '−1 �' is an
element of E((P1)f

∗ ⊕Bf ). Moreover, �1((β, b)) = (β, b + xr ).
Let )1 = �1 ). Then )1(α) = )1((θ, a)) = �1((β, b)) = (β, b + xr ). There-

fore )1 ∈ S . Moreover, since b + xr does not belong to any minimal prime ideal
of β(P1), we have N()) = ht β(P1) < N()1). This proves the result. �

3. Subtraction Principle

We begin with the following lemma which is easy to prove.

LEMMA 3.1. Let B be a ring and let I be an ideal of B. Let K ⊂ I be an ideal
such that I = K + I 2. Then I = K if and only if any maximal ideal ofB containing
K contains I .

The proof of the next lemma is given in ([5], Lemma 2.11).

LEMMA 3.2. Let B be a ring and let I ⊂ B be an ideal. Let I1 and I2 be ideals
of B contained in I such that I2 ⊂ I 2 and I1 + I2 = I . Then I = I1 + (e) for some
e ∈ I2 and I1 = I ∩ I ′, where I2 + I ′ = B.

LEMMA 3.3. Let B be a ring and let I = (c1, c2) be an ideal of B. Let b ∈ B be
such that I + (b) = B and let r be a positive even integer. Then I = (e1, e2) with
c1 − e1 ∈ I 2 and brc2 − e2 ∈ I 2.

Proof. Replacing b by br/2, we can assume that r = 2. Since b is a unit modulo
I = (c1, c2), it is unit modulo (c1

2, c2
2). Let 1 − bz = x′c1

2 + y′c2
2 = xc1 +

yc2, where x = x′c1 ∈ I and y = y′c2 ∈ I . The unimodular row (z2, c1, c2)

has the following Krusemeyer completion ([10]) to an invertible matrix ) given
by


 z2 c1 c2

−c1 − 2zy y2 b − xy

−c2 + 2zx −b − xy x2




Let 6: B3 →→ I be a surjective map defined by 6(1, 0, 0) = 0, 6(0, 1, 0) = −c2

and 6(0, 0, 1) = c1. Then, since ) is invertible and 6(z2, c1, c2) = 0, it fol-
lows that I = (d1, d2), where d1 = −y2c2 + c1(b − xy) and d2 = c2(b +
xy) + c1x

2. From the construction of elements d1 and d2, it follows that
d1 − c1b ∈ I 2 and d2 − c2b ∈ I 2. Let ' = diag (z, b) ∈ M2(B). Since diag-
onal matrices of determinant 1 are elementary, '⊗B/I ∈ E2(B/I). Since the
canonical map E2(B) → E2(B/I) is surjective, there exists � ∈ E2(B) such that
'⊗B/I = �⊗B/I . Let [d1, d2]� = [e1, e2]. From the construction of �, it
follows that I = (e1, e2) with e1 − c1 ∈ I 2 and e2 − b2c2 ∈ I 2. This proves the
lemma. �
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LEMMA 3.4. Let R be a ring and let I be an ideal of R. Let s ∈ R be such that
I + (s) = R. Let Q be a projective R-module such that Q/IQ is free and let
P = Q⊕R2. Let �: P →→ I be a surjection. Let r be a positive integer. Then
the map �′ = sr �: P → I induces a surjection �′ ⊗R/I : P/IP →→ I/I 2.
Moreover if r is even, then the surjection �′ ⊗R/I can be lifted to a surjection
�: P →→ I .

Proof. Since I + (s) = R and �: P →→ I is a surjection, it is easy to see that
�′ ⊗R/I is a surjection from P/IP to I/I 2. Now we assume that r = 2l.

Since P = Q⊕R2, we write � = (φ, f1, f2). Let rank Q/IQ = n − 2. Let
‘tilde’ denote reduction modulo I . Then, since Q/IQ is free of rank n− 2, fixing a
basis ofQ/IQ, we can write �̃ = (̃k1, . . . , k̃n−2, f̃1, f̃2). Let β = diag (sr , . . . , sr ).
Then β̃ ∈ Aut (P/IP ) and �̃′ = �̃ β̃. Since diagonal matrices of determinant 1 are
elementary, we get β̃ = diag (1, . . . , 1, s̃nr ) β̃ ′, where β̃ ′ ∈ E(P/IP ). By (2.6), β̃ ′
can be lifted to an automorphism of P . Therefore, to prove the lemma, it is enough
to show that the surjection (φ, f1, s

nrf2)⊗R/I : P/IP →→ I/I 2 can be lifted to
a surjection (φ, g1, g2): P →→ I . Since nr is even, snr = s1

2. Therefore, replacing
s by s1, we can assume that nr = 2.

Let K = φ(Q) and let ‘bar’ denote reduction modulo K. Then I = (f 1, f 2).
Applying (3.3), we get I = (h1, h2) with f 1 − h1 ∈ I 2 and s2f 2 − h2 ∈ I 2.
Therefore, I = (h1, h2) + K, where f1 − h1 = f ′

1 + h′
1 and s2f2 − h2 = f ′

2 + h′
2

for some f ′
1, f

′
2 ∈ I 2 and h′

1, h
′
2 ∈ K. Let gi = hi + h′

i for i = 1, 2. Then, we
have I = (g1, g2) + K with f1 − g1 ∈ I 2 and s2f2 − g2 ∈ I 2. This proves the
result. �
LEMMA 3.5. Let B be a ring and let s, t ∈ B be such that Bs + Bt = B. Let
I, L be ideals of B such that L ⊂ I 2. Let P be a projective B-module and let
φ: P →→ I/L be a surjection. If φ⊗Bt can be lifted to a surjection �: Pt →→ It .
Then φ can be lifted to a surjection �: P →→ I/(sL).

Proof. Without loss of generality, we can assume that t = 1 modulo the ideal
(s). Let l be a positive integer such that t l�(P ) ⊂ I . Let �′: P → I be a lift of
φ. Then, since � is a lift of φt , there exists an integer r � l such that (tr� − t r�′)
(P ) ⊂ L. Let ) = t r� and K = )(P ). Then, since r � l, K ⊂ I and Kt = It .
Since 1 − t ∈ (s), we have K + sI = I . Let t r = 1 − sa and let 6 = ) + sa�′.
Then 6−�′ = )− t r�′. Therefore (6−�′)(P ) ⊂ L and, hence, 6 is also lift of
φ. Moreover, 6(P )+ sI = )(P )+ sI = I . Therefore, by (2.1), 6(P )+ sL = I .
If )′: I →→ I/sL is a canonical surjection, then putting � = )′6, we are
through. �
LEMMA 3.6. Let B be a ring and let I1, I2 be two comaximal ideals of B. Let
P = P1 ⊕B be a projective B-module of rank n. Let �: P →→ I1 and �: P →→
I1 ∩ I2 be two surjections such that �⊗B/I1 = � ⊗B/I1. Assume that

(1) a = �(0, 1) is a non zero divisor modulo the ideal
√
�(P1).

(2) n− 1 > dimB/J (B), where B = B/(�(P1)).
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Let L ⊂ I2
2 be an ideal such that �(P1) + L = B. Then, the surjection �:

P →→ I1 ∩ I2 induces a surjection �: P →→ I2/L. Moreover, � can be lifted to
a surjection -: P →→ I2.

