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Abstract. The form of Maxwell’s theory is well known in the framework of general relativity,
a fact that is related to the applicability of the principle of equivalence to electromagnetic
phenomena. We pose the question whether this form changes if torsion and/or non-metricity
fields are allowed for in spacetime. Starting from the conservation laws of electric charge and
magnetic flux, we recognize that the Maxwell equations themselves remain the same, but the
constitutive law must depend on the metric and, additionally, may depend on quantities related
to torsion and/or non-metricity. We illustrate our results by putting an electric charge on top
of a spherically symmetric exact solution of the metric-affine gauge theory of gravity (which
indicates torsion and non-metricity). All this is compared to the recent results of Vandyck.

PACS numbers: 0440N, 0450, 0420J, 0350D, 0350K

1. Introduction

It was Minkowski, in 1908, who formulated Maxwell’s theory in a four-dimensional
flat pseudo-Euclidean spacetime, Minkowski’s special-relativistic ‘world’. The next step,
generalizing Maxwell’s theory ifgravity can no longer be neglected, was performed by
Einstein and Grossmann in 1913. They ‘lifted’ Maxwell’s theory to a four-dimensional
pseudo-Riemannian spacetime. This amounted to a successful application of the equivalence
principle to Maxwell’s theory. Not too much later, after the creation of general relativity
theory, Einstein [1] reformulated Maxwell’s theory such that it became apparent that the
basic structure of Maxwell’s theory, namely the field equations, remains intact even when a
metric is not used. Later Kottler [2], E Cartan [3], van Dantzig [4] and others put forward
the so-called metric-free formulation of electrodynamics; see Post [5, 6] and Schouten [7].
It was recognized in this general framework that Maxwell’s equations can be understood as
arising from the conservation laws ofelectric chargeandmagnetic flux; see Truesdell and
Toupin [8].

These conservation laws can be reduced tocounting statements, since electric charge
comes in quantized portions of elementary charges (or rather as one thirds of them) and
magnetic flux can also exist, in superconducting media, in a quantized form, the flux
quantum or fluxoidh/(2e), as was already predicted (up to a factor 2) by F London [9]. Thus
it is obvious that the formulation of these laws only requires a four-dimensionaldifferentiable
manifold and the possibility of a foliation of it into three-dimensional hypersurfaces. The
constitutive lawsdo need a metric, in contrast to the Maxwellian field equations themselves,
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a point of view which has been repeatedly stressed by Post [6, 10]; see also Bamberg and
Sternberg [11]. Anypost-Riemannian geometry, that is, any spacetime geometry which
has more geometrical field variables (‘gravitational fields’) than the metric, is irrelevant to
the Maxwell equations. In particular, neither torsion nor non-metricity couple to it, a point
which has already been made by Bennet al [12]. Only the constitutive law may depend in
a very restricted way on torsion and non-metricity structures.

In the Einstein–Cartan theory of gravity, spacetime carries an additionaltorsion, and,
still more generally, in the framework of metric-affine gravity [13], anon-metricityenters
the geometrical arena of spacetime. What can we predict about Maxwell’s theory under
these more exotic circumstances? Can we again apply the equivalence principle? Should
we write down Maxwell’s equations in the Minkowski world in Cartesian coordinates and
replace the partial derivatives by covariant ones, or should we do that in the Lagrangian?
What type of coupling to gravity should we assume?

In particular, the application of the ‘comma goes to semicolon rule’ (see Misneret al
[14]) creates difficulties for charge conservation if applied to the inhomogeneous Maxwell
equation in post-Riemannian spacetimes. Some test theory for the coupling of the Maxwell
equations to non-metric structures of spacetime has been investigated by Coley [15].

Vandyck has addressed these questions in a recent article [16]. We find his answers
not totally convincing. Therefore we will try to argue that the axiomatic formulation of
Maxwell’s theory, alluded to above, is sufficient for formulating Maxwell’s theory in such
post-Riemannian spacetimes, including possibly torsion and non-metricity.

As a formalism we use exterior calculus, for our conventions see [13].

