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An explicit approach has been developed for use in modelling closed pipes in water distribution 
networks. The explicit approach is able to directly incorporate the zero-flow effect of closed pipes into 
the overall network modelling process. The resulting method is based on an analytical reformulation of 
the quasilinear set offlow continuity and energy equations governing the network hydraulics in terms of 
energy displacement for the individual closed pipes that exactly meet the corresponding zero-flow 
boundary constraint imposed. The proposed algorithm is shown to be robust and efficient, and is 
guaranteed to converge in an expeditious manner. The method compares favorably with others by 
eliminating numerical diffusion and computational instability or repetitive network topology alterations 
suffered by the previous procedures. An example application is presented. Enhancement of mathemati- 
cal modelling of water distribution networks is a principal benefit of this methodology. 
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Introduction 

Improving water distribution system operation, capa- 
bility, and performance has always been and continues 
to be a major challenge for many practicing engineers. 
Meeting this challenge requires a comprehensive net- 
work modelling capability that ensures an adequate 
level of service throughout the distribution system for 
a range of network loading and operational conditions. 
This includes meeting the residential, commercial, in- 
dustrial, and emergency (e.g., fire flow) demand re- 
quirements reliably, maintaining flow velocities and 
service system pressures within specified limits of op- 
eration, and managing storage to balance the supply 
and distribution. During the past few decades, highly 
sophisticated computer-based models have emerged 
for use in modelling water distribution systems.‘-22 
These models can be used to predict flows and pres- 
sures (residual heads) in response to a specified set of 
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stationary or time-varying boundary (loading and oper- 
ating) conditions. However, simulating closed pipes in 
distribution systems requires special handling proce- 
dures for satisfying the corresponding zero-flow 
boundary constraint added. 

The open-closed status of pipes in water distribution 
systems can be controlled by several means: static 
valves (e.g., circular and square gate valves, globe 
valves, needle valves, ball valves, butterfly valves) 
fully opened or closed; dynamic valves (e.g., pressure- 
reducing valves, back pressure valves, check valves) 
closing under reverse flow condition; altitude valves 
closing pipes leading to storage tanks when the water 
surface levels exceed the tanks upper or lower limits of 
operation; pressure switches bringing booster pumps 
on or off line when the pressures at designated loca- 
tions drop below or rise above specified values, re- 
spectively; multiple supply sources going on-off line; 
and daily pump scheduling policy are only a few exam- 
ples. 

Closed pipes should have exactly zero flow through 
them. In modelling, this boundary constraint may nor- 
mally be enforced by setting the pipe resistances high 
(e.g., hypothetically small-diameter pipes). Although 
such an approach is straightforward in application, the 
method may lead not only to ill-conditioned matrices 
with a high level of instability but may also result in an 
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erroneous solution for the energy displacements across 
the closed pipes. One way to circumvent this problem 
is to use a more rigorous graph-theoretical approach. 
In this case, all closed pipes encountered are removed 
from the distribution system, and the network struc- 
ture and associated hydraulic equations are redefined. 
However, such an approach tends to be computa- 
tionally complex especially when analyzing large net- 
works under time-varying conditions with a number of 
pipes exhibiting repetitive changes as to their open- 
closed switching status. Such a complexity increases 
for network reliability considerations (as a function of 
hydraulic failures) pertaining to its ability to sustain the 
failure of any single component in the system (e.g., a 
pump, a pipe, a valve) under various demand-loading 
scenarios. As a result, a robust and efficient, yet nu- 
merically explicit, method is highly desirable. 

pseudocircuit. A fundamental circuit is a closed se- 
quence of connected edges that uniquely contains ex- 
actly one edge that no other circuit possesses. A 
pseudocircuit is a simple path of connected edges be- 
tween the datum node and any other fixed-grade node. 
A simple path is a path in which no node is traversed 
more than once. A detailed description of various algo- 
rithms for the construction of these circuits has been 
provided previously. 23 For a connected graph contain- 
ing e edges, n junction nodes, and s fixed-grade nodes, 
the number of pseudocircuits p is s - 1 and the number 
of fundamental circuits 1 is defined by the Euler rela- 
tion 

