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Abstract

In this work we have focused on classification of in-

ferior myocardial infarction (MI). We compared the best

known scoring/coding/decision systems (the Selvester QRS

score, the Novacode, and the Siemens 440/740) and sev-

eral learning algorithms (Ripper, C4.5, and SVM). The de-

cision systems were developed with different purposes (the

Selvester for estimation of MI size, the Novacode for clin-

ical and epidemiologic studies, and the Siemens for ECG

device Siemens 440/740). In this work we combined these

systems with additional simple rules and compared perfor-

mance to: (i) decision systems alone, (ii) base classifiers

(Ripper, C4.5, and SVM). Our database consisted of 2596

ECG records annotated by experienced cardiologist.

Among decision systems the Selvester and the Siemens

had F-measure 54% and 51%, respectively. Meaning that

about 50% of MI’s were correctly classified. Even lower F-

measure of 39% was obtained by Novacode. Better results

were achieved using rule miner Ripper with F-measure of

68%, however, due to a number of rules created, the re-

sulting model was hard to interpret. Last, combination

of decision systems with additional simple rules created

by AdaBoost yielded the best performance with F-measure

71%, sensitivity (Se) 78%, and specificity (Sp) 95%.

1. Introduction

Coronary artery disease, the number one killer in the

developed world, is a heart disease when coronary arter-

ies are either partially occluded, resulting to myocardial

ischemia, or totally occluded resulting to myocardial in-

farction (MI). MI could be a minor event, perhaps not even

recognized, or it may be a major attack with results vary-

ing from acute pains, hemodynamic deterioration to sud-

den death. MI can be revealed by a number of different

signs, including biochemical markers, imaging or patho-

logical characteristics, but the most important initial clini-

cal test for MI diagnosis still remains ECG.

Decision rules are used to assess morphological changes

at ECG caused by myocardial ischemia and infarction

(ST-T changes for acute state, Q and T wave changes

for an infarcted myocardium). Rules were suggested

by cardiologists and originated from theoretical founda-

tions and experience. It were adopted later into comput-

erized scoring/coding/decision systems (hereinafter com-

monly referred as decision systems); the best known are:

the Selvester score, the Novacode, and Siemens 440/740.

To the best of our knowledge, there have been two pa-

pers that compared performance of decision system. First

Pahlm et.al. [1] compared performance of the Selvester,

the Novacode, and the Cardiac Injury Score regarding to

accuracy of MI size estimation. Second, more recent pa-

per [2], compared the Novacode and the Minnesota code in

large epidemiologic study. In this work we focus on com-

parison of three decision systems, which were developed

for different purposes, with respect to cardiologists anno-

tation and, furthermore, we attempted to combine the de-

cision systems together with simple rules, created by Ad-

aBoost, to improve the accuracy of MI detection.

2. Methods

2.1. Experimental data

The database of 12-lead resting ECG was provided by

Medical Technologies CZ a. s. It contained 6332 records

collected during 2004 – 2007 using ECG device 12BTL-

08 LC EKG, BTL, Czech Republic, sampling frequency

500 Hz, resolution 3.9 µV for the least significant bit. The

interpretation of ECG was performed by experienced car-

diologist; 2333 records were assessed as normal; the rest

was abnormal. Inferior MI was present in 510 cases.

2.1.1. Data preprocessing

The initial database of 6332 ECG’s, we removed 502

records that were unsuitable for diagnostics e. g. ECG

was corrupted by noise, ECG was out of physiological

limits, or leads were swapped. Furthermore, since we fo-

cused on classification accuracy of decision systems, we
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removed confounding diagnoses such as various types of

blocks, ventricles hypertrophy, WPW syndrome, or MI lo-

cated elsewhere with exception of multiple MI. The rea-

son was to eliminate possible sources of error and not to

bewilder decision systems by other pathologies. The final

dataset consisted of {nnormal = 2333; nMI = 263}.

2.1.2. Morphological features

The morphological features of ECG were extracted from

averaged beats computed from 10 seconds of 12-lead rest

ECG; premature ventricular beats were not included into

averaged beat. Features described important waves and in-

tervals used for diagnostics of MI; the list of 12 features

for each lead was as follows (amplitudes (amp) in [µV], du-

rations (dur) in [ms]): Qamp, Qdur, Qpos, Ramp, R’amp, R”amp,

Rdur, Samp, Sdur, QRSamp, Ramp/Qampratio, Ramp/Sampratio.

