
Computer Physics Communications 147 (2002) 711–715

www.elsevier.com/locate/cpc

On the parallelization of molecular dynamics codes✩

G.P. Trabado∗, O. Plata, E.L. Zapata

Department Computer Architecture, University of Málaga, E-29071 Málaga, Spain

Abstract

Molecular dynamics (MD) codes present a high degree of spatial data locality and a significant amount of independent
computations. However, most of the parallelization strategies are usually based on the manual transformation of sequential
programs either by completely rewriting the code with message passing routines or using specific libraries intended for writing
new MD programs. In this paper we propose a new library-based approach (DDLY) which supports parallelization of existing
short-range MD sequential codes. The novelty of this approach is that it can directly handle the distribution of common data
structures used in MD codes to represent data (arrays, Verlet lists, link cells), using domain decomposition. Thus, the insertion
of run-time support for distribution and communication in a MD program does not imply significant changes to its structure.
The method is simple, efficient and portable. It may be also used to extend existing parallel programming languages, such as
HPF. 2002 Elsevier Science B.V. All rights reserved.

PACS: 02.70.Ns; 07.05.Tp; 31.15.Qg

Keywords: Molecular dynamics; Short range; Parallel computers; Runtime system; Hierarchical domain decomposition

1. Introduction

Codes simulating large particle systems, specially
those using short-range molecular dynamics (MD)
techniques, present a high degree of spatial data lo-
cality and a significant amount of independent com-
putations. The parallelism of these codes is mainly in
the computationally intensive force evaluation, with a
cost in the orderO(N2) (N is the number of particles
in the system), assuming short-range particle interac-
tions. However, the most efficient parallel MD codes
described in the literature [2,6] are based on manual

✩ This work was supported by the Ministry of Education and
Culture (CICYT), Spain, through grant TIC2000-1658.

* Corresponding author.
E-mail addresses: guille@ac.uma.es (G.P. Trabado),

oscar@ac.uma.es (O. Plata), ezapata@ac.uma.es (E.L. Zapata).

restructuring of sequential programs and the introduc-
tion of communications specific for the problem struc-
ture. The main reason lies in the high computational
complexity of this problem, which makes it very dif-
ficult for a compiler to automatically exploit the in-
herent parallelism or for a parallel language to ex-
press it to its full extent. This complexity is mainly
due to several factors: the use of the cell index and the
Verlet neighbor list book-keeping optimization tech-
niques [1] to speed up the search for interacting parti-
cles; the possible non-uniform distribution of particles
in the domain (this may introduce workload balancing
problems); and the dynamic evolution of the system,
with the corresponding migration of particles across
the domain.

With all these difficulties MD has turned into a
very interesting problem for the parallel computing

0010-4655/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(02)00381-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357247169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


712 G.P. Trabado et al. / Computer Physics Communications 147 (2002) 711–715

community. Different parallelization alternatives have
been devised during the last years. We may classify
them into four categories:

– Manual: The complexity of MD programs has
caused that many of the existing high-quality par-
allel codes have been developed manually (ex-
plicit problem partitioning with message passing
primitives, mainly). However, manual code re-
structuring usually requires tedious and complex
analysis and full rewriting of the program (some
data structures may be cleanly partitioned but oth-
ers not). This fact turns manual parallelization into
a very hard programming exercise.

– Automatic: This is an alternative to avoid the te-
dious task of manual restructuring. In the case of
irregular codes current technology produces par-
tially parallelized codes based on the inspector-
executor model [5]. The main drawback, however,
is that an automatic parallelizer can only exploit
program parallelism, that is, the parallelism avail-
able at the programming language level. How-
ever, important properties, such as the short-range
nature of particle interactions, are not usually
achievable at the above level (using conventional
languages). This property, however, is very impor-
tant in order to obtain a high-quality parallel code.

– Language-based: Language-based parallelization
consists in extending a conventional language
with new parallel syntactic/semantic constructs.
The aim is to allow the programmer to express
problem properties at the language level. This way
the compiler has the opportunity to generate a
better parallel code. Important progress has been
made in, for instance, HPF [3,8]. However, this
approach is currently at the research stage, due in
part to severe difficulties in compiler analysis and
implementation.

– Library-based: Another approach consists in the
design of specific libraries intended for solving
data distribution and communication. These two
issues usually correspond to the most tedious
and error-prone tasks while writing parallel MD
programs. Some solutions have been proposed in
the literature [4,7]. However, they require major
recoding work when used to parallelize existing
MD codes, very often because the library only

supports some particular format for program data
intended for quick development of a new code.