2. Electric charge conservation

Let us be given the odd (or twisted, see [17]) electric current 3-formJ . We assume that a
(1+ 3) foliation of spacetime holds locally. The different three-dimensional hypersurfaces
are labelled by a parameterτ . We introduce a normal vectorn such thatn dτ = 1. Then
we can decompose the current 3-form according to

J = ρ − j ∧ dτ , (2.1)

whereρ is the charge density 3-form andj the electric current 2-form. As axiom 1 we
assume electric charge conservation (d denotes the four-dimensional exterior derivative):

Axiom 1:
∮
∂V4

J =
∫
V4

dJ = 0 . (2.2)

HereV4 is an arbitrary four-dimensional volume and∂V4 its three-dimensional boundary.
If this is assumed to be valid for all three-cyclesc3 = ∂V4, thenJ is exact [10, 18, 19]:

dG = J . (2.3)

The electromagneticexcitationG is an odd 2-form which decomposes as

G = D −H ∧ dτ . (2.4)

Therefore (2.3) is equivalent to the inhomogeneous Maxwell equations

dD = ρ (Gauss law), (2.5)

dH − Ḋ = j (Oersted–Amp̀ere law); (2.6)

here d:= d− dτ (n d)∧ is the three-dimensional exterior derivative, andḊ := £nD is
defined via the Lie derivative, for details see [20] and references therein. Note that, up to
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now, only the differential structure of the spacetime was needed. The electric excitationD

can be measured by means of Maxwellian double plates (see Pohl [21]) as charge per unit
area, the magnetic excitation by means of a small test coil, which compensates theH -field
to be measured, as current per unit length. In other words, the extensive quantitiesD and
H have an operational significance provided we know the characterizing properties of an
ideal conductor.

3. Lorentz force

From mechanics we take the notion of an even covector-valued force density 4-formfα. In
the conventional manner, wedefinethe electromagneticfield strengthF via axiom 2:

Axiom 2: fα =
(
eα F

) ∧ J . (3.1)

From mechanics originates the notion offα, from axiom 1 the currentJ , the eα ’s denote
the frame. The even 2-formF can be decomposed as

F = B + E ∧ dτ , (3.2)

that is, fora, b = 1, 2, 3,

fa = −ρ
(
ea E

)− j ∧ (ea B
)

with fα = fα ∧ dτ . (3.3)

Therefore the Lorentz force (3.3), via (3.2), yields an operational definition of the
electromagnetic field strengthF as a force field—and hence as an intensive quantity. Again
no metric nor connection is necessary for formulating axiom 2.

An alternative way of introducingF—again independent of the metric etc—is provided
by quantum interference measurements of Aharonov–Bohm type, yielding an observable
phase shiftδϕ = (e/h̄) ∫

V2
F .

Now we have to impose some conditions on the newly defined field strengthF .

4. Magnetic flux conservation

The field strengthF is a 2-form. Thus we can postulate the conservation of magnetic flux
as axiom 3:

Axiom 3:
∮
∂V3

F =
∫
V3

dF = 0 . (4.1)

By Stokes’ theorem and the arbitrariness of the two-cyclesc2 = ∂V3, we have

dF = 0 . (4.2)

In the (1+ 3) decomposition this reads

dB = 0 (magnetic field closed), (4.3)

dE + Ḃ = 0 (Faraday law). (4.4)

Maxwell’s equations are represented by (2.3) and (4.2) or, equivalently, by (2.5), (2.6),
(4.3) and (4.4). In this form, they are generally covariant, i.e. valid in arbitrary frames and
arbitrary coordinates. Moreover, neither the metric nor the torsion nor non-metricity take
part in this set-up. Therefore, if one starts from a four-dimensional differential manifold,
which admits a(1+3) foliation, and introduces a metric and a connection, then the structure
of the Maxwell equations (2.3) and (4.2) is insensitive to it and doesnot change.
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We can argue similarly in the complementary situation: in a Minkowski space, we
formulate the Maxwell equations as above. Then they keep their form with respect to
an acceleratedframe. Consequently, switching ongravity and requiring the equivalence
principle to be valid, the Maxwell equations must not change either. In spite of the
‘deformation’ of spacetime by means of gravity, the Maxwell equations remain ‘stable’.
Therefore, in this framework of deriving Maxwell’s theory from electric charge and magnetic
flux conservation, the Maxwell equations stay the same in a Minkowskian, Riemannian or
post-Riemannian spacetime. No additional effort is needed in order to adapt the Maxwell
equations if a spacetime is considered with additional geometrical attributes. This is the
most straightforward application of the equivalence principle one can think of.