Proof. Since L + I1 = B (in fact L + �(P1) = B) , it is easy to see that �
induces a surjection �: P →→ I2/L.

LetK = �(P1) and S = 1+K. Then S∩L �= ∅. Therefore, we have surjections
�S and �S from PS to (I1)S . �
CLAIM. There exists an automorphism ' of PS such that '∗(�S) = �S ' = �S ,
where '∗ is an automorphism of PS

∗ induced from '.

Assume the claim. Then, there exists s = 1 + t ∈ S, t ∈ K such that ' ∈
Aut (Ps) and �s ' = �s . Since S ∩ L �= ∅, we can assume that s ∈ S ∩ L.

With respect to the decomposition P = P1 ⊕B, we write � ∈ P ∗ as (�1, a),
where �1 ∈ P1

∗ and a ∈ B. Similarly, we write � = (�1, b), where �1 ∈ P1
∗ and

b ∈ B. Let pr: P1 ⊕B(= P) →→ B be the map defined by pr(p1, b) = b, where
p1 ∈ P1 and b ∈ B.

Since s ∈ L, (I2)s = Bs and, therefore, we can regard prs as a surjection
from (P1)s ⊕Bs to (I2)s . Since t ∈ K = �1(P1), the element (�1)t ∈ (P1)t

∗ is a
unimodular element. Hence, there exists an element ) ∈ E((P1)st ⊕Bst) such that
)∗((�1, a)st ) = prst , i.e. (�t)s ) = (prs)t . Note that �t is a surjection from Pt to
(I2)t .

We also have �s ' = �s . Hence (�s ')t ) = (prs)t . Let '̃ = 't ) 't
−1.

Then we have (�s)t '̃ = (�t)s '̃ = (prs)t 't
−1. Since ) is an element of E(Pst )

which is a normal subgroup of Aut (Pst ), '̃ ∈ E(Pst ) and hence is isotopic to
identity. Therefore, by (2.5), '̃ = '′′

s '
′
t , where '′ is an automorphism of Ps

such that '′ = Id modulo (t) and '′′ is an automorphism of Pt such that '′′ = Id
modulo (s).

Thus we have surjections (�t '
′′): Pt →→ (I2)t and (prs '−1 ('′)−1): Ps →→

(I2)s such that (�t '
′′)s = (prs '

−1 ('′)−1)t . Therefore, they patch up to yield a
surjection -: P →→ I2. Since s = 1+ t ∈ L, the map B → B/(s) factors through
Bt . Since '′′ = Id modulo (s), we have -⊗B/L = � ⊗B/L.

Proof of the claim. To simplify the notation, we denote BS by B, (P1)S by P1

and (I1)S by I . Then we have two surjections � = (�1, a) and � = (�1, b) from
P1 ⊕B to I such that �⊗B/I = � ⊗B/I . Moreover, �1(P1) = K ⊂ J (B) and
n − 1 (rank P1) > dimB/J (B), where B = B/K. Our aim is to show that there
exists an automorphism ' of P = P1 ⊕B such that �' = �.

Hence onward, we write an element σ ∈ End (P1 ⊕B) in the following matrix
form

σ =
(
α p

η d

)
, where α ∈ End (P1), p ∈ P1, η ∈ P1

∗ and d ∈ B.
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Note that, with this presentation of σ ∈ End (P ), if 6 = (61, e) ∈ P1
∗ ⊕B,

then σ ∗(6) = 6σ = (61 α + eη,61(p) + ed). Moreover, if σ ′ ∈ End (P ) has
a matrix representation σ ′ = (β p1

µ f

)
, then the endomorphism σ ′ σ has the matrix

representation

σ ′ σ =
(
β α + ηp1 β(p) + dp1

µα + f η µ(p)+ f d

)
,

where ηp1 ∈ End (P1) is the composite map P1
η−→ B

p1−→ P1.
Since �⊗B/I = � ⊗B/I , there exist ),)′ ∈ End (P ) which are identity

modulo the ideal I and (1) �) = �, (2) � )′ = �. Let

) =
(
γ q

ζ c

)
, )′ =

(
γ ′ q ′
ζ ′ c′

)
be the matrix representation of ) and )′, where γ, γ ′ ∈ End (P1), q, q ′ ∈ P1,
ζ, ζ ′ ∈ P ∗

1 and c, c′ ∈ B. Then

) )′ =
(
γ γ ′ + ζ ′

q γ (q ′)+ c′q
ζγ ′ + cζ ′ ζ(q ′)+ cc′

)
.

Since �) )′ = �, we get �1(γ (q
′) + c′q) + a(ζ(q ′) + cc′) = a. Hence

a(1−ζ(q ′)−cc′) ∈ K. Since, by hypothesis, no minimal prime ideal of K contains
a, we have (1−ζ(q ′)−cc′) ∈ √

K, i.e. (ζ(q ′)+cc′)+√
K = B. ButK ⊂ J (B) and

hence (ζ(q ′)+ cc′) = B, i.e. the element ζ(q ′) + cc′ ∈ B∗. Therefore (ζ, c) ∈ P ∗
is a unimodular element. Note that, since ) is an endomorphism of P which is
identity modulo I , (ζ, c) = (0, 1) modulo I . Now, we show that there exists an
automorphism '1 of P such that (1) (ζ, c)'1 = (0, 1) and (2) '1 is an identity
automorphism of P modulo I .

Let ‘bar’ denote reduction moduloK. Since dimB/J (B) < n−1, by a classical
result of Bass ([1]), there exists ζ1 ∈ P1

∗ such that (ζ + c ζ1) is a unimodular
element of P1

∗. But then, since K ⊂ J (B), ζ + c ζ1 is a unimodular element of
P1

∗. Let q1 ∈ P1 be such that (ζ + c ζ1)(q1) = 1. Let

ϕ1 =
(

1 0
ζ1 1

)
, ϕ2 =

(
1 (1 − c) q1

0 1

)
, ϕ3 =

(
1 0

−(ζ + cζ1) 1

)
.

Let '1 = ϕ1 ϕ2 ϕ3. Since (ζ, c) = (0, 1) modulo I , from the construction,
it follows that '1 is an automorphism of P = P1 ⊕B which is identity mod-
ulo I . Moreover, it is easy to see that (ζ, c)'1 = (0, 1). Therefore, we have
)'1 = (

γ1 q2
0 1

)
. Since both ) and '1 are identity modulo I , γ1 is an endomorphism

of P1 which is identity modulo I and q2 ∈ IP1. Therefore, '2 = ( 1 −q2
0 1

)
is an

automorphism of P1 ⊕B which is identity modulo I . Moreover,

' = '2 )'1 =
(
γ1 0
0 1

)
.
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Let ã = �1(q2) + a. Then �'−1
2 = (�1, ã) and, hence, K + (̃a) = I .

Moreover, (�1, ã)' = (�1 γ1, ã) = �'1. Let �̃1 = �1 γ1. Therefore, to
complete the proof (of the claim), it is enough to show that the surjections
�̃ = (�1, ã) and �̃ = (�̃1, ã) from P to I are connected by an automorphism
of P .