In this paper we propose a library-based approach,
known asData Distribution Layer (DDLY), which
reduces manual intervention in the parallelization
of existing short-range MD sequential codes. Our
approach takes advantage of the knowledge about the
problem nature to reduce the parallelization effort
by minimizing changes to the original sequential
program [9]. The novelty of this approach is that the
distribution and communication support can handle
“as-is” common data structures used in MD codes to
represent data (particle arrays, Verlet lists, link cells).

The method requires only a quick analysis of the se-
quential MD code, introduces minor rewrites to obtain
the parallel version, generates efficient parallel codes
(performance similar to using fully manual restructur-
ing), is portable and existing parallel languages can be
extended to use it (extensions to HPF have been pro-
posed [8]).

2. Parallelization of MD codes with DDLY

The principal goal of our method is to preserve as
much as possible the original code of MD algorithms.
The analysis of different data representations used in
a representative subset of MD codes ([1,6] and the
Perfect Benchmarks) shows that there are some facts
common to all of them:

– Positions and other properties are stored in one
multicolumn or several single-column arrays.

– Specific indices are not relevant for MD calcula-
tion (except for some special cases in which parti-
cle tracking is needed).

– Short-range MD is usually optimized using Verlet
lists (nearest neighbor lists). Usual representation
is an array of integer indices.

– Link cells are usually introduced to speed up
nearest neighbor calculation.

From this remarks we observed the convenience of de-
signing a run-time support which accepted to manage
those sets of arrays previously identified as playing
a specific role in the program. The resulting parallel
code should use the same data structures. Due to ir-



G.P. Trabado et al. / Computer Physics Communications 147 (2002) 711–715 713

Fig. 1. Memory model. Nodes only store elements assigned by do-
main decomposition. Elements received from neighbor subdomains
are copied after local ones.

relevance of indices in computations, the use of local
indices is possible without a global-to-local transla-
tion mechanism. Another advantage of code structure
is that communication can be hidden by mixing local
and received elements (Fig. 1) in the same data struc-
tures so that processing of non-local elements is ho-
mogeneous.

On the other hand, domain decomposition has
proved to be an efficient technique for the paralleliza-
tion of short-range MD problems. Each partition con-
tains data which is most likely to interact. However,
some well-known difficulties exist:

– Computation of subdomain boundaries and over-
laps should be efficient.

– The representation of the decomposition should
be compact and allow irregular partitions for load-
balancing purposes.

– Interaction across subdomain boundaries requires
communication of particles on the surrounds of a
partition (calledoverlay area).

The use of link cells is fundamental to solve such
problems. Fig. 2 shows how the link cell is used to
compute a domain decomposition with a balanced
number of particles. The resulting decomposition can
be expressed in terms of the starting indices of each
piece of theT , T1 andT2 vectors ({1,4} for the first
dimension and{1,4}, {1,3} for the second). Those
indices describe the hierarchical decomposition in
terms of indices in the link cell.T = {1,4} means that
they dimension is split in two subdomains containing
cell rows 1 to 3 and 4 to 6.

Fig. 2. 2D Hierarchical domain decomposition using alink cell.
Left: The array shows the particle count for each cell. Center: Cells
are added by rows into vectorT , which is split keeping the number
of particles balanced. Right: Each subdomain is split again by the
next dimension.

The link-cell structure is also very useful to com-
pute the communication schedules for overlay areas,
and to detect when a particle enters a new subdomain
and its ownership must be changed.

2.1. The DDLY support

The only object that the DDLY library introduces is
theDDLY descriptor, which is a data structure which
internally stores control data needed by the run-time
support. A subset of the DDLY support isdeclarative
functions, which are intended to describe the role of
the main data structures of the MD code. The usual
way of doing this is creating a descriptor for each
data structure and then using a DDLY function to
describe attributes of the data structure such as size.
The descriptor is nowassociated to the data structure.
After this point, the DDLY library is responsible for
distribution and communication of the contents of the
structure between the different processes.

With this method, the programmer may identify
particle lists (coordinates arrays) and link cells from
the MD code. Any other values associated with parti-
cles can be distributed throughalignment operations,
which are also declarative functions of DDLY.

DDLY has also a set of distribution and communi-
cation functions which can be invoked on the descrip-
tors. For example, the domain decomposition shown
in Fig. 2 can be performed by inserting a call to the
DDLY_DISTRIBUTE function on the descriptor asso-
ciated to the link cell.