5. Constitutive law

So far, the Maxwell equations (2.3) and (4.2) represent an underdetermined system of
evolution equations forG andF . In order to reduce the number of independent variables,
we have to set up a relation betweenG andF :

G = G(F) . (5.1)

Special cases of this constitutive law are:

(i) Vacuum.The standard constitutive law for a vacuum is

G = ?F . (5.2)

On the right-hand side of (5.2), the factor(ε0/µ0)
1/2 has been absorbed for simplicity.

Here, by means of the Hodge star, the metric enters the Maxwell theory for the first
time. The appearance of the metric is necessary from a physical point of view in order
to get thelight cone as the characteristic surface of the evolution equations for the
Maxwellian field strengthF . The law (5.2) is valid in Minkowksi, Riemannian and
post-Riemannian spacetimes.

(ii) Axion. The constitutive law of the vacuum (5.2) relates the ordinary 2-formF , via the
Hodge star (which is twisted), to the twisted 2-formG. If we had a twisted 0-formθ
(‘pseudo-scalar’) at our disposal, then we could supplement the right-hand side of the
vacuum law by the twisted termθF :

G = ?F + θF = ( ? + θ)F . (5.3)

The exterior derivative of this equation, because of dF = 0, turns out to be

dG = d ?F + dθ ∧ F . (5.4)

Thus the inhomogeneous Maxwell equation, in terms ofF , reads(
d ? + (dθ)∧)F = J , with dJ = 0 . (5.5)

The ‘pseudo-scalar’ fieldθ is known in the literature as the hypothetical axion field,
see [22, 23]. Its possible implications for cosmology are discussed in [24]. The axion-
Maxwell interaction Lagrangian turns out to be∼ θ F ∧ F = θ d(F ∧ A).

We can relate the axion field to the torsion of spacetime. The torsionT α is an
ordinary 2-form. Its axial piece is proportional to the ordinary 3-formT α ∧ ϑα. The
dual of it is a twisted 1-form?(T α ∧ ϑα). Therefore, with some constantc, we can
make the identification

dθ = c ?(T α ∧ ϑα) , (5.6)
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which yields (Gasperini and de Sabbata [25], see also [26])(
d ? + c ?(T α ∧ ϑα)∧

)
F = J . (5.7)

This equation describes the coupling of the inhomogeneous Maxwell equation to an
axial piece of the torsion. However, this interpretation is not compulsory. Incidentally,
(5.7) seems to represent the most general post-Riemannian coupling linear inF , which
is compatible with charge conservation [27]; a piece with, e.g. the Weyl covector, is
excluded since it is an ordinary, not a twisted, form.

We recognize also in this example that there does not seem to exist a chance to
introduce other post-Riemannian structures in the axion–Maxwell equation (5.7) in an
ad hoc way. We would like to stress that (5.7) is valid in a spacetime with arbitrary
metric and connection.

(iii) Born–Infeld.The nonlinear Born–Infeld theory [28] represents a classical generalization
of Maxwell’s theory for accommodating stable solutions for the description of
‘electrons’. Its constitutive law reads (with a dimensionful parameterf , the so-called
maximal field strength, see also [29]):

G =
?F − (1/2f 2) ?(F ∧ F)F√

1+ (1/f 2) ?(F ∧ ?F )− (1/4f 4)[?(F ∧ F)]2
. (5.8)

It leads to a nonlinear equation for the dynamical evolution of the field strengthF . As
a consequence, the characteristic surface, the light cone, depends on the field strength,
and the superposition principle for the electromagnetic field no longer holds.

(iv) Heisenberg–Euler.Quantum electrodynamical vacuum corrections to Maxwell’s theory
can be accounted for by an effective constitutive law constructed by Heisenberg and
Euler [30]. To second order in the fine structure constantα, it is given by (see also [31])

G =
[

1+ 4α2

45m4
?
(
F ∧ ?F

)]
?F + 7α2

45m4
?
(
F ∧ F )F , (5.9)

wherem is the mass of the electron. Again, post-Riemannian structures do not interfere
here.

