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Abstract. In cooperative game theory, the Shapley value is a central notion defining a
rational way to share the total worth of a game among players. In this paper, we address a
general framework leading to applications to games with communication graphs, where the set
of feasible coalitions forms a poset where all maximal chains have the same length. We first
show that previous definitions and axiomatizations of the Shapley value proprosed by Faigle and
Kern, and Bilbao and Edelman still work. Our main contribution is then to propose a new ax-
iomatization avoiding the hierarchical strength axiom of Faigle and Kern, and considering a new
way to define the symmetry among players. Borrowing ideas from electric networks theory, we
show that our symmetry axiom and the classical efficiency axiom correspond actually to the two
Kirchhoff’s laws in the resistor circuit associated to the Hasse diagram of feasible coalitions. We
finally work out a weak form of the monotonicity axiom which is satisfied by the proposed value.

Key words. Regular set systems; regular games; Shapley value; probabilistic efficient
values; regular values; Kirchhoff’s laws.

1 Introduction

The value or solution concept of a game is a key concept in cooperative game theory, since
it defines a rational imputation given to the players if they join the grand coalition. In this
respect, the Shapley value remains the best known solution concept [17, 18] applied also to more
general notions of game, like multichoice games [12].

In the above cited classical works, it is assumed that any coalition of players can form.
However, this assumption is often irrealistic, for various reasons (incompatibilities between
players, precedence constraints, etc.). A great deal of work has been done in order to consider
weaker assumptions on the set of feasible coalitions. Along this line, we may cite Faigle [10, 11]
who introduced the idea of precedence constraints among players, and Bilbao and Edelman,
considering that the set of feasible coalitions is a convex geometry. Due to well known results in
lattice representation, the construction of Faigle amounts to have a distributive lattice as the set
of feasible coalitions, and hence is a particular case of Bilbao and Edelman’s construction. We
may also cite the recent work of Bilbao, who introduced cooperative games under augmenting
systems [2], which are particular structures where the grand coalition is not necessarily feasible.

Despite the mathematical interest of convex geometries, we may argue if they fit or not
to the framework of game theory. Specifically, feasible coalitions of a convex geometry should
satisfy two conditions: (1) if S is a feasible coalition, then it is possible to find a player i such
that S ∪ i is still feasible, (2) if S, T are feasible, then their intersection too should be feasible.
The first condition is a natural and very weak one in a context where the grand coalition can
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form, since it says that from a given coalition, it is possible to augment it gradually to reach
the grand coalition. On the contrary, it is more difficult to accept the second one.

We propose to consider more general structures, avoiding the closure under intersection,
which we call regular set systems, which more or less amounts to take condition (1) above and
a symmetric one, saying that from a given coalition S, it is possible to withdraw one player
while remaining feasible. Regular set systems have been proposed by Honda and Grabisch [13],
and have all their maximal chains of same length. One of their main mathematical advantages
is that they allow to keep many classical notions defined for games, capacities [5] and other
set functions [13], such as the Möbius transform, the core, the Shapley value, the entropy, etc.,
since all these notions can be defined through maximal chains. A general view of regular set
systems, giving connections with more classical ordered structures, is given in Section 2.

We first hightlight the strong economic interest of defining games on regular set systems on
potential economics situations. Indeed, we show that games defined from a connected commu-
nication graph [16] representing the communications links between the players, lead to coalition
structures which are regular set systems. Our main aim is the axiomatization of a solution
concept for games defined on regular set systems —which we call regular games—, close to
the Shapley value. In Section 3, we begin by considering probabilistic and marginalist val-
ues, and we generalize results obtained by Bilbao and Edelman. In Section 4, we propose a
substitute for the classical symmetry axiom, which cannot be straightforwardly generalized in
such general coalition structures. Our proposal, called the regularity axiom, has a more natural
interpretation than the hierarchical strength axiom of Faigle and Kern [11], which is merely a
combinatorial axiom. Our main achievement is Theorem 6, which shows that there is a unique
marginalist value satisfying the regularity axiom and efficiency. This is done through an anal-
ogy with networks and electrical circuits, explained in Section 5. The efficiency and regularity
axioms are shown to be respectively equivalent to the first and second Kirchhoff’s laws. A last
section is devoted to the study of monotonicity. It is shown that our value does not satisfy
the monotonicity axiom in general, but a weaker form of monotonicity, which is the aggregate
monotonicity.