Since γ1 ∈ End (P1) is identity modulo I , (1 − γ1)(P1) ⊂ IP1. Since P1 is a
projective B-module, we have Hom (P1, IP1) = I Hom (P1, P1). Hence 1 − γ1 =∑

bi βi , where βi ∈ End (P1) and bi ∈ I . Let bi = ci + di ã, where ci ∈ K and
di ∈ B. Then 1 − γ1 = ∑

ci βi + ã
∑

di βi . Hence γ1 = θ + ã θ ′, where θ =
1 − ∑

ci βi and θ ′ = −∑
di βi . Since det (θ) = 1 + x for some x ∈ K ⊂ J (B),

θ is an automorphism of P1.
We have �̃1 = �1 γ1 = �1 θ + ã �1 θ

′. Let - = (
θ 0
�1θ

′ 1

)
. Then (�1, ã)- =

(�̃1, ã) and - is an automorphism of P . This proves the result. �
THEOREM 3.7 (Subtraction Principle). Let B be a ring of dimension d and let
I1, I2 ⊂ B be two comaximal ideals of height n, where 2n� d+3. Let P = P1 ⊕B

be a projective B-module of rank n. Let ): P →→ I1 and 6: P →→ I1 ∩ I2 be
two surjections such that )⊗B/I1 = 6⊗B/I1. Then there exists a surjection
�: P →→ I2 such that � ⊗B/I2 = 6⊗B/I2.

Proof. Let ) = ()1, a). Let ‘bar’ denote reduction modulo I2. Then
) = ()1, a) is a unimodular element of P ∗. Since dimB/I2 < rank P 1, by
([1]), there exists 61 ∈ P ∗

1 such that )1 + a2 61 is a unimodular element of
P 1

∗
. Therefore, replacing )1 by )1 + a2 61, we can assume that )1(P1) = K is

comaximal with I2. Moreover, using similar arguments, one can assume that height
of K is n− 1 and therefore, n− 1 > dimB/K. Since K is a surjective image of P1

(a projective B-module of rank n− 1), every minimal prime ideals of K has height
n − 1. Hence, since I1 = K + (a) is an ideal of height n, a is a nonzero divisor
modulo the ideal

√
K . Therefore, by (3.6), there exists a surjection �: P →→ I2

which is a lift of 6⊗B/I2. This proves the result. �
Remark 3.8. The above theorem has been already proved in ([7], Proposition

3.2) in the case P is free and in ([5], Theorem 3.3) for arbitrary P but n = d. Our
approach is different from that of [5, 7] and we believe is of some independent
interest.

4. Main Theorem

In this section, we prove the main theorem. We begin with a lemma which is proved
in ([4], Lemma 3.1).

LEMMA 4.1. Let A be a ring of dimension d. Suppose K ⊂ A[T ] is an ideal such
that K + J (A)A[T ] = A[T ] (recall J (A) denotes the Jacobson radical of A).
Then any maximal ideal of A[T ] containing K has height � d.
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LEMMA 4.2. Let A be a ring of dimension d and let n be an integer such that
2n� d + 3. Let I be an ideal of A[T ] of height n and let J = I ∩ A. Let P̃ be a
projective A[T ]-module of rank n and f ∈ A[T ]. Suppose φ: P̃ →→ I/(I 2f ) be
a surjection. Then we can find a lift �′ ∈ Hom A[T ](P̃ , I ) of φ such that the ideal
�′(P̃ ) = I ′′ satisfies the following properties:

(i) I = I ′′ + (J 2f ).
(ii) I ′′ = I ∩ I ′, where ht I ′ � n.

(iii) I ′ + (J 2f ) = A[T ].

Remark 4.3. The above lemma has been proved in ([4], Lemma 3.6) in the case
A is an affine algebra over a field and f = T . Since the same proof works, we omit
the proof.

LEMMA 4.4. Let C be a ring with dimC/J (C) = r and let P be a projective
C-module of rank m� r + 1. Let I and L be ideals of C such that L ⊂ I 2. Let
φ: P →→ I/L be a surjection. Then φ can be lifted to a surjection �: P →→ I .

Proof. Let �: P → I be a lift of φ. Then �(P ) + L = I . Since L ⊂ I 2, by
(3.2), there exists e ∈ L such that �(P )+ (e) = I .

Let the ‘tilde’ denote reduction modulo J (C). Then �̃(P̃ )+ (̃e) = Ĩ . Applying
(2.7) to the element (�̃, ẽ) of P̃ ∗ ⊕ C̃, we see that there exists 6 ∈ P ∗ such that if
K = (� + e6)(P ), then ht K̃ẽ �m. As dim C̃ = r �m − 1, we have K̃ẽ = C̃ẽ.
Hence ẽ l ∈ K̃ for some positive integer l. Since K̃ + (̃e) = Ĩ and e ∈ L ⊂ I 2,
by (3.1), K̃ = Ĩ . Since e ∈ L, the element � + e 6 is also a lift of φ. Hence,

replacing � by � + e 6, we can assume that �̃(P ) = Ĩ i.e. �̃: P̃ →→ Ĩ is a
surjection. Therefore, since Ĩ = (I + J (C))/J (C) = I/(I ∩ J (C)), we have
�(P )+ (I ∩ J (C)) = I . We also have �(P )+ L = I . Therefore, since L ⊂ I 2,
by (3.1), �(P ) = I . �

As a consequence, we have the following result.

LEMMA 4.5. Let A be a ring with dimA/J (A) = r. Let I and L be ideals of
A[T ] such that L ⊂ I 2 and L contains a monic polynomial. Let P ′ be a projective
A[T ]-module of rank m� r + 1. Let φ: P ′ ⊕A[T ] →→ I/L be a surjection.
Then we can lift φ to a surjection �: P ′ ⊕A[T ] →→ I with �(0, 1) a monic
polynomial.

Proof. Let �′ = (6, g(T )) be a lift of φ. Let f (T ) ∈ L be a monic poly-
nomial. By adding some large power of f (T ) to g(T ), we can assume that the
lift �′ = (6, g(T )) of φ is such that g(T ) is a monic polynomial. Let
C = A[T ]/(g(T )). Since A ↪→ C is an integral extension, we have J (A) =
J (C) ∩ A and, hence, A/J (A) ↪→ C/J (C) is also an integral extension. There-
fore, dimC/J (C) = r.

Let ‘bar’ denote reduction modulo (g(T )). Then, 6 induces a surjection α:
P ′ →→ I/L, which, by (4.4), can be lifted to a surjection from P ′ to I . Therefore,
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there exists a map ): P ′ → I such that )(P ′) + (g(T )) = I and (6 − ))(P ′) =
K ⊂ L+ (g(T )). Hence, 6−) ∈ KP ′∗. This shows that 6−) = 61 +g(T ) )1,
where 61 ∈ LP ′∗ and )1 ∈ P ′∗.

Let �1 = ) + g(T ) )1 and let � = (�1, g(T )). Then, �(P ′ ⊕A[T ]) =
�1(P

′)+(g(T )) = )(P ′)+(g(T )) = I . Thus �: P ′ ⊕A[T ] →→ I is a surjection.
Moreover, �(0, 1) = g(T ) is a monic polynomial. Since � − �′ = (�1 − 6, 0),
�1 −6 ∈ LP ′∗ and �′ is a lift of φ, we see that � is a (surjective) lift of φ. �

In the case A is semi-local, the following lemma has been proved in ([9],
Lemma 3.6) for n = d � 3.