This paper presents an explicit approach for model- 
ling closed pipes in water distribution systems. The 
proposed approach is able to directly incorporate the 
zero-flow effects of closed pipes into the overall net- 
work modelling process without any alterations to the 
network structure. The resulting problem formulation 
is cast analytically as a boundary value problem and 
produces an exact solution for the energy displace- 
ments across the closed pipes under zero-flow condi- 
tions. The proposed method can accommodate all 
types of network configurations as long as the system 
is topologically connected. It is shown to be both ro- 
bust and efficient, and guaranteed to converge in an 
expeditious manner. Such an approach will greatly en- 
hance the reliability and computational efficiency of 
mathematical models of water distribution networks. 
The developed method is illustrated through an exam- 
ple application, 

Network definition 

A distribution network may be represented by a di- 
rected connected graph comprising a finite number of 
interconnected elements. A graph element consists of 
an oriented edge and its two distinct endpoints. Each 
edge has a defined length, diameter, roughness, and 
material. Edges may contain pumps (or any other hy- 
draulic component whose head-flow rate functional 
characteristic is known) and fittings, such as bends, 
meters, and valves, where concentrated energy dissi- 
pation occurs. The endpoints of each edge are identi- 
fied as either junction or fixed-grade nodes. A junction 
node is a point of intersecting edges and it can also be a 
point of external consumption where flow can enter or 
exit the network. A fixed-grade node is a point of 
known energy grade such as a connection to a well, a 
treatment plant, a reservoir, an elevated storage facil- 
ity, or a constant-pressure region. The network is 
rooted at any fixed-grade node, which is then referred 
to as the datum node. 

The edge-node connectivity uniquely defines the 
network topology with all independent circuits being 
identified (once a spanning tree has been determined). 
Each circuit is defined as either a fundamental or a 
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l=e-n--s+1 (1) 

Mathematical formulation 

Figure 1 shows an example network that will be used 
to illustrate the method of solution and the more gen- 
eral mathematical formulation of the problem. The 
sample network comprises six directed edges 
(e,,e,,eJ,e4,e5,e6), four junction nodes (n1,n2,n3,n4), 
one fixed-grade node (s,), and two fundamental cir- 
cuits. The fundamental circuits consist of the sequence 
of edges (e2,e6,e3) and (e4,e5,e6). There are two main 
physical laws governing the hydraulic behavior of the 
distribution network. Continuity implies that for each 
junction node we have 

f: &Qi + qi = 0; &E{-l,O,l}andj= l,..., n 
i=I 

(2) 

or in more compact form 

[N{QI + Id = GN (3) 

which asserts that at each junction node, the sum of 
inflows (A.,i = - 1) or outflows (A~,i = 1) must be zero. 
Here, Q is the edge flow rate and q is the external 
junction demand (negative if inflow). For the example 
shown in Figure 1, the continuity equations are 

-1110 0 0 Q, 
O-l 0 11 0 Q2 
0 0 O-l 1 0 Q3 
0 0 -1 0 -1 -1 Ii I Q4 

+ 11 42 = 
43 

44 

u 0 0 (4) 

0 

The balance of mechanical energy implies that along 
each fundamental or pseudocircuit, the algebraic sum 
of energy displacements must equal zero or the differ- 
ence in energy grade between the two boundary nodes, 
respectively. That is 

i=l 

andm = 1 ,...,z+s-1 (5) 
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Figure 1. Example of network. 

or in more compact form 

rw+1 + (41 = {O) (6) 
where do is zero for fundamental circuits. The energy 
displacement is considered positive (Y~,~ = 1) when the 
edge orientation goes with the circuit orientation. For 
the example network, the two fundamental circuit 
equations are 

0 1 
0 0 (7) 

Observe that there are no pseudocircuits, i.e., p = 0. 
For each edge, the energy displacement variable, 4, is 
a nonlinear characteristic function of the edge flow rate 
and is given byz4 

~=W+-1-~-rlz (+,Q-) 

where 4 is the frictional edge resistance; (T is an expo- 
nent that depends on the energy displacement expres- 
sion used, a41.8,2.0]; 6 is the minor loss resistance to 
fittings and valves; (Y is the pump cutoff head at zero 
flow condition; p and v are the regression coefficient 
and the exponent of the pump characteristic curve, 
respectively; and r) is the ratio of the pump rotational 
speed to the pump reference speed. If the Hazen- 
Williams head loss equation is used, the frictional edge 
resistance constant can be expressed as 

10.69 L 
&=- 

~“~4.87 (9) 

where L is the edge length in meters, C is the Hazen- 
Williams coefficient of roughness, D is the edge diame- 
ter in meters, and u is 1.852. 

