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A simple, rapid, and specific method for Hg(II) detection has been proposed based on the fluorescence change of N-acetyl-L-
cysteine-capped CdTe quantum dots (QDs). The presence of Hg(II) ions could quench the fluorescence of QDs at 565 nm and
meanwhile produce new peak in 700–860 nmwavelength range.The linear response range is 20–430 nMwith the detection limit at
8.0 nMHg(II). It was found that the position of the new peak was irrelevant to the size of QDs. Furthermore, the mechanism of the
quenching of QDs fluorescence by Hg(II) and the appearance of new peak in near-infrared area were also discussed and deduced
through ultraviolet absorption spectrum, fluorescence spectrum, and X-ray photoelectron spectrum.

1. Introduction

As a new class of potential fluorescence probes, quantumdots
(QDs) have attracted great interests of the researchers because
of their unique and excellent properties over traditional
fluorescent dyes and fluorescent proteins [1–3]. Compared to
conventional organic fluorescent dyes, QDs possess higher
photoluminescence (PL), excellent quantum yield (QY), size-
dependent tunable luminescence wavelength, wide continu-
ous absorption, narrow fluorescence band, and better photo-
stability. Over the past two decades, great efforts have been
focused on the development of sensors [4–8] based on QDs,
and the detection of metal ions is the active field. Some
researchers have realized the specific detection of metal ions
through modification of QDs with different surface-attached
ligands [9–13], such as the detection of Cu2+ ions through
thioglycerol-capped CdS QDs [9] and mercaptopropionic
acid-coated core/shell CdTe/CdSe QDs [10], the detection
of Zn2+ ions through L-cysteine-capped CdS QDs [9], the
detection of Ag+ ions through thioglycolic acid-coated CdSe
QDs [11], the detection of Cu2+ and Ag+ ions through
peptide-coated CdS QDs [12], and the detection of Pb2+ ions
through glutathione-capped ZnCdSe and CdTe QDs [13].

As one of the most toxic heavy metals and persistent
contaminants which cannot be biodegraded in ecosystem [14,

15], mercuric ion (Hg2+) requires new and efficient detection
methods. The major challenges in developing QDs-based Hg
probe are the preparation of water-soluble QDs with high
luminescence quantum yield and the selectivity of the system
[16–19]. Herein, through hydrothermal route, a series of
high-quality N-acetyl-L-cysteine- (NAC-) capped QDs with
excellent water solubility, stability, and high QY (the average
QY is 50%) have been synthesized [20–22]. Based on the
preparedNAC-cappedCdTeQDs as the fluorescence probe, a
rapid, cost-efficient, sensitive, and selective detectionmethod
for Hg(II) ions has been developed in whichHg(II) efficiently
quenches the fluorescence ofQDs andproduces a newpeak in
near-infrared area. Since size effect is a basic characteristic of
semiconductor nanocrystals, the impact of particle diameter
of QDs upon the system was also studied. The proposed
Hg(II) detection mechanism was also deduced through
fluorescence spectrum, ultraviolet absorption spectrum, and
X-ray photoelectron spectrum (XPS).

2. Experimental

2.1. Chemicals. Tellurium (reagent powder, 99.8%) and NAC
were purchased from Sigma. CdCl

2
⋅H
2
O, Hg (ClO

4
)
2
, Rho-

damine 6G, and sodiumborohydride (NaBH
4
) were obtained

from Aldrich. Deionised distilled (DI) water prepared from
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Figure 1: Effect ofHg(II) ions on the PL spectra of CdTeQDs (𝜆em =
565 nm) with the concentration of Hg2+ at 0.0, 0.2, 0.5, 1.0, 2.0, 3.0,
4.3, 6.0, 8.0, and 10.0 × 10−7M (from 1 to 10). The inset depicts the
emergence of an NIR emission band on the addition of Hg(II) ions.

a Milli-Q-RO4 water purification system (Millipore) was
used and purgedwith nitrogen (N

2
) for 30min before use. All

reagents were of analytical grade or above unless otherwise
stated.

2.2. Synthesis of NAC-Capped CdTe QDs . NaBH
4
was used

to react with tellurium with a molar ratio of 2 : 1 in DI water
to prepare sodium hydrogen telluride (NaHTe). FreshNaHTe
solutions were then diluted by N

2
-saturated water for further

use. CdCl
2
(1.25mM) and NAC (1.56mM) were dissolved

in 40 cm3 of DI water in an ice-water bath. The precursor
solution was adjusted to pH 9 by stepwise addition of 1.0M
NaOH at 4∘C. Subsequently, a fresh NaHTe solution at 0∘C
was added to the above prepared precursor solution and
stirred vigorously. The molar ratio of Cd : Te : NAC was fixed
at 1.0 : 0.2 : 1.2. Finally, the solution was put into a 40-cm3
Teflon-lined stainless steel autoclave. It was loaded in an oven
at 200∘C for a specified time (30–50min) and then cooled to
the room temperature by a hydrocooling process.