LEMMA 4.6. Let A be a ring of dimension d and let n be an integer such that
2n� d + 3. Let I be an ideal of A[T ] of height n such that I + J (A)A[T ] =
A[T ], where J (A) denotes the Jacobson radical of A. Assume that
htJ (A)� n − 1. Let P be a projective A-module of rank n and let φ: P [T ] →→
I/I 2 be a surjection. If the surjection φ⊗A(T ): P(T ) →→ IA(T )/I 2A(T ) can
be lifted to a surjection from P(T ) to IA(T ), then φ can be lifted to a surjection
�: P [T ] →→ I .

Proof. It is easy to see that, under the hypothesis of the lemma, there exists a
monic polynomial f (T ) ∈ A[T ] and a surjection �′: P [T ]f →→ If such that �′
is a lift of φf . Since I + J (A)A[T ] = A[T ], I is not contained in any maximal
ideal of A[T ] which contains a monic polynomial and, hence, f (T ) is a unit
modulo I .

Since dimA/J (A)� d − n+ 1 � n − 2, P has a free direct summand of rank
2, i.e. P = Q⊕A2.

For the sake of simplicity of notation, we write R for A[T ], Q̃ for Q[T ] and P̃
for P [T ]. Since �′ ∈ Hom Rf (P̃f , If ), there exists a positive even integer N such
that �′′ = f N�′ ∈ Hom R(P̃ , I ). It is easy to see, by the very construction of �′′,
that the induced map �′′

f from P̃f to If is a surjection. Since f is a unit modulo I ,
the canonical map R/I → Rf /If is an isomorphism and, hence, I/I 2 = If /If

2.
Putting these facts together, we see that φ′′ = �′′ ⊗R/I : P̃ →→ I/I 2 is surjective.
Moreover, φ′′ = f Nφ. �
CLAIM. φ′′: P̃ →→ I/I 2 can be lifted to a surjection from P̃ to I .

Proof. We first note that if ' is an automorphism of P̃ and if the surjection
φ′′': P̃ →→ I/I 2 has a surjective lift from P̃ to I , then so also φ′′. We also note
that, by (2.6), any element of E(P̃ /I P̃ ) can be lifted to an automorphism of P̃ .
Keeping these facts in mind, we proceed to prove the claim.

By (2.11), there exists '1 ∈ E(P̃f ) such that (1) � = '1
∗(�′′) ∈ Hom R(P̃ , I )

and (2) �(P̃ ) is an ideal of R of height n, where '1
∗ is an element of E(P̃ ∗

f )

induced from '1.
Since �f (P̃f ) = If and f is a unit modulo I , we have I = �(P̃ )+ I 2. Hence,

by (3.2), �(P̃ ) = I1 = I ∩ I ′, where I ′ + I = R. Since (I1)f = If , I ′
f = Rf and

hence I ′ contains a monic polynomial f r for some positive integer r.
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Since '1 ∈ E(P̃f ), ' = '1 ⊗Rf /If ∈ E(P̃f /If P̃f ). Since P̃ /I P̃ = P̃f /

If P̃f , we can regard ' as an element of E(P̃ /I P̃ ). By (2.6), ' can be lifted to an
automorphism ' of P̃ .

The map �: P̃ →→ I ∩ I ′ induces a surjection ψ : P̃ →→ I/I 2 and it is easy
to see that ψ = φ′′'. Therefore, to prove the claim, it is enough to show that ψ
can be lifted to a surjection from P̃ to I . If I ′ = R, then obviously � is a required
surjective lift of ψ . Hence, we assume that I ′ is an ideal of height n.

The map �: P̃ →→ I ∩ I ′ induces a surjection ψ ′: P̃ →→ I ′/I ′2. Recall that
P̃ = Q̃⊕R2 and Q̃ = Q[T ]. Therefore, since I ′ contains f r ; a monic polynomial,
by (4.5), ψ ′ can be lifted to a surjection � ′(= (), h1, h2)): P̃ →→ I ′, where ) ∈
Q̃∗, h1, h2 ∈ R = A[T ] and h1 is monic. Moreover, if necessary, by (2.7), we can
replace ) by )+h2

2 )1 for suitable )1 ∈ Q̃∗ and assume that htK = n−1, where
K = )(Q̃)+Rh1. Let R = R/K and A = A/(K∩A). Then A ↪→ R is an integral
extension and, hence, dimR/J (R) = dimA/J (A)� dimA/J (A)� d−n+1 <

n− 1.
Let P1 = Q̃⊕R. Then P̃ = P1 ⊕R and K = � ′(P1). Since K contains a

monic polynomial h1, K + I 2 = R. Moreover, surjections �: P̃ →→ I ∩ I ′ and
� ′: P̃ →→ I ′ are such that � ⊗R/I ′ = � ′ ⊗R/I ′. Therefore, since R = R/K

and dimR/J (R) < n − 1, by (3.6), there exists a surjection -1: P̃ →→ I with
-1 ⊗R/I = � ⊗R/I = ψ . Therefore, - = -1 '

−1: P̃ →→ I is a lift of φ′′.
Thus the proof of the claim is complete. �

Let L denote the ideal of R = A[T ] generated by J (A)f (T ) and let D = R/L.
Since L + I = R and -(P̃ ) = I , -⊗D is a unimodular element of P̃ ∗ ⊗D. Let
- = (λ, d1, d2), where λ ∈ Hom R(Q̃, R) and d1, d2 ∈ R.

Since f (T ) is monic, D/J (D) = A/J (A)[T ]. Moreover, dimA/J (A)� d +
1 − n�n− 2. Therefore, in view of (2.8), the unimodular element (λ, d1, d2)⊗D

can be taken to (0, 0, 1) by an element of E(P̃ ∗ ⊗D). By (2.6), every element of
E(P̃ ∗ ⊗D) can be lifted to an automorphism of P̃ ∗. Moreover, since I + (f ) = R,
a lift can be chosen to be an automorphism of P̃ ∗ which is identity modulo I .

The upshot of the above discussion is that there exists an automorphism E of P̃
such that E is identity modulo I and E∗(-) = -E = (0, 0, 1) modulo L. There-
fore, replacing - by -E, we can assume that - = (λ, d1, d2) with 1 − d2 ∈ L.

Recall that our aim is to lift the surjection φ: P̃ →→ I/I 2 to a surjection
�: P̃ →→ I . Recall also that the surjection -: P̃ →→ I is a lift of f Nφ:
P̃ →→ I/I 2.

Let g ∈ R be such that fg = 1 modulo (d2) and, hence, modulo I . Let
a = (gNd1, d2). Then, since N is even, by (3.3), a = (e1, e2) with e1 − gNd1 ∈ a2

and e2 − gNd2 ∈ a2. Since - = (λ, d1, d2), -(P̃ ) = I and Rg+Rd2 = R, we see
that

I = λ(Q̃)+ (d1, d2) = gNλ(Q̃)+ (gNd1, d2) = gNλ(Q̃)+ (e1, e2).

Let � = (gNλ, e1, e2) ∈ Hom R(P̃ , I ). From the above equality, we see that
�: P̃ →→ I is a surjection. Moreover, since 1 − fg ∈ I , �⊗R/I = gN-⊗R/I
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and -⊗R/I = f Nφ⊗R/I , � is a (surjective) lift of φ. This proves the
lemma. �
LEMMA 4.7. Let A be a ring of dimension d and let I, I1 ⊂ A[T ] be two
comaximal ideals of height n, where 2n� d + 3. Let P = P1 ⊕A be a pro-
jective A-module of rank n. Assume J = I ∩ A ⊂ J (A) and I1 + (J 2T ) =
A[T ]. Let �: P [T ] →→ I ∩ I1 and �: P [T ] →→ I1 be two surjections with
�⊗A[T ]/I1 = � ⊗A[T ]/I1. Then we get a surjection -: P [T ] →→ I such that
(�−-)(P [T ]) ⊂ (I 2T ).