Equations (3) and (6) can be paired to define the 
analytical flow distribution problem as 

(10) 

whose solution gives the network flow distribution 
vector {Q}. This is based on the assumption that all 

edges are open. For the example network, the set of 
equation (10) gives 

-Q,+Q,+Q,+qr=O 
-Qz+Q4+Qs+qz=O 
-Qd+Qs+q3=0 
-Q3-Qs-Q~+44=0 

&Q; - 53Q3a + &Q6a = 0 

&Q4” + &Q5” - &A?: = 0 

(11) 

The simultaneous solution of this system of quasilinear 
algebraic equations can be obtained iteratively using 
the Newton method. The iterations continue until the 
relative change in flow rates between two successive 
iterates is less than a specified tolerance. The energy 
grade at each junction node can then be computed by 
starting at the datum node and proceeding into the 
network while adding or subtracting energy grade 
changes based on the solution for edge flow 
rates. 19.22.25.26 

Mathematical model 

A model of a distribution network containing one or 
more closed edges must be capable of simulating the 
zero-flow effect associated with these edges. This 
boundary constraint can normally be enforced by set- 
ting the resistance (6 or LJ of closed edges to a very 
large number. A value of 10’ was previously sug- 
gested.27 Despite the simplicity of such an explicit yet 
approximate method, numerical difficulties such as 
computational instability are often encountered. Fur- 
thermore, erroneous solutions for the energy displace- 
ment across the closed edges may be obtained. As a 
result, care must be taken when determining the nodal 
grade distribution through the system. Specifically, 
only the open edges are considered in the procedure 
described in the previous section. One way to cir- 
cumvent these problems is to use a more rigorous 
analytical procedure. Obviously, an exact method for 
modeling closed edges is simply to remove them from 
the network graph. It is assumed that the resulting 
reduced graph remains connected. This method will be 
referred to as network reducibility. The topological 
matrices [A] and [I’] derived from the structure of the 
reduced graph can then be constructed and equation 
(10) formulated and solved accordingly. However, 
such an approach may not be computationally appeal- 
ing for network reliability issues or analyzing large 
networks under time-varying conditions with a number 
of hydraulic components exhibiting open-closed oper- 
ational oscillations. As a result, an alternative ap- 
proach is investigated. 

The objectives that guided the development of the 
proposed model are twofold. The first objective is to 
produce a model that exactly reflects the imposition of 
the zero-flow constraint associated with the closed 
edges while maintaining the network structure unal- 
tered. The second objective is to provide an explicit 
methodology with minimal computational overhead. 
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The foregoing approach permits the direct inclusion 
of closed edges into the overall modeling process with- 
out any alterations to the network structure. It is based 
on an explicit interchange of network variables. The 
method is developed by casting the quasilinear set of 
flow continuity and energy equations in terms of un- 
known energy displacement (as opposed to edge flow 
rate) for the individual closed edges that exactly meet 
the zero-flow boundary constraint imposed. In formu- 
lating the system modelling problem, a vector of en- 
ergy displacement is introduced as a decision variable 
for direct calculation. The dimension of this vector is 
the number of closed edges specified. The remaining 
unknowns represent the flow rates for the open edges. 
The null-flow boundary constraint is enforced from the 
continuity relation. Each closed edge is removed from 
continuity consideration, resulting in a column of zeros 
in [A] for that edge. It should be noted that the topolog- 
ical matrix [I] remains unchanged. The resulting 
boundary value problem is hydraulically identical to 
the exact method of network reducibility. Again, it is 
assumed that the network structure remains con- 
nected. 

For our running example, assume that edges 5 and 6 
are closed. The resulting analytical boundary value 
problem can be expressed as 

-Ql+Qz+Q~+q,=o 
-Qz+Qd+qz=O 
-Q4+t3=0 
-Q.~+_qd=o 

(12) 

5282” - 53Q3a + &S = 0 

54Q4” + Jls - J16 = 0 

whose solution gives the exact values for the flow rates 
through edges 1, 2, 3, and 4 and the energy displace- 
ments across edges 5 and 6. 

Model solvability 

Let G be a connected directed graph of the network 
with n junction nodes, s fixed-grade nodes, and e 
edges. 

Observation 1. The ranks of [A] and [r] are n and e - 
n, respectively; moreover, the e by e [M] = [I;?,‘] is 
nonsingular. For proofs of the above, the reader is 
referred to Boulos and Altman.” 