6. Energy–momentum current of the electromagnetic field

For quantifying the gravitational effect of the electromagnetic field, we need its energy–
momentum current. The Lagrangian 4-form of Maxwell’s field reads

LMax = − 1
2F ∧G . (6.1)

The canonical energy–momentum current is computed from the Lagrangian 4-form (6.1)
and can be represented by the odd covector-valued 3-form

6Max
α = eα LMax+ (eα F ) ∧G = 1

2

[
(eα F ) ∧G− (eα G) ∧ F ] . (6.2)

This energy–momentum current will enter the right-hand side of the first field equation, as
we will see below.

7. An electric charge in Einstein–dilation–shear gravity

As a non-trivial example, let us consider the electromagnetic field in the framework of
the metric-affine gauge theory (MAG) of gravity [13], in particular its effect on an exact
solution of this theory [32], see also [33]. Similar solutions have been found by Tucker
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and Wang, see [34, 35]. The geometrical ingredients of MAG are the curvature 2-form
Rα

β = 1
2 Rijα

β dxi ∧ dxj , and, as post-Riemannian structures, the non-metricity 1-form
Qαβ = Qiαβ dxi and the torsion 2-formT α = 1

2 Tij
α dxi ∧ dxj . The simple toy model that

we want to consider is specified by a gravitational gauge Lagrangian, quadratic in curvature,
torsion and non-metricity, see [32],

Vdil-sh = − 1

2κ

(
Rαβ ∧ ηαβ − 2λη + β Q ∧ ?Q+ γ T ∧ ?T

)− 1
8α Rα

α ∧ ?Rβ
β , (7.1)

coupled to the Maxwell Lagrangian (6.1) according toLtot = Vdil-sh+ LMax. In (7.1) we
have introduced the Weyl covectorQ := Qγ

γ /4 and the covector piece of the torsion
T := eα T α. Einstein’s gravitational constant is denoted byκ = `2/(h̄c) (with the Planck
length `), and λ is the cosmological constant. The coupling constantsα, β, and γ are
dimensionless.

Varying the coframe and the connection, we find the two relevant field equations of
MAG [13],

DHα − Eα = 6α , (7.2)

DHα
β − Eαβ = 1α

β , (7.3)

referred to as thefirst and thesecondfield equation, respectively, with D as the covariant
exterior derivative. In (7.2) and (7.3) we have the canonical energy–momentum and
hypermomentum currents of matter6α and1α

β , the gravitational gauge field momenta

Hα := −∂Vdil-sh

∂T α
Hα

β := −∂Vdil-sh

∂Rαβ
, (7.4)

and the canonical energy–momentum and hypermomentum currents of the gauge fields

Eα = eα Vdil-sh+ (eα T β) ∧Hβ + (eα Rβ
γ ) ∧Hβ

γ + 1
2(eα Qβγ )M

βγ , (7.5)

Eαβ = −ϑα ∧Hβ −Mα
β . (7.6)

The gravitational gauge field momentumMαβ is coupled to the non-metricity:

Mαβ := −2
∂Vdil-sh

∂Qαβ

. (7.7)

We study only the behaviour of the electromagnetic field in the metric-affine framework.
Thus, for the matter currents in (7.2) and (7.3), we have6α = 6Max

α , cf (6.2), and1α
β = 0.

The formalism of MAG, as outlined in the present section, is not limited to the simple
and very restricted Lagrangian (7.1); more general choices for the Lagrangian are possible.
It is our intention, however, not to look at MAG for its own interest, but to investigate
the behaviour of Maxwell’s theory within a non-Riemannian spacetime. This was our
motivation for making the simplest possible choice of the metric-affine part of the Lagrangian
that still allows for propagating torsion and non-metricity, see Obukhovet al [32].

8. Exact solution with spherical symmetry

The field equations (7.2) and (7.3), together with Maxwell’s equations (2.3) and (4.2)—
assuming the constitutive law (5.2)—are approached as follows. The spherically symmetric
coframe

ϑ 0̂ = f dt , ϑ 1̂ = 1

f
dr , ϑ 2̂ = r dθ , ϑ 3̂ = r sinθ dφ , (8.1)
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contains the 0-formf = f (r) and is assumed to be orthonormal, i.e. the metric reads

ds2 = oαβ ϑα ⊗ ϑβ = −f 2 dt2+ 1

f 2
dr2+ r2

(
dθ2+ sin2 θ dφ2

)
. (8.2)

The non-metricity 1-form is taken to contain only two irreducible pieces (see
[13, appendix B.1]),