Proof. We first note that, to prove the lemma, we can replace � and � by �'

and �', where ' is an automorphism of P [T ].
Let � = (�1, f ). Let ‘bar’ denote reduction modulo (J 2T ) and let

D = A[T ]/(J 2T ) . Since I1 + (J 2T ) = A[T ], it follows that (�1, f ) ∈ Um

(P1[T ]∗ ⊕D). Since J ⊂ J (A), JD ⊂ J (D). Moreover, D/JD = A/J [T ] and
dimA/J � d+1−n�n−2. Therefore, since rank P1 = n−1, by ([16], Corollary
2, p. 1429), P1[T ] has a unimodular element. By (2.8), E(P1[T ]∗ ⊕D) acts tran-
sitively on the set of unimodular elements of P1[T ]∗ ⊕D and by (2.6), any element
of E(P1[T ]∗ ⊕D) can be lifted to an automorphism of P1[T ] ⊕A[T ]. Putting
above facts together, we can assume, replacing (�1, f ) by (�1, f )' (': suit-
able automorphism of P [T ]) if necessary, that �1(P1[T ]) + (J 2T )A[T ] = A[T ]
and f ∈ (J 2T ). Moreover, applying (2.7), we can assume, that ht�1(P1[T ]) =
n− 1.

Since J ⊂ J (A) and �1(P1[T ]) + (J 2T ) = A[T ], we have �1(P1[T ]) +
J (A)A[T ] = A[T ] and therefore, by (4.1), dimA[T ]/(�1(P1[T ]))� d − n +
1 � n − 2. Hence, applying (3.6), we get a surjection -: P [T ] →→ I such that
(�−-)(P [T ]) ⊂ (I 2T ). �

The following result is due to Bhatwadekar and Raja Sridharan ([4], Lemma
3.5).

LEMMA 4.8. Let A be a regular domain containing a field k, I ⊂ A[T ] an
ideal, J = A ∩ I and B = A1+J . Let P be a projective A-module and let φ:
P [T ] →→ I/(I 2T ) be a surjective map. Suppose there exists a surjection θ :
P1+J [T ] →→ I1+J such that θ is a lift of φ⊗B. Then there exists a surjection
�: P [T ] →→ I such that � is a lift of φ.

PROPOSITION 4.9. Let A be a regular domain of dimension d containing a
field k and let n be an integer such that 2n� d + 3. Let I be an ideal of A[T ]
of height n. Let P be a projective A-module of rank n and let ψ :
P [T ] →→ I/(I 2T ) be a surjection. If there exists a surjection � ′:
P [T ] ⊗A(T ) →→ IA(T ) which is a lift of ψ ⊗A(T ). Then we can lift ψ to a
surjection �: P [T ] →→ I .

Proof. In view of (4.8), we can assume that J = I ∩ A ⊂ J (A). Hence,
htJ (A)� n − 1 and n > dimA/J (A). Therefore, we can assume that P has a
unimodular element i.e. P = P1 ⊕A.
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Applying (4.2) for the surjection ψ : P [T ] →→ I/(I 2T ), we get a lift 6 ∈
Hom A[T ](P [T ], I ) of ψ such that the ideal 6(P [T ]) = I ′′ satisfies the following
properties:

(i) I = I ′′ + (J 2T ).

(ii) I ′′ = I ∩ I ′, where I ′ is an ideal of height n.
(iii) I ′ + (J 2T ) = A[T ].

The surjection 6: P [T ] →→ I ∩ I ′ induces a surjection 6⊗A(T ): P(T ) →→
(I ∩ I ′)A(T ) such that � ′ ⊗A(T )/IA(T ) = (6⊗A(T ))⊗A(T )/IA(T ). Since
dimA(T ) = d and I, I ′ are two comaximal ideals of height n, where 2n� d + 3,
applying (3.7) to surjections � ′ and 6⊗A(T ), we get a surjection �′: P(T ) →→
I ′A(T ) such that �′ ⊗A(T )/I ′A(T ) = (6⊗A(T ))⊗A(T )/I ′A(T ).

The map 6: P [T ] →→ I ∩ I ′ induces a surjection φ (= 6⊗A[T ]/I ′):
P [T ]/I ′P [T ] →→ I ′/I ′2. Since I ′ + J (A) = A[T ] and φ⊗A(T ) has a sur-
jective lift, namely, �′: P(T ) →→ I ′A(T ), by (4.6), there exists a surjection
�: P [T ] →→ I ′ which is a lift of φ.

Thus, we have surjections �: P [T ] →→ I ′ and 6: P [T ] →→ I ∩ I ′ such that
�⊗A[T ]/I ′ = φ = 6⊗A[T ]/I ′. Hence, as I ′ + (J 2T ) = A[T ] and J ⊂ J (A),
by (4.7), there exists a surjection �: P [T ] →→ I such that (� − 6)(P [T ]) ⊂
(I 2T ). Since 6 is a lift of ψ , we are through.

Thus the proposition is proved. �
Remark 4.10. For n = d, the above proposition has been already proved in ([9],

Theorem 4.7) in the case A is an arbitrary ring containing a field of characteristic
0. As an application of (4.9), we prove the following result.

COROLLARY 4.11 (Subtraction Principle). Let A be a regular domain of dimen-
sion d containing an infinite field k and let n be an integer such that 2n� d + 3.
Let P = P1 ⊕A be a projective A-module of rank n and let I, I ′ ⊂ A[T ] be two
comaximal ideals of height n. Assume that we have surjections ): P [T ] →→ I

and 6: P [T ] →→ I ∩ I ′ such that )⊗A[T ]/I = 6⊗A[T ]/I . Then, we have a
surjection �: P [T ] →→ I ′ such that � ⊗A[T ]/I ′ = 6⊗A[T ]/I ′.

Remark 4.12. Since dimA[T ] = d + 1, if 2n� d + 4, then we can appeal to
(3.7) for the proof. So, we need to prove the result only in the case 2n = d + 3.
However, the proof given below in this case works equally well for 2n > d + 3
and, hence, allows us to give a unified treatment.

Proof. Let K = I ∩ I ′. Then, since k is infinite, there exists a λ ∈ k such that
K(λ) = A or K(λ) has height n. Therefore, replacing T by T −λ, if necessary, we
assume that K(0) = A or htK(0) = n.