In the paper, N := {1, 2, . . . , n} refers to the finite set of players. In order to avoid heavy
notations, we will often omit braces for subsets, by writing i instead of {i} or 123 for {1, 2, 3}.
Furthermore, cardinalities of subsets S, T, . . . will be denoted by the corresponding lower case
letters s, t, . . .

2 Regular games

Classical cooperative games on N , deals with situations where all coalitions of players are
feasible. Myerson has been the first who introduced coalition structures where only a subset of
the power set of players represent valid coalitions. These latter are defined from a communication
situation between the players, leading to the communication graph.

Let (N,L) be a non-oriented graph, where the vertices represent the players, and the edges
denote the possibility to communicate between the players. As a result, the feasible coalitions
consist of all subsets of N for which the induced subgraph is connected. In other words, these
coalitions are those corresponding to the communication situation between the players: A ⊆ N
is feasible if and only if there is a communication chain for any pair of players of A.

For instance, let n := 3 and the following communication situation between the players:
player 1 is connected to player 2, and player 2 is connected to player 3. Then the set of feasible
coalitions is {∅, 1, 2, 3, 12, 23, N}.

In all the paper, we are only interested by situations where all players can together cooperate,
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that is to say, N is a feasible coalition.
Let us consider N a subcollection of the power set 2N of N . Then we call (N,N ) a set

system on N if N contains ∅ and N . In the sequel, (N,N ) always denotes a set system.
Elements of N are called (feasible) coalitions. For any two coalitions A,B of N , we say that

A is covered by B, and write A ≺ B, if A ( B and A ⊆ C ( B, with C ∈ N , implies C = A.

Definition 1 (N,N ) is a regular set system if it satisfies the following property:

∀S, T ∈ N such that S ≺ T in N , then |T \ S| = 1.

If in addition, the regular set system has a lattice structure, then we call it a regular set lattice.
For any two coalitions S, T in a set system (N,N ), we call maximal chain from S to T any

sequence (S0, S1, . . . , Sm) of elements of N such that S0 = S, Sm = T , and Si ≺ Si+1 for every
0 ≤ i ≤ m− 1. If S and T are not specified, maximal chains are understood to be from ∅ to N .
Note that we find in [14] Definition 1 under the equivalent form (ii) below:

Proposition 1 Let (N,N ) be a set system. Then the following assertions are equivalent:

(i) (N,N ) is a regular set system.

(ii) All maximal chains of (N,N ) have length n, i.e., all maximal chains have
exactly n + 1 elements.

Proof: Assuming that (N,N ) is regular, let C be a maximal chain of (N,N ). Every element
of C covers the previous one, and then contains only one extra player. Thus C contains n + 1
elements. Conversely, if (N,N ) is not regular, i.e. there are two elements S, T such that S ≺ T
and |T \S| ≥ 2, then any maximal chain going through S and T has necessarily less than n + 1
elements. �

Example Let (N,L) be a connected communication graph. Then the resulting set system of
feasible coalitions is a regular set sytem.

The converse is clearly not true: a regular set system does not necessarily correspond to
a communication situation. A necessary (but not sufficient) condition is that all coalitions
consisting of one player, are feasible.

Note that regular set systems also satisfy the following properties, which straightforwardly
derive from the definition:

(iii) One-point extension: ∀S ∈ N , S 6= N, ∃i ∈ N \ S such that S ∪ i ∈ N .

(iv) Accessibility: ∀T ∈ N , T 6= ∅,∃j ∈ T such that T \ j ∈ N .

These properties are not sufficient to characterize regular set systems, and are actually used by
Labreuche as an underlying structure of games in [15].

What is interesting for the sequel, the set of regular set systems is a general class embodying
some classical structures such as distributive lattices and convex geometries [3]. We now present
them.

A Jordan-Dedekind poset is any poset such that all its maximal chains between any two
elements have the same length. Note that if the Jordan-Dedekind poset has least and greatest
elements, it is sufficient to verify that all its maximal chains between them have the same length.
Thus we call Jordan Dedekind set system any Jordan-Dedekind poset which is a set system. A
convex geometry is any set system (N,N ) satisfying
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(C1) One-point extension property.