Note that when Q wave was not present the ratio was sub-

stituted by Ramp.

2.2. Decision systems

The decision systems are described with respect to infe-

rior MI. The adjustment of (codes selection for Siemens;

score estimation for Selvester) was made in order to obtain

best results on the training/testing set where performance

was estimated by 10-fold cross-validation (CV).

Selvester QRS score The Selvester QRS scoring sys-

tem [3, 4] was derived from computer simulation. Overall

score is computed from decision table including 50 rules;

summation of individual points is multiplied by three giv-

ing percentage of injured left ventricle. We used only

scores for inferior leads; score exceeding 1 point was con-

sidered as indication of MI.

Novacode The Novacode [5] is successor of Minnesota

code [6]. The score system uses different thresholds to

quantify severity of an event, though we used it in a di-

chotomous manner. Codes 5.1. – 5.4. asses Q wave MI

and were used for prediction of myocardial injury.

Siemens 440/740 The Siemens 440/740 [7] was used

for ECG interpretation in Siemens 400/700 series. Codes

used: 1(a), 7(a), and 8(a), section A2.1.8.1. [7].

2.3. Feature selection and classification

Each of inferior lead (II, III, and aVF) was described

by 12 features as listed above. In total we had 36 features

plus one reference class. The feature set distribution was

skewed towards normal class and some classifiers tends to

favor this class because of high prior probability. In order

to avoid this behavior, we balanced training set using Syn-

thetic Majority Over Sampling Technique (SMOTE) [8],

number of nearest neighbors used: k = 5. We performed

feature selection using filter method Correlation Feature

Selection (CFS) [9]. This method selects features that

are in strong relationship with a class while having low

inter-correlation. Selected features were used for training

classifiers Ripper [10], C4.5 [11], and Support Vector Ma-

chine [12] (polynomial kernel, C = 1).

2.3.1. AdaBoost learning

The reason of using AdaBoost [13] was to learn a sim-

ple classifiers that were different from the original decision

systems. The diversity of weak classifiers is corner stone of

AdaBoost. As the weak classifier we used a simple thresh-

olding (e.g. we searched a best threshold for Qdurfrom

min(Qdur) to max(Qdur)). Instead of minimization of clas-

sification error we minimized Fβ-measure. The parameter

β weights importance between precision and recall – vari-

ation of β leads to different rules to be chosen; β ∈ 〈0, 1)
recall is preferred; β ∈ (1, 2〉 precision is preferred. Three

classifiers were learned – specific (cAdaSpec with β < 1),

balanced (cAdaB, β = 1), and sensitive (cAdaSens, β >

1). Then, rules were extrapolated in the way that a rule

should be fulfilled at least for two inferior leads. Resulting

classification H ∈ {1,−1} for a record x was estimated

as H(x) = sign(
∑T

t=1
αtI[single rule(x)]), where T is

number of rules, α is weighting factor, and I[] is statement

that equals 1 when a single rule, e.g. Qdur < 40, is satis-

fied otherwise results in -1.

Figure 1. Learning and validation – cAdaSens, cAdaB,

and cAdaSpec are (sensitive, balanced, and specific) rules

created by AdaBoost algorithm.

Stopping criteria for AdaBoost learning were empir-

ically estimated on progression curves of recall, preci-

sion, and F-measure (computed on training/testing dataset

by 10-fold CV). The new, simple, classifiers were then

stacked together with existing decision systems using de-

cision tree C4.5 and rules miner Ripper. Resulting model

was compared to the base classifiers (Ripper, C4.5, SVM).
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The 5-fold cross-validation approach was used for data di-

vision into training, testing, and validation sets. The results

on validation set were averaged thus giving overall perfor-

mance, see Figure 1 for details of the overall setup.

3. Results

First, we tested performance of decision systems (the

Selvester score, the Novacode, the Siemens 440/740); re-

sults are shown in Table 1. With respect to F-measure

the Siemens and the Selvester achieved above 50%. The

Siemens had also good sensitivity of 63% but lower preci-

sion than the other two.

Second, we constructed classifiers using learning al-

gorithms Ripper, C4.5, and SVM for selected features

by CFS method: {Rdur(II), R”amp(II), Qamp(III), Rdur(III),

R’amp(III), Qamp(aVF), Qdur(aVF), R’amp(aVF)}; results

are present in Table 2. Best performance was achieved by

Ripper with Se/Sp 82/93% and F-measure of 68%.