Let [Al = [[All [&II and WI = WA [r,ll, where 
[A,] and [I’,], are n by n and e - n by n matrices and 
[A,] and [I?,] are n by e - n and e - n by e - n 
matrices, respectively. Let us put the matrix [Ml into 
the following form 

where the n columns of [A,] and [I?,] correspond to the 
edges of the spanning tree over the junction nodes of G 
and the datum-to-first-junction-node edge; the e - n 
columns of [A_,] and [r2] correspond to the remaining s 
- 1 edges, i.e., the connections between junction and 
fixed-grade nodes, and the nontree edges. 

Observation 2. The first IZ rows (junction nodes) and 
columns (edges) of [M] may always be permuted so 
that [A,] is a matrix with -+ l’s on its diagonal. 

Observation 3. The remaining e - II rows and col- 
umns of [M] may always be permuted so that [r,] is a 
diagonal matrix with l’s on its diagonal. 

Proof. Starting with the fixed-grade tree edges, place 
each nonjunction tree edge associated with the ith row 
of [r,] in column n + i. 

Now, the matrix [M] has the following form 

[hl [A,,1 [hJ 
[r,,i [r,,l 

[r,,l [r,,l [r,,l I 

(14) 

where [A,,], [A,J, [A,,] represent the continuity equa- 
tions over the junction tree edges, fixed-grade tree 
edges, and nontree edges, respectively; [r,,], [r,,], 
[r,,] represent the pseudocircuits over the same edges; 
and [I,,], [r,,], [I,,] represent the fundamental cir- 
cuits. Note that [I,,] and [I,,] are zero matrices of 
dimensions (S - 1) by (e - n - s + I) and (e - n - 
s + 1) by (S - l), respectively. The matrix [A,,] has 
2 l’s on its diagonal, and [r,,] and [I?,,] are identity 
matrices of size (S - 1) and (e - n - s + l), respec- 
tively. The structure of [M] can be seen more clearly in 
Figure 2. 

Observation 4. If any column of [AI31 in [Ml is set to 
zero, the resulting matrix remains nonsingular. 

Proof. Without loss of generality, assume that the 
last column of [A,,] is set to zero; otherwise, we can 
permute the nontree edges, i.e., columns, and funda- 
mental circuits, i.e., rows of [MI, accordingly. Note 
that by Observation 1 the (e - 1) by (e - 1) matrix [M’] 
consisting of one less edge (the last column of [MI) and 
one less fundamental circuit (the last row of [Ml) is 
nonsingular. Augmenting [M’] with the last row of [Ml 
and a zero column on the right side (with a 1 in the 
corner position) is equivalent to adding one equation 
with an unknown that does not appear in any of the 
equations of [M’]. Because [M’] is nonsingular, the 
augmented matrix is nonsingular as well. 

Figure 2. Structure of the matrix [Ml. 
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From Observation 4, it follows that setting to zero 
any number of columns in [Al31 leaves the matrix 
nonsingular. In fact, the above is true if any of the 
columns (edges) from [A,,] were set to zero. Hence, 
the closing of any number of the nonjunction tree pipes 
by setting to zero the appropriate columns in [A,,] and/ 
or [A,,] does not affect the nonsingularity of [Ml. 

Now let us observe the effects of setting to zero a 
column of [A,,], that corresponds to an edge, say u, 
that is part of the junction tree. Because the new graph 
must be connected, there must exist at least one 
nontree edge, say V, in [I’,,] guaranteeing that the new 
graph is still connected. Again, w.l.g., assume that v 
corresponds to the last (rightmost) column of [Ml. Per- 
muting the rows/columns corresponding to u and I, will 
place the column corresponding to v among the junc- 
tion tree edges and make the column corresponding to 
u the rightmost column of the new [Ml. Note that such 
interchange will destroy not only the diagonal matrix 
property of [r,,], but the resulting submatrix will not 
even be triangular. In addition, the last column of [r,,] 
may no longer be zero. The new (permuted) matrix [M] 
will be denoted by [iv]. 

Observe that the rightmost entry in the last row of 
[N] is + I. Hence, through a sequence of appropriate 
algebraic operations (addition or subtraction of the last 
row) theentries(n + 1) through(e - n - 1)in thelast 
column of [N] will now be set to zero. 

Observation 5. If any column of [A,,] in the 
(nonsingular) matrix [N] is set to zero, the resulting 
matrix remains nonsingular. 