(C2) Intersection closure: ∀A,B ∈ N , A ∩ B ∈ N .

The dual set system of the convex geometry is called antimatroid, that is to say any set
system satisfying

(A1) Accessibility property.

(A2) Union closure.

A lattice is distributive when the infimum and the supremum obey the distributivity law.
For any poset (P,6), a subset Q ⊆ P is called a downset of (P,6) if x 6 y and y ∈ Q imply
x ∈ Q. We denote by O(P ) the set of all downsets of P . Besides, a join-irreducible element
x of a lattice (L,≤) is an element that is not the least one, and for which (x = y ∨ z) implies
(x = y or x = z). It is known that the set of all downsets of (P,6) endowed with the inclusion
relation is a distributive lattice. Conversely, a fundamental Theorem due to Birkhoff [4] says
that any distributive lattice (L,≤) is isomorphic to the set O(J ) of all downsets of the set J
of join-irreducible elements of L. Consequently, for any distributive lattice (L,≤), there is a
poset (P,6) such that (L,≤) has the isomorphic form O(P ). Moreover, it is also known that
distributive lattices which are set systems coincide with the class of set systems closed under
intersection and union. Finally, we will call distributive regular set system any distributive
lattice given under the form O(P ), where P is endowed with the appropriate partial order
relation 6.

We present now the following inclusion diagram where these set systems structures fit into
each other (see Fig. 1).

Proposition 2

(1) The class of Jordan-Dedekind set systems strictly includes regular set systems.

(2) The class of regular set systems strictly includes regular set lattices.

(3) The class of regular set lattices strictly includes convex geometries and antimatroids.

(4) The intersection of the classes of convex geometries and antimatroids coincides with
the class of distributive regular set systems.

(5) The class of distributive regular set systems strictly includes distributive regular set
systems isomorphic to direct products of linear lattices.

(6) The class of direct products linear lattices strictly includes Boolean lattices.

Proof: We show the successive inclusions (1) to (4), (5) and (6) being well known or evident.
(1) is clear since for any regular set system, for any two coalitions S and T such that S ⊆ T ,

all maximal chains from S to T have clearly t−s+1 elements. However, the reverse property is
not true. Indeed, it is self-evident that for any n ≥ 3, the poset {∅, 1, 2, . . . , n,N} is a Jordan-
Dedekind set system but is not regular, since its maximal chains have length 2 and should have
length n.

About (2), we have only to show that the inclusion is strict: for n = 4, we easily see that
the set system N := {∅, 1, 2, 13, 23, 14, 24, 123, 124, 1234} is regular but {1} and {2} have no
supremum thus (N,N ) is not a lattice.
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By a simple induction using (C1), we show that any maximal chain of a convex geometry
(N,N ) has necessarily length n. By Proposition 1, (N,N ) is a regular set system. This holds
for an antimatroid, by the duality principle. Besides, the convex geometry and the antimatroid
are lattices (N ,⊆,∨,∩, N, ∅) and (N ,⊆,∪,∧, N, ∅) where A∨B := ∩{C ∈ N | A∪B ⊆ C} and
A ∧ B := ∪{C ∈ N | A ∩ B ⊆ C}, respectively. Conversely, the set system {∅, 1, 2, 13, 23, 123}
is a regular lattice but is neither a convex geometry nor an antimatroid. Thus, (3) is shown.

Now, let (N,6) be any poset and L := O(N) be the distributive lattice of all downsets of
(N,6). As said above, it is known that the union and the intersection of any two downsets is also
a downset. Furthermore, it is clear that condition (C1) holds since from any downset S 6= N
of (N,6), adding a minimal element of the restricted poset (N \S,6) in S leaves S a downset.
By withdrawing a maximal element of S 6= ∅, the dual condition (A1) holds. Conversely, if
a set system is a convex geometry and an antimatroid, then supremum and infimum laws are
union and intersection, which immediately implies the distributivity law. Thus (4) is shown.