Note that 6 induces a surjection θ : P [T ] →→ I ′/I ′2. We first show that θ can
be lifted to a surjection from P [T ] to I ′/(I ′2T ).
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If I ′(0) = A, then, since P = P1 ⊕A, we can lift θ to a surjection φ:
P [T ] →→ I ′/(I ′2T ). Now we assume that ht I ′(0) = n. The map 6 induces a
surjection 6(0): P →→ K(0)(= I (0) ∩ I ′(0)). If I (0) = A, then K(0) = I ′(0)
and therefore it is easy to see that 6(0) and θ will patch up to give a surjec-
tion ψ : P [T ] →→ I ′/(I ′2T ) which is a lift of θ . If ht I (0) = n, then, since
)⊗A[T ]/I = 6⊗A[T ]/I , we can apply the subtraction principle (3.7) to the
surjections )(0): P →→ I (0) and 6(0): P →→ I (0)∩I ′(0) to conclude that there
is a surjection ϕ: P →→ I ′(0) such that ϕ⊗A/I ′(0) = 6(0)⊗A/I ′(0). Hence,
as before, we see that θ and ϕ will patch up to give a surjection ψ : P [T ] →→
I ′/(I ′2T ) which is a lift of θ .

In view of (4.9), to show that there exists a surjection �: P [T ] →→ I ′ such
that � ⊗A[T ]/I ′ = θ = 6⊗A[T ]/I ′, it is enough to show that ψ ⊗A(T ) has a
surjective lift from P(T ) to I ′A(T ).

The surjections ), 6 induces surjections

)⊗A(T ): P(T ) →→ IA(T ), 6⊗A(T ): P(T ) →→ (I ∩ I ′)A(T ),

respectively, with the property

()⊗A(T ))⊗A(T )/IA(T ) = (6⊗A(T ))⊗A(T )/IA(T ).

Therefore, by (3.7), there exists a surjection � ′: P(T ) →→ I ′A(T ) with the
property

� ′ ⊗A(T )/I ′A(T ) = (6⊗A(T ))⊗A(T )/I ′A(T ).

Since, (6⊗A(T ))⊗A(T )/I ′A(T ) = ψ ⊗A(T ), we are through. �
Let k be a field. Recall that a k-algebra A is said to be ‘essentially of finite type

over k’, if A is a localization of an affine algebra over k.
Now we prove our main theorem.

THEOREM 4.13. Let k be an infinite perfect field and let A be a regular domain
of dimension d which is essentially of finite type over k. Let n be an integer such
that 2n� d + 3. Let I ⊂ A[T ] be an ideal of height n and let P be a projective
A-module of rank n. Assume that we are given a surjection φ: P [T ] →→ I/(I 2T ).
Then there exists a surjection �: P [T ] →→ I such that � is a lift of φ.

Proof. If I has height d + 1, then I contains a monic polynomial in T . Hence,
by (2.9), we are through. Therefore, we always assume that n� d and, hence, the
inequality 2n� d + 3 would imply that d � 3.

We first assume that A is local. In this case, if n� 4 and I (0) = A or I (0) is a
complete intersection ideal of height n, then, by (2.10), we are through. It is easy
to see that in the case I (0) = A, (2.10) is valid even if ht I = dimA = 3. To
complete the proof in the case A is local we proceed as follows.
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Let J = I ∩ A. By (4.2), the surjection φ: P [T ] →→ I/(I 2T ) has a lift
�′ ∈ Hom A[T ](P [T ], I ) such that the ideal �′(P [T ]) = I ′′ satisfies the following
properties:

(i) I ′′ + (J 2T ) = I .
(ii) I ′′ = I ∩ I ′, where I ′ is an ideal of height � n.

(iii) I ′ + (J 2T ) = A[T ].

Since I ′ is locally generated by n elements, if ht I ′ > n, then I ′ = A[T ] and
we are through. So assume that ht I ′ = n. The surjection �′: P [T ] →→ I ′′(=
I ∩ I ′) induces a surjection ψ ′: P [T ] →→ I ′/I ′2. Since I ′ + (J 2T ) = A[T ],
I ′(0) = A. Hence, as P is free, ψ ′ can be lifted to a surjection ψ : P [T ] →→
I ′/(I ′2T ). Now, as I ′(0) = A, by (2.10), the surjection ψ can be lifted to a
surjection �: P [T ] →→ I ′. Thus, we have surjections �′: P [T ] →→ I ∩ I ′
and �: P [T ] →→ I ′ such that �′ ⊗A[T ]/I ′ = � ⊗A[T ]/I ′. Therefore, since
I ′ + (J 2T ) = A[T ], by (4.7), there exists a surjection �: P [T ] →→ I such that
(�−�′)(P [T ]) ⊂ (I 2T ). Since �′ is a lift of φ, we are through.

Now we prove the theorem in the general case. Let

S = {s ∈ A | ∃ -: Ps[T ] →→ Is ; - is a lift of φ⊗As[T ] }.

Our aim is to prove that 1 ∈ S. Note that if t ∈ S and a ∈ A, then at ∈ S.
Moreover, since the theorem is proved in the local case, it is easy to see that for
every maximal ideal m of A, there exists s ∈ A− m such that Ps is free and s ∈ S.
Hence we can find s1, . . . , sr ∈ S such that Psi is free and s1 + · · · + sr = 1.
Therefore, by inducting on r, it is enough to show that if s, t ∈ S and Ps is free,
then s + t ∈ S. Since, in the ring B = As+t , x + y = 1, where x = s/s + t

and y = t/s + t , replacing A by B if necessary, we are reduced to prove that if
s, 1 − s = t ∈ S and Ps is free, then 1 ∈ S.

The rest of the argument is devoted to the proof of this assertion. The proof is
given in steps.

Step 1. Let J = I ∩ A. In view of (4.8), replacing A by A1+J if necessary, we
assume that J ⊂ J (A). If s or t is a unit in A, then obviously 1 ∈ S. So, without
loss of generality, we can assume that s and t are not invertible elements of A.
Therefore, as J ⊂ J (A), s /∈ √

J and t /∈ √
J .

Since ht I = n, ht J � n− 1. Therefore

dimA/J (A)� dimA/J � dimA− ht J � n− 2.

Hence, since rank P = n, P
∼→ Q⊕A2.

Let )2: Pt [T ] →→ It be a surjection which is a lift of φ⊗At [T ]. Since
As + At = A, applying (3.5) (with L = (I 2T ) and B = A[T ]), we get a
surjection γ ′: P [T ] →→ I/(I 2T s) which is a lift of φ. By (4.2), we can find a lift
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)′ ∈ Hom A[T ](P [T ], I ) of γ ′ such that the ideal )′(P [T ]) = Ĩ satisfies the
following properties:

(i) Ĩ + (J 2T s) = I .
(ii) Ĩ = I ∩ I1, where ht I1 � n.

(iii) I1 + (J 2T s) = A[T ].

As before, if ht I1 > n, then I1 = A[T ] and we are through. So we assume that
ht I1 = n. The surjection )′: P [T ] →→ I ∩ I1 induces a surjection θ : P [T ] →→
I1/I1

2. Recall that J ⊂ J (A) and hence P
∼→ Q⊕A2. Moreover, I1 + (J 2T ) =

A[T ]. Therefore, if θ can be lifted to a surjection 6: P [T ] →→ I1, then, by (4.7),
φ can be lifted to a surjection �: P [T ] →→ I .

In subsequent steps, we will show that θ has a surjective lift 6: P [T ] →→ I1.

Step 2. Let )1: Ps[T ] →→ Is be a surjection which is a lift of φ⊗As[T ]. Since
the map )′: P [T ] →→ I ∩ I1 is a lift of φ, applying (4.11), we get a surjection
61: Ps[T ] →→ (I1)s which is a lift of θ ⊗As[T ].