To removeNAC-Cd complexes at the end of the synthesis,
cold 2-propanol was added to the reaction mixture to pre-
cipitate NAC-capped CdTe QDs. The QDs were dissolved in
water and precipitated again with cold 2-propanol. The as-
prepared products were dried overnight under vacuum at
40∘C for further experiments. 5.0𝜇Mof CdTe QDs in 50mM
Tris-HCl buffer at pH 7.8 was used, and the excitation wave-
length was 450 nm. The QYs of CdTe QDs were measured
according to the literatures [23]. Rhodamine 6G in ethanol
was chosen as the reference standard (QY = 95%).

2.3. Characterisation. UV-visible absorption spectra were
acquired with a Varian Cary 100 Scan UV/visible spec-
trophotometer. Photoluminescence spectra were recorded on
a Photon Technology International QM4 spectrofluorometer
equipped with a thermoelectrically cooled InGaAs photo-
diode for near-infrared (NIR) region measurement. All PL
spectra were corrected for spectral response of the detection
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Figure 2: Stern-Volmer relationship between PL intensity of CdTe
QDs and Hg(II) ions. The inset displays a linear Stern-Volmer plot
at the low concentration range of Hg(II) ions with their error bars.
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Figure 3: Effect of other metal ions on the PL of NAC-capped CdTe
QDs (𝜆em = 565 nm). The concentrations of Li+, Na+, K+, Ca2+,
Mg2+, and Zn2+ were 1 × 10−3M.The concentration of Cd2+ was 1 ×
10−4M.The concentrations of Pd2+, Fe3+, and Cu2+ were 4 × 10−6M.
The concentration of Hg2+ was 6 × 10−7M.

optics. XPS measurements were acquired with a Leybold
Heraeus SKL 12 X-ray photoelectron spectrometer.

3. Results and Discussion

Figure 1 shows the fluorescence spectra ofNAC- cappedCdTe
QDs (𝜆em = 565 nm) in Hg(II) ions titration experiments
(in 50mM Tris-HCl buffer at pH 7.8). As shown in Figure 1,
Hg(II) ions can efficiently quench the PL intensity of CdTe
QDs. With the addition of Hg(II) ions, the PL peak intensity
at 565 nm decreases with a slight bathochromic shift of PL
spectrum. When Hg(II) ions concentration is increased to
1.0 𝜇M, the PL peak intensity reduces to only a few present of
its original value. Meanwhile, new emission peak appears at
700–900 nm, and its fluorescent intensity increases with the
addition of Hg(II) ions (inset of Figure 1).
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Figure 4: Effect of Hg(II) ions on the PL spectra of CdTe QDs ((a) 𝜆em = 502 nm, (b) 𝜆em = 670 nm) with the concentration of Hg2+ at 0.0,
0.4, 1.2, 2, 3, 7, 11, 15, 19, 27, and 35 × 10−7M (from 1 to 11). The inset depicts the emergence of an NIR emission band on the addition of Hg(II)
ions.
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Figure 5: UV-visible absorption spectra of 30 𝜇M NAC-capped
CdTe QDs (2.93 nm) in the presence of various concentrations of
Hg(II) ions: (a) 0.0, (b) 1.0, and (c) 2.0 𝜇M.

The relationship between fluorescence intensity of CdTe
QDs and concentration of Hg(II) ions can be described by
Stern-Volmer plot as follows:

𝐼

𝑜

𝐼

= 1 + 𝐾sv [𝑄] , (1)

where 𝐼
𝑜
and 𝐼 are the PL intensities of CdTe QDs in the

absence and presence of quencher 𝑄, [𝑄] is the Hg(II)
ion concentration, and 𝐾sv is the Stern-Volmer constant.
Figure 2 describes a Stern-Volmer quenching curve with 𝐼

𝑜
/𝐼

as a function of Hg(II) ion concentration, and a very good
linearity is observed in the lower concentration range. The
linear rang is from 20 to 430 nM with 𝐾sv at 5.49 × 10

6M−1.
The limit of detection is 8.0 nM which is determined on the
basis of three times the standard deviation of six replicate
measurements of the quenched PL intensity by the addition

of 30 nM Hg(II). However, when the concentration of Hg(II)
ions is higher than 430 nM, the line is curved upward because
of superquenching effect (vide infra).

To study the selectivity of the system, we investigated the
influences of common biological metallic ions on the fluo-
rescence intensity of NAC-capped CdTe QDs. As shown in
Figure 3,most commonmetallic ions, including Li+, Na+, K+,
Ca2+, Mg2+, Zn2+, Cd2+, Pd2+, Fe3+, Pb2+, and Cu2+, exhibit
no significant effect on the fluorescence intensity of QDs even
at relatively high concentrations, while Hg2+ exhibits strong
quenching ability to the intensity even at low concentration.
In particular, with the addition of Hg2+ ions, there appears
a new emission peak at the NIR region 700–900 nm, and no
othermetallic ions produce the similar phenomena. Different
from other traditional fluorescent probes which only rely on
the fluorescence change of the QDs, the newly appearing PL
peak ensures excellent selectivity in detection of Hg2+ ions.