Remark that (5) and (6) are seen as set system inclusions in the sense that for any direct
product of linear lattices L, there is a regular set system (N,N ) that is isomorphic to L. In
addition, for any Boolean lattice B, there is an integer n such that B is isomorphic to 2N . �

Set systems

Jordan Dedekind set systems

Regular set systems

Regular set lattices

Distributive
regular

set systems

Convex
geometries Antimatroids

Direct products of
linear lattices

Boolean
lattices

Figure 1: Inclusion diagram of set systems

We call regular game any game defined on a regular set system, that is to say, any mapping
v defined over a regular set system (N,N ) such that v(∅) = 0. We denote by G(N ) the R-vector
space of games over the set system (N,N ). Remark that for the Boolean lattice N := 2N , G(N )
is the set of classical cooperative games.
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Considering a regular set system (N,N ), the following mappings

δS : N → R

A 7→

{

1 if A = S,

0 otherwise,

form a special collection of games in G(N ), that are called identity games, for S ∈ N . Note
that the mapping δ∅ is not a game since δ∅(∅) = 1.

We also introduce symmetric games, whose worths depend only on the cardinality of the
coalitions, and equidistributed games of G(N ), being regular games v that are both symmetric
and additive, that is to say, worths v(S) are proportional to s:

∃ν ∈ R such that ∀S ∈ N , v(S) = ν · s.

As a consequence of Proposition 2, the material we propose in what follows, is convenient
as well for games on convex geometries [1, chap.7], and thus for games with precedence con-
straints [11], where feasible coalitions of players are the only ones that respect a given precedence
structure on the set of players: let (N,6) be a partially ordered set of players, where 6 is a
relation of precedence in the sense that i 6 j if the presence of j enforces the presence of i in
any coalition S ⊆ N . Hence, a coalition of N is a subset S of N such that i ∈ S and j 6 i
entails j ∈ S. Consequently, the collection C(N) of all coalitions of N is the collection of all
downsets of (N,6), which is a distributive regular set system.

3 Probabilistic and efficient values

From now on, (N,N ) refers to a regular set system. A value on G(N ) is a mapping Φ : G(N ) →
Rn that associates to each game v a vector (Φ1(v), . . . ,Φn(v)), where the real number Φi(v)
represents the payoff to player i in the game v. The Shapley value for cooperative games ΦSh

is well known [17].

∀v ∈ G(2N ),∀i ∈ N, Φi
Sh(v) :=

∑

S⊆N\i

s!(n − s − 1)!

n!
(v(S ∪ i) − v(S)). (1)

Following the work of Weber [18], Bilbao has defined and axiomatized a class of values for
games defined over convex geometries, the probabilistic values. It is possible to define such
values for regular games.

First, we denote by S + i the coalition S ∪ i whenever S 6∋ i. Thus, writing S + i ∈ N infers
two relations: i 6∈ S and S ∪ i ∈ N . Similarly, S − i denotes the coalition S \ i and infers S ∋ i.

Definition 2 A value Φ on G(N ) is a probabilistic value if there exists for each player i, a
collection of real numbers

{

pi
S | S ∈ N , S + i ∈ N

}

satisfying pi
S ≥ 0 and

∑

S∈N|S+i∈N pi
S = 1

such that
Φi(v) =

∑

S∈N|S+i∈N

pi
S (v(S ∪ i) − v(S)), (2)

for every game v ∈ G(N ).
If no condition is required for real numbers pi

S, then we call Φ a marginalist value.

Observe that for a probabilistic value, the participation of player i is assessed to be a weighted
average of his marginal contribution v(S ∪ i)− v(S) whenever i joins coalition S (provided that
S ∪ i is a feasible coalition), pi

S being the subjective probability that i joins S.
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In a cooperative game, it is assumed that all players decide to cooperate among them and
form the grand coalition N . This leads to the problem of distributing the amount v(N) among
them. In this case, a value Φ is efficient if it satisfies:

Efficiency axiom (E): ∀v ∈ G(N ),
∑n

i=1 Φi(v) = v(N).

We consider also the following axioms.

Linearity axiom (L): ∀i ∈ N,∀v,w ∈ G(N ),∀α ∈ R, Φi(αv + w) = αΦi(v) + Φi(w).

Player i is a null player when his contribution to all coalitions S ∪ i ∈ N formed with his
incorporation to S ∈ N has no effect.

Definition 3 A player i ∈ N is null for v ∈ G(N ) if

∀S ∈ N such that S + i ∈ N , v(S ∪ i) = v(S).