Since I1 + (J 2T s) = A[T ], there exists an element g ∈ A[T ] such that
1 − sg ∈ I1 and the canonical map A[T ]/I1 → As[T ]/(I1)s is an isomorphism.
Therefore, as P [T ] = Q[T ] ⊕A2[T ] and Ps[T ] is a free As[T ]-module, Q[T ]/
I1Q[T ] is a stably free A[T ]/I1-module of rank n − 2. Since J ⊂ J (A), I1 +
JA[T ] = A[T ] and ht I1 = n, by (4.1),

dimA[T ]/I1 < dimA[T ] − ht I1 = d − n+ 1 � n− 2.

Hence, by a classical result of Bass ([1]), Q[T ]/I1Q[T ] is a free A[T ]/I1-
module.

Let N be a positive even integer such that (sN61)(P [T ]) ⊂ I1 and let 6̃ =
sN61 ∈ Hom A[T ](P [T ], I1). Then, as 1 − sg ∈ I1, 6̃ induces a surjection θ̃ :
P [T ] →→ I1/I1

2. Since N is even, if θ̃ can be lifted to a surjection 62:
P [T ] →→ I1, then, by (3.4), there would exist a surjection 6: P [T ] →→ I1

such that 6⊗A[T ]/I1 = gN62 ⊗A[T ]/I1. In that case, since 1 − sN

gN ∈ I1,

A[T ]/I1 = As[T ]/(I1)s, 62 ⊗A[T ]/I1 = sN61 ⊗A[T ]/I1

and 61 is a lift of θ , 6 would be a lift of θ .
Thus, it is enough to show that the surjection θ̃ : P [T ] →→ I1/I1

2 can be lifted
to a surjection 62: P [T ] →→ I1.

Step 3. Recall that 61: Ps[T ] →→ (I1)s is a surjection and 6̃ = sN61:
P [T ] → I1 is a lift of θ̃ . Therefore, the induced map 6̃s: Ps[T ] →→ (I1)s
is also a surjection. Hence, by (2.11), there exists ' ∈ E(Ps[T ]) such that if
'∗(6̃) = - then (1) - ∈ P [T ]∗ and (2) -1(P [T ]) = K ⊂ I1 is an ideal
of A[T ] of height n, where '∗ is an element of E(P [T ]∗) induced by '. Since
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Ks = (I1)s and A[T ] ∩ (I1)s = I1 (as the ideals I1 and sA[T ] are comax-
imal), we get K = I1 ∩ I2 with (I2)s = As[T ]. Therefore, sr ∈ I2 and, hence,
I1 + I2 = A[T ], since I1 + (s) = A[T ]. Since K is an ideal of A[T ] of height
n which is a surjective image of P [T ], either I2 = A[T ] or I2 is an ideal of
height n.

Since

A[T ]/I1 = As[T ]/(I1)s, P [T ]/I1P [T ] = Ps[T ]/I1Ps[T ].

Hence, the element ' of E(Ps[T ]) gives rise to an element ' of E(P [T ]/I1P [T ]).
By (2.6), there exists an automorphism '0 of P [T ] which is a lift of '. Let θ̃ ' =
λ1: P [T ]/I1P [T ] →→ I1/I1

2 be a surjection. Then, it is obvious that if λ1 can
be lifted to a surjection -1: P [T ] →→ I1, then θ̃ also has a surjective lift 62:
P [T ] →→ I1.

Step 4. Note that -: P [T ] →→ I1 ∩ I2 is a surjection such that -⊗A[T ]/
I1 = λ1. Therefore, if I2 = A[T ], then we are through. Now we assume that I2 is
an ideal of A[T ] of height n.

Since I1(0) = A, - gives rise to a surjection λ2: P [T ] →→ I2/(I2
2T ). If λ2

has a surjective lift from P [T ] to I2, then, by (4.11), λ1 would have a surjective
lift -1: P [T ] →→ I1. Therefore, it is enough to show that λ2 can be lifted to a
surjection -2: P [T ] →→ I2.

Since sr ∈ I2 ∩A and t = 1 − s, by (4.8), it is enough to show that λ2 ⊗At [T ]:
Pt [T ] →→ (I2)t/(I2

2T )t has a surjective lift. In view of (4.9), it is sufficient to
prove that the surjection λ2 ⊗At(T ): Pt(T ) →→ I2At(T )/I2

2At(T ) can be lifted
to a surjection -̃2: Pt(T ) →→ I2At(T ).

Recall that we have a surjection )2: Pt [T ] →→ It which is a lift of φ⊗At [T ].
Moreover, we also have surjections )′: P [T ] →→ I ∩ I1, -: P [T ] →→ I1 ∩ I2,
where I1 and I2 are ideals of A[T ] of height n and an automorphism '0 of P [T ]
such that

(1) )′ ⊗A[T ]/I = φ.
(2) I1 + (J 2T s) = A[T ], where J = I ∩ A ⊂ J (A).
(3) I1 + I2 = A[T ].
(4) sN )′ ⊗A[T ]/I1 = -'−1

0 ⊗A[T ]/I1, where N is an even integer.

Let R1 = At(T ). Then, by (3.7), there exists a surjection �1: P [T ] ⊗R1 →→
I1R1 such that �1 ⊗R1/I1R1 = )′ ⊗R1/I1R1. Since P [T ] = Q[T ] ⊕A[T ]2 and
Q[T ]/I1Q[T ] is free, by (3.4), there exists a surjection �2: P [T ] ⊗R1 →→ I1R1

such that �2 ⊗R1/I1R1 = sN )′ ⊗R1/I1R1 = -'−1
0 ⊗R1/I1R1. Since '0 is an

automorphism of P [T ], there exists a surjection �3: P [T ] ⊗R1 →→ I1R1 such
that �3 ⊗R1/I1R1 = -⊗R1/I1R1. Therefore, by (3.7), there exists a surjection
-̃2: P [T ] ⊗R1 →→ I2R1 such that -̃2 ⊗R1/I2R1 = λ2 ⊗R1.

Thus the proof of the theorem is complete. �
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5. Some Auxiliary Results

In this section we prove two results. Though these results do not have any direct
bearing on the main theorem (proved in the last section), we think that they are
interesting offshoots of (4.5) and (3.7) and are of independent interest.

First result gives a partial answer to the following question of Roitman:

QUESTION. Let A be a ring and let P be a projective A[T ]-module such that
Pf (T ) has a unimodular element for some monic polynomial f (T ). Then, does P
have a unimodular element?

Roitman in ([18], Lemma 10) answered this question affirmatively in the case
A is local. If rank P > dimA, then, by ([16], Theorem 2), P has a unimodular
element. In ([6], Theorem 3.4) an affirmative answer is given to the above question
in the case rank P = dimA under the additional assumption that A contains an
infinite field. In this section we settle the case (affirmatively): P is extended from
A, rank P � (dimA+ 3)/2 and A contains an infinite field.

For the proof we need the following two lemmas which are proved in ([6],
Lemma 3.1 and Lemma 3.2 respectively).

LEMMA 5.1. LetA be a ring containing an infinite field k and let P̃ be a projective
A[T ]-module of rank n. Suppose P̃f (T ) has a unimodular element for some monic
polynomial f (T ) ∈ A[T ]. Then, there exists a surjection from P̃ to I , where I ⊂
A[T ] is an ideal of height � n containing a monic polynomial.