Third, we constructed new classifiers with AdaBoost

taking single rules as weak learner. Stopping crite-

ria were experimentally estimated; when either precision

(cAdaSens) or recall (cAdaSpec) dropped markedly the

learning was stopped. The progression of precision, recall,

and F-measure for cAdaSens and cAdaSpec are shown in

Figure 2. Stopping criteria: cAdaSens 4th, cAdaSpec 5th,

and cAdaB 1th iteration. Individual classifiers consisted of

following rules:

• cAdaSens: H = sign(0.22 · I[Ramp/Qamp < 46] + 0.3 ·

I[Ramp/Qamp < 228] + 0.18 · I[Qamp < − 100] + 0.37 ·

I[Ramp/Qamp < 80]).

• cAdaB: H = sign(1.25 · I[Ramp/Qamp < 4.9]).

• cAdaSpec: H = sign(1.1 · I[Qamp < − 269] + 0.58 ·

I[Qdur ≥ 24] + 0.07 · I[Ramp/Qamp < 6.7] + 0.1 ·

I[Ramp/Qamp < 8.7]) + 0.57 · I[Ramp/Qamp < 4.9]).

(a) (b)

Figure 2. Estimation of stopping criteria on trn (training)

set in blue and tst (testing) set in red. (a) cAdaSens: stop-

ping at 4th iter., (b) cAdaSpec: stopping at 5th iter.

Table 3 shows results of stacked generalization model

(SG) that combines decision systems with AdaBoost clas-

sifiers. SG model created by Ripper yielded better perfor-

mance in both cases (i) than using decision systems alone

and (ii) in comparison with Ripper, C4.5, and SVM. The

created models were decision tree (C4.5) and rules (Rip-

per) shown in Figure 3.

Table 1. Classification performance of decision systems.

All in [%] Selvester Novacode Siemens

sensitivity 51 28 63

specificity 95 98 91

precision 58 63 43

F-measure 54 39 51

Table 2. Performance of Ripper, C4.5, and SVM on the

validation set; estimated by 5-fold cross-validation.

All in [%] Ripper C4.5 SVM

sensitivity 82 78 86

specificity 93 93 86

precision 58 57 41

F-measure 68 66 56

Table 3. Performance of stacked generalization (SG) mod-

els of decision system and AdaBoost rules; estimated by

5-fold cross-validation.

All in [%] SG model C4.5 SG model Ripper

sensitivity 63 78

specificity 97 95

precision 68 66

F-measure 65 71

normal

cAdaB

cAdaSpec

Siemens

MI

normal

normal

MI

MI

(a)

if cAdaB = MI & Siemens = MI  then 

  class=MI

if cAdaB = MI & Selvester = MI then

  class=MI

else 

  class=normal

(b)

Figure 3. Stacked generalization model. (a) decision tree

(C4.5), (b) rules (Ripper). Bars in the tree’s leaves and

rules show estimate of accuracy of MI prediction (blue –

normal; red – MI)

4. Discussion and conclusions

First, we tested performance of decision systems; re-

garding overall assessment using F-measure the Selvester

QRS score and the Siemens had F-measure of 54% and

51%, respectively. It means that the number of correctly
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classified MI’s was almost the same as the number of false

positive and false negative examples. The Novacode had

even worse F-measure of 31%, though better results of

the Novacode’s ancestor (Minnesota code) were published

by [14]. They reported Se/Sp of 62/88% which contradicts

our results of 28/98%. The Selvester score was designed

to have specificity of 95% [4] and although we lowered

points indicating MI the high specificity was maintained

with even better sensitivity of 51% than the published 41%

by Haisty et. al. [15]. Haisty et. al. also suggested that the

Selvester code needs further improvements. The improve-

ments were tackled by [16] and resulted in addition of new

rules to existing ones, however, in our case, by modifi-

cation according to [16] we did not obtain better results.

Therefore we created new rules using AdaBoost and com-

bined them with existing decision systems. This combi-

nation yielded to the best performance with Se/Sp 78/95%

and F-measure 71%. The created model was cAdaB in

combination with Siemens and Selvester.

For comparison, among base classifiers the rule miner

Ripper algorithm had Se/Sp 82/93%, and 68% F-measure.

However, the Ripper created a very complex rules even

though we used only control and MI records for learning.

It is likely that rather than modeling distribution of popu-

lation the Ripper modeled available data.

One import question should be consider in the future

work – will the stacked generalization model (rules in-

corporating cAdaB, Siemens, and Selvester) perform well

even when confounding diagnoses will be included?
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