Player i is dummy for v ∈ G(N ) if

∀S ∈ N such that S + i ∈ N , v(S ∪ i) − v(S) =

{

v(i), if i ∈ N

0, else.

Null axiom (N): If player i is null for v, then Φi(v) = 0.

The dummy axiom of Bilbao introduced to axiomatize games on convex geometries, is:

Dummy axiom (D): If player i is dummy for v, then Φi(v) = v(i), whenever i ∈ N
and 0 otherwise.

Monotonicity axiom (M): If the game v ∈ G(N ) is monotonic, that is to say,
S ⊆ T implies v(S) ≤ v(T ) for all S, T ∈ N , then the values Φi are nonnegative.

Let us present the axiomatization of probabilistic values for games on regular set systems,
as already seen in [1].

Proposition 3 Let Φ a value on G(N ). Under axioms (L) and (N), Φ is a marginalist value.

Proof: First, under (L), for all i ∈ N , there is a unique collection of real numbers {ci
S | S ∈

N , S 6= ∅} such that

Φi(v) =
∑

S∈N ,S 6=∅

ci
S v(S),

for every game v ∈ G(N ). Indeed, the collection of identity games is clearly a basis of G(N )
since every game v can be written as

v =
∑

S∈N ,S 6=∅

v(S) δS ,

in a unique way. By axiom (L),

Φi(v) =
∑

S∈N ,S 6=∅

v(S)Φi(δS).
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Now, this formula can also write

Φi(v) =
∑

S∈N|
S−i∈N or S+i∈N

v(S)Φi(δS) +
∑

S∈N|
S−i6∈N or S+i6∈N

v(S)Φi(δS).

Next, assume that S ∈ N , i 6∈ S and S + i 6∈ N (resp. S ∈ N , i ∈ S and S − i 6∈ N ). Thus
i is null for δS and, by (N), Φi(δS) = 0. Then, the second part of the above sum vanishes.
Therefore

Φi(v) =
∑

S∈N|S+i∈N

[v(S)Φi(δS) + v(S ∪ i)Φi(δS∪i)]

=
∑

S∈N|S+i∈N

[v(S ∪ i) − v(S)] Φi(δS∪i) +
∑

S∈N|S+i∈N

v(S) [Φi(δS) + Φi(δS∪i)]

=
∑

S∈N|S+i∈N

Φi(δS∪i) [v(S ∪ i) − v(S)] +
∑

S∈N|S+i∈N

v(S)Φi(δS + δS∪i).

Since i is null for δS + δS∪i whenever S ∈ N and S + i ∈ N , we conclude that Φi(δS + δS∪i) = 0
by (N). Thus

Φi(v) =
∑

S∈N|S+i∈N

Φi(δS∪i) [v(S ∪ i) − v(S)]. (3)

�

Observe now that the dummy axiom implies the null axiom since a null player i is a par-
ticular dummy player satisfying v(i) = 0. Bilbao has shown that values for games over convex
geometries (that are particular regular games) which satisfy axioms (L), (D), (M) and (E),
are precisely the efficient probabilistic values [1, chap.7].

We improve now this result by weakening the set of axioms and considering more general
structures.

Theorem 4 Let Φ be a value on G(N ). Under axioms (L), (N), (M) and (E), Φ is a
probabilistic and an efficient value.

Proof: Whenever i 6∈ S, we denote by pi
S the coefficient Φi(δS∪i) of formula (3) above.

Let choose some T ∈ N and define the game of G(N )

ûT (S) =

{

1, if S ) T

0, else.

By definition, ûT is monotonic. Letting i ∈ N and T ∈ N such that T + i ∈ N , under (L), (N)
and (M), we get:

Φi(ûT ) =
∑

S∈N|S+i∈N

pi
S (ûT (S ∪ i) − ûT (S))

= pi
T ≥ 0.

Lastly, it remains to show under the efficiency axiom that for all i ∈ N , the collections of
number {pi

S | S ∈ N : S + i ∈ N} form probability distributions, so that we could conclude to
the result. For any i ∈ N , let us consider the game

ui(S) =

{

1, if S ∋ i

0, else.
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Then, on the one hand, we have under (E),

n
∑

j=1

Φj(ui) = ui(N) = 1.