In summary, the way of parallelizing a MD code
with DDLY is the following. The programmer ana-
lyzes the code and identifies the data arrays represent-
ing particles, link cells, Verlet lists, etc. Calls to DDLY



714 G.P. Trabado et al. / Computer Physics Communications 147 (2002) 711–715

Table 1
Wall-clock time spent during parallel MD execution for Cray T3E. Left figure: 160 K part. Right
figure: 640 K part

nPE Simul. Dist. Update Migr.

1 637.18 0.17 0.33 0.81
2 310.71 0.34 2.48 7.45
4 163.25 0.32 3.27 3.82
8 85.65 319.69 0.32 1.57 3.22 4.65 2.18 7.19

16 46.26 166.36 0.38 1.20 2.93 6.87 1.41 3.95
32 26.42 87.87 0.58 1.72 2.62 3.59 1.90 2.32
64 15.77 47.91 1.91 2.84 3.00 2.91 0.83 1.50

are introduced to declare descriptors and to associate
each structure to its own descriptor.

Later in the program, calls to functions are intro-
duced to request domain decomposition and array dis-
tribution. Other changes to the rest of the MD code
which will execute on local data are the introduction
of calls to communicate overlays every time step and
the substitution of original number of elements in data
structures for the number of those assigned to each
process (obtained also from call to DDLY).

3. Results and conclusions

This section shows the results of tests with a 2D
short-range MD code which models atom interactions
with a Lennard–Jones potential, truncating force com-
putations at a distancerc = 2.5σ . A link cell provides
cell decomposition with a cell size of 2.9σ and peri-
odic boundary conditions. A Verlet list is used with
updates every 10 time steps.

Table 1 shows detailed timing results forN =
160,000 andN = 640,000. ColumnSimul is the wall-
clock time taken by the MD computation (including
communications). ColumnDist depicts the time spent
by initial domain decomposition and array distribu-
tion. ColumnUpdate is the total time spent on com-
puting communication schedules and exchanging data
on overlay areas.Migr shows the time spent for mi-
gration (inspection of border cells and data exchange).
The results show a clear tendency: the synchroniza-
tion overhead (particle replication and migration) de-
creases as the number of processors increase. The sim-
ulation time scales nearly as O(N/P). Fig. 3 depicts
resulting speedups for sets from 40,000 up to 640,000
particles. Speedup gets closer to ideal as predicted for

Fig. 3. Speedup of 2D short-range MD simulation tested on the
Cray T3E for three different particle sets.

domain decomposition methods. These results can be
extrapolated to 3D simulations as the method only dif-
fers in the number of cells to be examined and ex-
changed between processors.

The major motivations of this work are achieving
easy parallelization of existing sequential short-range
MD codes and yielding efficient execution speedups
similar to those of manually parallelized MD codes
using domain decomposition. Also, portability is en-
forced as DDLY is based on PVM and MPI libraries
as MP standard. The process of manual parallelization
has been greatly simplified, although it is already in-
teresting to design extensions for languages like HPF
for automatic parallelization at compilation time.

References

[1] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids,
Clarendon, Oxford, 1987.



G.P. Trabado et al. / Computer Physics Communications 147 (2002) 711–715 715

[2] D.M. Beazley, P.S. Lomdahl, N. Grønbech-Jensen, R. Giles,
P. Tamayo, World Scientific’s Ann. Rev., in: D. Stauffer (Ed.),
Computat. Phys., Vol. 3, World Scientific, 1996, p. 119.

[3] P. Mehrotra, J.V. Rosendale, H. Zima, J. Par. Comput. 24 (1998)
325.

[4] R. Ponnusamy, J. Saltz, A manual for the CHAOS runtime
library, Tech. Rep., UMIACS, University of Maryland, 1994.

[5] R. Ponnusamy, J. Saltz, A. Choudhary, S. Hwang, G. Foz, IEEE
Trans. Par. Distr. Syst. 6 (1995) 815.

[6] S. Plimpton, J. Comp. Phys. 117 (1995) 1.
[7] S.G. Srinivasam, I. Ashok, H. Jônsson, G. Kalonji, J. Zahorjan,

Comput. Phys. Commun. 102 (1997) 28.
[8] E.L. Zapata, O. Plata, R. Asenjo, G.P. Trabado, J. Par. Com-

put. 25 (1999) 1971.
[9] G.P. Trabado, E.L. Zapata, in: Proc. of the LCPC’97, Lecture

Notes in Comput. Sci., Vol. 1366, Springer-Verlag, Germany,
1997, p. 218.