Qαβ = (3)Qαβ + (4)Qαβ , (8.3)

namely the dilation (or Weyl) piece(4)Qαβ = Qgαβ and a proper shear piece

(3)Qαβ = 4
9

(
ϑ(αeβ) 3− 1

4gαβ3
)
, with 3 := ϑαeβ ↗Qαβ . (8.4)

Furthermore, we allow only the covector piece(2)T α in the torsion 2-form:

T α = (2)T α = 1
3 ϑ

α ∧ T . (8.5)

Finally, we use a spherically symmetric electric (Coulomb) charge at the origin of the spatial
coordinates with the corresponding field strength

F = q

r2
ϑ 1̂ ∧ ϑ 0̂ , (8.6)

and we impose the constitutive law (5.2).
With these prescriptions and the ansatz

Q = u(r) ϑ 0̂ , 3 = v(r) ϑ 0̂ , T = τ(r) ϑ 0̂ (8.7)

for the 1-form triplet (Q,3, T ), the solution is expressed by

f =
√

1− 2κM

r
+ λ r

2

3
+ κ q

2

2r2
+ α κÑ

2

2r2
(8.8)

and

u = Ñ

f r
, v = 3β

2

Ñ

f r
, τ = −β + 6

4

Ñ

f r
, (8.9)

whereÑ is an integration constant. The dimensionless coupling constants are subject to the
constraint

γ = −8

3

β

β + 6
, (8.10)

i.e. only two of the post-Riemannian coupling constants(α, β, γ ) in (7.1) remain
independent, while the third one,γ , is determined by (8.10). These results have been
found with the help of the computer algebra system REDUCE [36] making use also of its
Excalc package [37], see [38].

Let us summarize the properties of the MAG–Maxwell solution that is presented here.
The 0-formf , which fixes the orthonormal coframe (8.1), has four contributions, see (8.8).
The terms containing the mass parameterM, the cosmological constantλ, and the electric
chargeq correspond exactly to the (general relativistic) Reissner–Nordström solution with
cosmological constant. The additional term with the dilation chargeÑ has a similar structure
as the previous term with the electric chargeq. The non-metricity has the explicit form

Qαβ = Ñ

f r

[
oαβ + 2

3 β
(
ϑ(αeβ) − 1

4 o
αβ
)]
ϑ 0̂ (8.11)
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carrying, besides the dilation piece, a shear part—the second term in (8.11) with the factor
β. The torsion 2-form evaluates to

T α = −β + 6

12

Ñ

f r
ϑα ∧ ϑ 0̂ , (8.12)

and the Faraday 2-form

F = q

r2
ϑ 1̂ ∧ ϑ 0̂ (8.13)

has the same innocent appearance as that of a point charge inflat Minkowski space. It is
clear, however, that all relevant geometric objects, coframe, connection, torsion, curvature,
etc, ‘feel’—via the 0-formf—the presence of the electric charge. However, as one
can recognize from (8.11)–(8.13), the Maxwell field is otherwise disconnected from non-
metricity and torsion. This exemplifies and is in full accordance with our general statement
concerning the coupling of the Maxwell equations to post-Riemannian structures.

9. Discussion

There is so much experimental evidence in favour of the conservation laws of electric
charge and magnetic flux that one can hardly doubt the correctness of axioms 1 and 3
from a physical point of view. The form of the Maxwell equations is then fixed, and
we have no trouble in predicting how they change in spacetimes with Riemannian and
post-Riemannian geometrical structure:they do not change at all. They are stable against
such ‘deformations’. Thereby the equivalence principle turns out to be rather trivial in this
context. The only ‘freedom’ one has is to modify the constitutive law. Incidentally, if the
limits of classical physics are reached, then, on the level of quantum mechanics, a fresh
look at the equivalence principle is needed, see [39].

Coming back to the article of Vandyck [16], we recognize that the different options for
generalizing the Maxwell equations are artificial ones in the sense that they violate the well
established axioms 1 and 3, namely the conservation of electric charge and magnetic flux.
These options can only emerge if one forgets the underlying physical structure of Maxwell’s
theory. Clearly, whether one uses the calculus of tensor analysis (see the appendix) or that
of exterior differential forms, does not make any difference, if one starts off with our axioms.