And on the other hand ,

n
∑

j=1

Φj(ui) =
n

∑

j=1

∑

S∈N|S+j∈N

pj
S (ui(S ∪ j) − ui(S))

=
∑

S∈N|S+i∈N

pi
S (ui(S ∪ i) − ui(S)) +

∑

j∈N\i

∑

S∈N|S+j∈N

pj
S (ui(S ∪ j) − ui(S))

=
∑

S∈N|S+i∈N

pi
S ,

since differences of the first sum always worth 1 whereas differences of the second one vanish.
This achieves the proof. �

We present now an important result about marginalist values, already known for convex
geometries [1, chap.7].

Proposition 5 Let Φ be a marginalist value on G(N ), defined by

Φi(v) =
∑

S∈N|S+i∈N

pi
S (v(S ∪ i) − v(S)),

for every game v and for all i ∈ N , where pi
S are real numbers. Then Φ satisfies the efficiency

axiom if and only if

∑

i∈N |i∈N

pi
∅ =

∑

i∈N |N\i∈N

pi
N\i = 1, (4)

∑

i∈N |S−i∈N

pi
S\i =

∑

i∈N |S+i∈N

pi
S , (5)

for all S ∈ N \ {∅, N}.

Proof: For every v ∈ G(N ), we compute the sum of the values Φi(v).

n
∑

i=1

Φi(v) =

n
∑

i=1

∑

S∈N|S+i∈N

pi
S (v(S ∪ i) − v(S))

=
∑

S∈N

(

∑

i∈N |S−i∈N

pi
S\i −

∑

i∈N |S+i∈N

pi
S

)

v(S)

=
∑

S∈N|
S 6=∅,N

(

∑

i∈N |S−i∈N

pi
S\i −

∑

i∈N |S+i∈N

pi
S

)

v(S) +
(

∑

i∈N |N−i∈N

pi
N\i

)

v(N).

If the coefficients satisfy (4) and (5), then it is clear that Φ satisfies the efficiency axiom.
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Conversely, fix T ∈ N such that T 6= ∅, N and consider the identity game δT . The efficiency
axiom straightforwardly implies that

∑n
i=1 Φi(δT ) = 0. Applying the above equality to δT , we

have
n

∑

i=1

Φi(δT ) = 0 =
∑

i∈N |T−i∈N

pi
T\i −

∑

i∈N |T+i∈N

pi
T ,

that is to say (5) is proven. If T = N , then the equality becomes

n
∑

i=1

Φi(δN ) = 1 =
∑

i∈N |N−i∈N

pi
N\i,

which partially proves (4). Finally, consider the game û∅ :=
∑

T∈N ,T 6=∅ δT . Then

n
∑

i=1

Φi(û∅) = 1 =

n
∑

i=1

∑

S∈N|S+i∈N

pi
S (û∅(S ∪ i) − û∅(S))

=
∑

i∈N |i∈N

pi
∅ û∅(i) =

∑

i∈N |i∈N

pi
∅,

which achieves the proof. �

4 The Shapley value for regular games

If we focus now on the particular case of classical cooperative games, we know that Weber has
characterized the Shapley value on G(2N ) as the unique probabilistic value satisfying the well
known symmetry axiom, assuming that the coefficients of the value should not depend on the
labelling of the elements of N , that is a very natural property.

The fundamental idea of the symmetry axiom rests on permutations of players. Symmetry
could be naturally defined in regular games. Unfortunately, this generalization has a very
limited interest: apart from particular cases of regular set systems, players generally cannot be
permuted, which leaves this axiom ineffective.

Faigle and Kern attempted to generalize the Shapley value for their games under precedence
constraints [11], which are games over distributive regular set systems (cf. Proposition 2), and
thus particular regular games: in their framework, maximal chains correspond to what they
call feasible ranking of players. For that, the hierarchical strength axiom is introduced, which
is actually difficult to interpret.

We propose a different approach for the axiomatization of the Shapley value on G(N ).

Consider first the classical Shapley value on G(2N ) where pi
S := s!(n−s−1)!

n! (cf. (1)).

Observing that for any subsets A,A + i + j ⊆ N , the equality pi
A + pj

A∪i = pj
A + pi

A∪j holds,
one may wonder if this property is sufficient to form the Shapley value from a probabilistic and
efficient value. Actually, the answer is positive. Furthermore, one can generalize it to any case
of game defined on a regular set system.