Furthermore, a series of different-sized QDs were chosen
to study the impact of QDs diameter upon the position of
the new peak. As shown in Figure 4, the newly appeared
peaks appear at the relatively fixed position regardless of the
difference of QDs diameters, showing that the wavelength
of the new peak is irrelevant to the size of QDs. However,
the smaller-sized QDs can be more easily quenched by
Hg(II) ions, and the intensity of newly appeared peak is
stronger, which is beneficial to the excellent sensitivity of the
system. It is known that the fluorescence intensity of smaller-
sized QDs can be easily influenced by the environment and
other interfering materials, greatly limiting the selectivity of
the system. Therefore, to ensure both good sensitivity and
selectivity, this paper chooses NAC-capped CdTe QDs with
their emission peak at 565 nm.

To explain the difference in linearity of the system
in low and high Hg(II) concentrations, we proposed two
interaction modes between NAC-capped CdTe QDs and
Hg(II) with the increase of Hg(II) ions. When Hg(II) ions
concentration is relatively low (<430 nM), the Hg(II) ions
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Figure 6: XPS of NAC-capped Cd
𝑥
Hg
1−𝑥

Te NCs: (a) Cd (3d), (b) Te (3d), and (c) Hg (4f).

interact with the carboxylate moiety of ligand (NAC) on the
surface of CdTe QDs by electrostatic forces. When the con-
centration further increases (>430 nM), Hg(II) ions would
further interact with CdTe QDs, displacing the Cd in the
CdTe to form alloyed Cd

𝑥
Hg
1−𝑥

Te NCs [24]. These surface
changes of NAC-capped CdTe QDs, on one hand, increase
surface defects of QDs and render luminescence quenching
of QDs; on the other hand, by facilitating nonradiative e−/h+
annihilation acting as electron-hole recombination centres
and decreasing radiative e−/h+ annihilation (luminescence)
[25], these alloys Cd

𝑥
Hg
1−𝑥

TeNCs lead to superquenching of
the original QDs. Meanwhile, the formation of Cd

𝑥
Hg
1−𝑥

Te
NCs increases the original diameter of NAC-capped CdTe
QDs and narrows the band gaps of these NCs [26], producing
an obvious bathochromic shift of the PL spectrum at 700–
900 nm. Similar phenomenon was also reported in the paper

of Liang et al. in which the formation of ultrasmall particle
Ag
2
Se on the surface of CdSe QDs was proved after the

addition of Ag, during their study of functionalized CdSQDs
as selective Ag probe [11]. Figure 5 displays the absorption
spectra of NAC-capped CdTe QDs with the addition of
Hg(II) ions, in which the absorption peak red-shifts with the
increase in Hg(II) concentration, inferring the formation of
larger Cd

𝑥
Hg
1−𝑥

Te NCs.
To further confirm our proposition, XPS was used to

analyze the surface components of QDs after the addition of
Hg(II) ions. XPS is known as a surface analytical tool that is
sensitive to the atomic composition of the outermost 10 nm
of a sample surface [27]. A larger amount of Hg(II) ions
was added into QDs solution, and the resultant product was
precipitated by cold 2-propanol.The product was washed and
dried overnight for XPSmeasurement. IfHg(II) ions combine
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only with the ligands on the surface of NAC-capped QDs,
they will be removed by the addition of 2-propanol, while if
Hg(II) ions bind directly onto the surface of CdTe QDs and
form alloyed Cd

𝑥
Hg
1−𝑥

Te NCs, they will be precipitated out.
The appearances of characteristic Cd (3d

5/2
) peak at 404.8 eV

and Te (3d
5/2

) peak at 572.2 eV are depicted in Figure 6. The
typical binding energies for the Hg (4f) peaks at 101.0 and
105.0 eV confirm the presence of Hg on the Cd

𝑥
Hg
1−𝑥

Te NCs
(Figure 6(c)).

4. Conclusion

The selective detection of Hg(II) ions through the interaction
of Hg(II) ions and NAC-capped CdTe QDs has been realized
in our system.The fluorescence intensity of CdTe QDs can be
remarkably quenched by the addition of Hg2+ ions, and there
appears a new peak at about 820 nm. The linear response
range and the limit of detection are 20–430 and 8.0 nM
Hg(II), respectively. The influence of most physiologically
important metallic cations upon the system, including Li(I),
Na(I), K(I), Ca(II), Mg(II), Zn(II), Cd(II), Pd(II), Fe(III),
Pb(II), and Cu(II), was tested to prove the selectivity of the
system.We further proposed that the possiblemechanism for
the new peak is that Hg(II) ions displace the Cd in the CdTe
and form alloys Cd

𝑥
Hg
1−𝑥

Te NCs, which has been proven
by ultraviolet absorption spectrum and X-ray photoelectron
spectrum.
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