In the framework of the Poincaré gauge theory of gravitation, the spacetime of which
carries, besides the metric, a propagating torsion, we also found exact electrically charged
solutions, see [40]. In this latter context, as well as in the case of the new charged
solution of MAG that was presented in section 8, we used Maxwell’s theory as described
in sections 2–5, and everything is well behaved and consistent with our analysis of how to
couple the Maxwell equations to post-Riemannian structures. There is almost no freedom
for an alternative coupling of Maxwell’s equations to gravity within Riemannian or post-
Riemannian spacetimes. Equations (2.3), (4.2) and (5.2) solve the problem completely.
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(Zürich) for helpful remarks. RAP is supported by the Graduiertenkolleg Scientific
Computing, Cologne-St Augustin. CL thanks the Deutsche Forschungsgemeinschaft, Bonn
for financial support.



Maxwell’s theory on a post-Riemannian spacetime 1355

Appendix. The tensor analysis version of metric-free electrodynamics

We decompose excitation, field strength and current into (holonomic) coordinate
components:

G = 1

2!
Gij dxi ∧ dxj , F = 1

2!
Fij dxi ∧ dxj , J = 1

3!
Jijk dxi ∧ dxj ∧ dxk .

(A.1)

If we use the Levi-Civita antisymmetric unit tensordensityεijkl = ±1, 0, which is metric-
free,

Gij := 1

2!
εijkl Gkl , J i := 1

3!
εijkl Jjkl , (A.2)

then Maxwell’s equations read

∂kGik = J i , ∂[iFjk] = 0 . (A.3)

The constitutive law for the vacuum can be put in the linear form

Gij = 1
2χ

ijklFkl , χ(ij)kl = χij (kl) = χ [ijkl] = 0 , χijkl = χklij , (A.4)

with the specific metric dependent ‘modulus’

χijkl := 2
√
|detgmn| gk[igj ]l . (A.5)

Equations (A.3)–(A.5) remain valid in post-Riemannian spacetimes. Note that the
representation of the electromagnetic excitationGij as a density, see Schrödinger [41],
is vital for these considerations and distinguishes our approach from that of Vandyck.
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[3] CartanÉ 1986On Manifolds with an Affine Connection and the Theory of General Relativity(Engl. transl. of

the French original of 1923/24) (Napoli: Bibliopolis)
[4] van Dantzig D 1934Proc. Cambridge Phil. Soc.30 421–7
[5] Post E J 1962Formal Structure of Electromagnetics(Amsterdam: North Holland) (soon to be available from

(New York: Dover))
[6] Post E J 1980Phys. Lett.79A 288–90
[7] Schouten J A 1989Tensor Analysis for Physicists2nd edn (New York: Dover)
[8] Truesdell C and Toupin R A 1960 The classical field theoriesHandbuch der Physikvol III/1, ed S Fl̈ugge

(Berlin: Springer) pp 226–793
[9] London F 1950Superfluids: vol 1. Macroscopic Theory of Superconductivity(New York: Wiley)

[10] Post E J 1995Quantum Reprogramming—Ensembles and Single Systems: A Two-Tier Approach to Quantum
Mechanics(Dordrecht: Kluver)

[11] Bamberg P and Sternberg S 1990A Course in Mathematics for Students of Physicsvol 2 (Cambridge:
Cambridge University Press)

[12] Benn I M, Dereli T and Tucker R W 1980Phys. Lett.96B 100–4
[13] Hehl F W, McCrea J D, Mielke E W and Ne’eman Y 1995Phys. Rep.258 1–171
[14] Misner C W, Thorne K S and Wheeler J A 1973Gravitation (San Francisco, CA: Freeman)
[15] Coley A A 1983 Phys. Rev.D 27 728–39
[16] Vandyck M A 1996 J. Phys. A: Math. Gen.29 2245–55
[17] Burke W L 1985Applied Differential Geometry(Cambridge: Cambridge University Press)
[18] Post E J 1979Found. Phys.9 619–40
[19] Post E J 1982Found. Phys.12 169–95
[20] Hehl F W, Lemke J and Mielke E W 1991 Two lectures on fermions and gravityGeometry and Theoretical

Physics, Proc. of the Bad Honnef School (12–16 February, 1990)ed J Debrus and A C Hirshfeld
(Heidelberg: Springer) pp 55–140



1356 R A Puntigam et al
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