LEMMA 5.2. Let R be a ring and Q a projective R-module. Let (α(T ), f (T )):
Q[T ] ⊕R[T ] →→ R[T ] be a surjective map with f (T ) monic. Let pr2:
Q[T ] ⊕R[T ] →→ R[T ] be the projection onto the second factor. Then, there
exists an automorphism σ (T ) of Q[T ] ⊕R[T ] which is isotopic to identity and
pr2 σ (T ) = (α(T ), f (T )).

THEOREM 5.3. Let A be a ring of dimension d containing an infinite field k and
let P̃ be a projective A[T ]-module of rank n which is extended from A, where
2n� d + 3. Suppose P̃f (T ) has a unimodular element for some monic polynomial
f (T ) ∈ A[T ]. Then P̃ has a unimodular element.

Proof. By (5.1), we get a surjection �: P̃ →→ I , where I is an ideal of height
� n containing a monic polynomial. If ht I > n, then I = A[T ] and, hence, P̃ has
a unimodular element. Hence, we assume that ht I = n.

Since P̃ is extended from A, we write P̃ = P [T ], where P is a projective A-
module of rank n. Then � induces a surjection φ: P [T ] →→ I/(I 2T ) which in its
turn induces a surjection �(0): P →→ I (0).

Let J = A∩ I . Since rank P > dimA/J , P1+J has a free direct summand. Let
P1+J = Q⊕A1+J . Then by (4.5), there exists a surjection

�(= (ψ, h(T ))): P1+J [T ](= Q[T ] ⊕A1+J [T ]) →→ I1+J
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such that � is a lift of φ⊗A1+J [T ] and h(T ) is a monic polynomial. Hence
�(0)⊗A1+J = �(0).

It is easy to see that there exists a ∈ J such that if b = 1 + a, then there
exists a projective Ab-module Q1 with the properties (i) Q1 ⊗A1+J = Q,
(ii) Pb = Q1 ⊕Ab, (iii) �: Pb[T ] →→ IAb[T ] and (iv) �(0)b = �(0). Let pr2:
Q1[T ] ⊕Ab[T ] →→ Ab[T ] be the surjection defined by pr2(q, x) = x for q ∈
Q1[T ] and x ∈ Ab[T ].

Since a ∈ J , I (0)a = Aa and, hence, �(0)a is a surjection from Pa[T ] to
Aa[T ]. Since �a = (ψ, h(T ))a is a unimodular element of Pab[T ]∗ with h(T )

monic, by (5.2), unimodular elements (pr2)a and �a of Pab[T ]∗ are isotopically
connected. Moreover, since h(T ) is monic, kernel of �a is a projective Aab[T ]-
module which is extended. Therefore, it is easy to see that there exists an auto-
morphism 6 of Pab[T ] such that 6(0) is identity automorphism of Pab and �a6 =
�(0)a ⊗Aab[T ] = �(0)ab ⊗Aab[T ]. Hence �a and �(0)ab ⊗Aab[T ] are iso-
topically connected. Thus, unimodular elements (pr2)a and �(0)ab ⊗Aab[T ] are
isotopically connected. Therefore, there exists an automorphism ) of Pab[T ] such
that ) is isotopic to identity and �(0)⊗Aab[T ] ) = (pr2)a.

Applying (2.5), we get ) = E′
b Ea , where E is an Ab[T ]-automorphism of

Pb[T ] and E′ is an Aa[T ]-automorphism of Pa[T ]. Hence, we have surjections
'1 = pr2 E

−1: Pb[T ] →→ Ab[T ] and '2 = �(0)⊗Aa[T ] E′: Pa[T ] →→
Aa[T ] such that ('1)a = ('2)b. Therefore, they patch up to yield a surjection
': P [T ] →→ A[T ]. Hence, P̃ = P [T ] has a unimodular element. This proves the
result. �
COROLLARY 5.4. Let A be a regular ring of dimension d containing an infi-
nite field k and let P̃ be a projective A[T ]-module of rank n, where 2n�
d+3. Suppose P̃f (T ) has a unimodular element for some monic polynomial f (T ) ∈
A[T ]. Then P̃ has a unimodular element.

Now we prove our second result which is a complement of the ‘subtraction
principle’ (3.7) and is labeled as the ‘addition principle’. For this result we need
the following lemma which is proved in ([5], Corollary 2.14) for n = d and in ([7],
Corollary 2.4) in the case P is free. Since the proof is quite similar to the free case,
we omit it.

LEMMA 5.5. LetA be a ring of dimension d and let P be a projective A-module of
rank n, where 2n� d+1. Let J ⊂ A be an ideal of height n and let φ: P/JP →→
J/J 2 be a surjection. Then, there exists an ideal J ′ ⊂ A of height � n, comaximal
with J and a surjection �: P →→ J ∩ J ′ such that �⊗A/J = φ. Further, given
finitely many ideals J1, . . . , Jr of height n, J ′ can be chosen to be comaximal with
∩r

1Ji .

THEOREM 5.6 (Addition Principle). Let A be a noetherian ring of dimension
d. Let J1, J2 ⊂ A be two comaximal ideals of height n, where 2n� d + 3. Let
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P = Q⊕A be a projective A-module of rank n. Let �: P →→ J1 and �: P →→
J2 be two surjections. Then, there exists a surjection 6: P →→ J1 ∩ J2 such that
�⊗A/J1 = 6⊗A/J1 and � ⊗A/J2 = 6⊗A/J2.

Proof. Let J = J1 ∩ J2. Since J/J 2 = J1/J1
2 ⊕ J2/J

2
2 , � and � induces a

surjection γ : P →→ J/J 2 such that γ ⊗A/J1 = �⊗A/J1 and γ ⊗A/J2 =
� ⊗A/J2.

Applying (5.5), we get an ideal K of height n which is comaximal with J and
a surjection ): P →→ J ∩K such that )⊗A/J = γ ⊗A/J . Hence,

)⊗A/J1 = �⊗A/J1 and )⊗A/J2 = � ⊗A/J2.

Applying (3.7) for the surjections � and ), we get a surjection -: P →→ J2∩K
such that -⊗A/(J2 ∩K) = )⊗A/(J2 ∩K). Hence, -⊗A/J2 = � ⊗A/J2.

Applying (3.7) for the surjections � and -, we get a surjection ':
P →→ K such that '⊗A/K = -⊗A/K. Since -⊗A/K = )⊗A/K, we
have '⊗A/K = )⊗A/K.

Applying (3.7) for the surjections ' and ), we get a surjection 6: P →→ J

such that 6⊗A/J = )⊗A/J . Hence, 6⊗A/J1 = �⊗A/J1 and 6⊗A/J2 =
� ⊗A/J2. This proves the result. �

In a similar manner, using (4.11), we have the following ‘addition principle’ for
polynomial algebra.

THEOREM 5.7 (Addition Principle). Let A be a regular domain of dimension d

containing an infinite field k and let n be an integer such that 2n� d + 3. Let
P = P1 ⊕A be a projective A-module of rank n and let I, I ′ ⊂ A[T ] be two
comaximal ideals of height n. Assume that we have surjections ): P [T ] →→ I

and 6: P [T ] →→ I ′. Then, we have a surjection �: P [T ] →→ I ∩ I ′ such that
� ⊗A[T ]/I = )⊗A[T ]/I and � ⊗A[T ]/I ′ = 6⊗A[T ]/I ′.
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