Proof. Let [N’] be an (e - I) by (e - 1) matrix 
consisting of one less edge, the last column of [N], and 
one less continuity equation, the last row of [N]. Aug- 
menting [N’] with the last row of [N] and a zero column 
on the right side (with either + 1 or - 1 in the corner 
position) is equivalent to adding one equation with an 
unknown that does not appear in any of the equations 
of [N’]. Because [N’] is nonsingular, the augmented 
matrix is nonsingular. 

The next theorem can now be stated without proof. 
Theorem 1. If the removal of an edge does not dis- 

Table 2. Computational results: Pipe flow rates (Example 1). 

connect the graph, setting the corresponding column of 
[A] to zero will not affect the nonsingularity of [Ml. 

Numerical results 

Justification for the use of any algorithm rests on its 
efficiency and stability to solve problems by means of a 
computer implementation. The proposed method has 
been integrated into COPIPE, the University of Colo- 
rado hydraulic network simulator,28 and successfully 
used to test a number of actual water distribution net- 
works of various sizes. These range in size from a few 
nodes to over 1500 nodes. The method is illustrated by 
using two example networks. SI units and the Hazen- 
Williams head loss equation are used in these exam- 
ples. 

Example I 
Our running example network is used herein. Table I 

summarizes the pertinent pipe system characteristics. 
Fixed-grade node s, corresponds to a reservoir with a 
water level of 120 m. 

The sample network provides the means to illustrate 
the proposed approach for a wide variety of situations. 
A hydraulic analysis of the original data was carried 
out along with eight additional cases. Each case repre- 
sents the closing of a single pair of edges that still 
leaves the network connected. We consider all possi- 
ble combinations of these pairs. The pairs of closed 
edges considered are (2,4), (2,_5), (2,6), (3,4), (3,5), 
(3,6), (4,6), and (5,6). The solution for edge flow rates 
and junction node grades are given in Tables 2 and 3, 

Table 1. Pipe system characteristics (Example 1). 

Pipe Length Diameter Roughness Minor Node Demand 
number (m) (mm) coefficient loss number (lisec) 

1 600.0 600.0 130.0 0.0 1 60.0 
2 400.0 500.0 130.0 0.0 2 80.0 
3 500.0 400.0 130.0 0.0 3 40.0 
4 400.0 500.0 130.0 0.0 4 120.0 
5 500.0 400.0 130.0 0.0 
6 300.0 400.0 130.0 0.0 

Pipe 
number Original 

Pair Pair Pair Pair Pair Pair Pair Pair 
(2,4) (2.5) (2,6) (3.4) (3.5) (3,6) (4,6) (5,6) 

1 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 
2 157.67 0.00 0.00 0.00 240.00 240.00 240.00 80.00 120.00 
3 82.53 240.00 240.00 240.00 0.00 0.00 0.00 160.00 120.00 
4 46.22 0.00 40.00 - 80.00 0.00 40.00 160.00 0.00 40.00 
5 6.22 - 40.00 0.00 - 120.00 - 40.00 0.00 120.00 - 40.00 0.00 
6 31.45 - 80.00 - 120.00 0.00 160.00 120.00 0.00 0.00 0.00 

Table 3. Computational results: Junction node grades (Example 1) 

Pipe 
number 

1 
2 
3 
4 

Original 

118.99 
118.49 
118.44 
118.44 

Pair Pair Pair Pair Pair Pair Pair Pair 
(2,4) (2,5) (2.6) (3.4) (3,5) (3,6) (4,6) (5,6) 

118.99 118.99 118.99 118.99 118.99 118.99 118.99 118.99 
114.67 114.32 113.73 117.91 117.91 117.91 118.85 118.69 
114.84 114.28 113.87 116.63 117.87 117.40 116.95 118.65 
114.98 114.98 114.98 116.77 117.24 116.29 117.10 117.88 
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respectively. Negative signs for flow rates indicate that 
the flow is opposite to the assumed direction shown in 
Figure 1. For all the simulation cases investigated, the 
method converged to the exact solution in two Newton 
iterations with a convergence tolerance of 0.001. 

edge is from the first (head) to the second (tail) node 
input. The characteristic curve associated with the 
pump in edge 1 is described by the following parameter 
values: (Y = 160.0, /3 = 0.018165, v = 1.322, and q = 
1 .O. The reservoir and tank levels are given in Figure 3. 
An off-peak period of slack demand is assumed for this 
problem. Tanks B and C are full and the altitude valves 
in edges 4 and 11 are closed. Edges 3,6, and 15 contain 
check valves that allow flow only in the direction of the 
node order specified. In case of reverse flow, the 
valves will close. 

Example 2 

To illustrate the proposed approach on a larger, 
more complex system, the algorithm was applied to the 
network shown in Figure 3. A numbering scheme is 
shown for edges and junction nodes along with a la- 
beling scheme for fixed-grade nodes. This network 
contains 19 edges, 11 junction nodes, 4 fixed-grade 
nodes, 5 fundamental circuits, and 3 pseudocircuits. 
The pertinent pipe system characteristics are summa- 
rized in Table 4. The assumed flow direction for each 

Algorithm convergence for the example network 
was obtained in five Newton trials. The convergence 
tolerance was set to 0.001. The results are displayed in 
Table 5. As can be seen from Table 5, the present 
results are identical with the exact method of network 
reducibility. 

Figure 3. Sample pipe distribution network. 

Table 4. Pipe system characteristics (Example 2). 

(_) Junction Number 

0 Pipe Number 

a 
Pump 

8 Altitude Valve 

4 Check Valve 

CJ Elevated Storage Tank 

*_-- 

_-I Ground Level Slorage 

Pipe Head 
number node no. 

1 A 
2 1 
3 3 
4 3 
5 1 
6 5 
7 2 
8 2 
9 5 

10 6 
11 7 
12 7 
13 8 
14 4 
15 10 
16 5 
17 6 
18 8 
19 11 

Tail 
node no. 

1 
2 
2 
B 
4 
4 
5 
6 
6 

c’ 

8 
3 
9 
9 

10 
11 
11 
D 

Length Diameter Roughness Minor 
(ml (mm) coefficient loss 

300.0 300.0 130.0 0.0 
250.0 250.0 130.0 0.0 
450.0 250.0 130.0 0.0 
300.0 200.0 130.0 0.0 
150.0 250.0 130.0 0.0 
250.0 200.0 130.0 0.0 
150.0 200.0 130.0 0.0 
160.0 200.0 130.0 0.0 

56.0 200.0 130.0 0.0 
140.0 200.0 130.0 0.0 
200.0 250.0 130.0 0.0 

80.0 250.0 130.0 0.0 
200.0 250.0 130.0 0.0 
160.0 300.0 130.0 0.0 
250.0 300.0 130.0 0.0 
160.0 300.0 130.0 0.0 
300.0 200.0 130.0 0.0 
300.0 200.0 130.0 0.0 
400.0 250.0 130.0 0.0 

Node Demand 
number (Vsec) 

1 40.0 
2 20.0 
3 10.0 
4 20.0 
5 0.0 
6 25.0 
7 0.0 
8 25.0 
9 20.0 
10 20.0 
11 30.0 
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Flow rate (lisec) Grade (m) 

Pipe Proposed Exact Node Proposed Exact 
number method method number method method 

1 344.29 
2 264.29 
3 0.00 
4 0.00 
5 40.00 
6 0.00 
7 116.57 
8 127.73 
9 96.57 

10 99.52 
11 0.00 
12 99.52 
13 10.00 
14 20.00 
15 0.00 
16 20.00 
17 99.77 
18 64.52 
19 134.29 

344.29 
264.29 

0.00 
0.00 

40.00 
0.00 

116.57 
127.73 
96.57 
99.52 

0.00 
99.52 
10.00 
20.00 

0.00 
20.00 
99.77 
64.52 

134.29 

1 199.94 199.94 
2 176.30 176.30 
3 156.93 156.93 
4 199.51 199.51 
5 167.07 167.07 
6 164.64 164.64 
7 158.21 158.21 
8 156.97 156.97 
9 199.46 199.46 

10 167.02 167.02 
11 150.79 150.79 

Conclusion 

An explicit algorithm has been presented for use in 
modelling closed pipes in water distribution networks. 
The methodology is predicated on an explicit inter- 
change of network variables in the mathematical mod- 
eling process describing the network flow hydraulics. 
By casting the problem in terms of an explicit formula- 
tion, numerical convergence difficulties as well as the 
need for repetitive network topology alterations are 
avoided. The resulting algorithm is both computa- 
tionally efficient and guaranteed to converge in an ex- 
peditious manner. The method is general and can be 
easily applied to any connected hydraulic system with 
nonlinear flow properties. 
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