Indeed, let us consider again a 3-players game whose communication graph links player 1
with player 2, and player 2 with player 3, but not 1 with 3. We remind that the set of feasible
coalitions is thus {∅, 1, 2, 3, 12, 23, N}. Besides, let v be any equidistributed game (Section 2).
Since v is additive as well as symmetric, the sum of the marginal contributions of players for
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forming any feasible coalition should not depend on the chosen order. Considering for instance
the maximal chains (∅, 1, 12) and (∅, 2, 12) then the following should hold:

p1
∅ v(1) + p2

1 (v(12) − v(1)) = p2
∅ v(2) + p1

2 (v(12) − v(2)),

that is equivalent to

p1
∅ + p2

1 = p2
∅ + p1

2,

since v is equidistributed. A similar result is also obtained by considering the formation of the
coalition 23, according to whether player 2 is the first to join or not the coalition. Likewise,
from coalition {2}, there are two ways to achieve the grand coalition, which is written:

p1
2 (v(12) − v(2)) + p3

12 (v(123) − v(12)) = p3
2 (v(23) − v(2)) + p1

23 (v(123) − v(23)),

that is equivalent to

p1
2 + p3

12 = p3
2 + p1

23.

In this way, assuming that the value satisfies also the efficiency axiom, by combining the
above equations with those given by (4) and (5), we have to solve a linear system, then we
obtain a unique solution for the vector of coefficients (p1

∅, p
2
∅, p

2
1, p

3
1, p

1
2, p

3
2, p

3
12, p

2
13, p

1
23):

p1

∅
= 0.3

p1

2
= 0.2

p1

23
= 0.5

p2

1
= 0.3

p2

∅
= 0.4

p3

∅
= 0.3

p3

∅
= 0.3

p3

2
= 0.2

p3

12
= 0.5

∅

1

12

N

23

32

So as to formalize this, we introduce the following material. Let A,B be any two coalitions
of N such that A ⊆ B, and C be a maximal chain from A to B. Let σ be any permutation
of N such that C may be written (A,Sσ(a+1), . . . , Sσ(b)), where Si denotes the first coalition
containing player i in the chain. Note that σ is unique if A = ∅ and B = N . Besides, for any
marginalist value Φ whose coefficients are given by (2) and any game v ∈ G(N ), we denote the
cumulative sum of marginal contributions of players of B \ A along C by:

mC
Φ(v) :=

∑

i∈B\A

pi
Si\i

(

v(Si) − v(Si \ i)
)

.

Thus, for such a game, the cumulative sum of expected marginal contributions of involved players
of B \A should not depend on the considered maximal chain from A to B, since the path taken
from A to B has no effect on the successive increasing worth v(C), A ⊆ C ⊆ B.

In this spirit, we propose the following axiom.

11



Regularity axiom (R): For any equidistributed game v ∈ G(N ), for any couple
of maximal chains C1, C2 of (N,N ), then mC1

Φ (v) = mC2

Φ (v).

We call regular value any marginalist value satisfying the regularity axiom.
Actually, the regularity axiom may be seen as a generalization of the Shapley’s symmetry

axiom. The next result confirms this view, and gives a generalization of the Shapley’s result
asserting the unicity of the value Φ under the linearity axiom, the null axiom, the efficiency
axiom and the regularity axiom.

Theorem 6 Let (N,N ) be a regular set system. Then there is a unique efficient regular value
ΦK on G(N ).

To show this result, we need to introduce new material and definitions, that is done in the
next section and in Appendix A.

5 The Shapley value in the framework of network theory

Considering results of previous section, let us fix a regular set system (N,N ) and a marginalist
value Φ on G(N ), and let {pi

S | i ∈ N,S ∈ N s.t. S+i ∈ N} be the set of associated coefficients.
We associate to any regular set system (N,N ) an electrical network, that is, an interconnection
of electrical components such as resistors. Precisely, we consider the mapping

(N,N ) 7→ E(N,N ),

where E(N,N ) is built in this way: nodes of E(N,N ) are simply the elements of N , whereas
its branches are directed wires given by the couples bi

S := (S, S + i) of (N,N ). Note that at
this stage, E(N,N ) may be seen as the Hasse diagram of (N,N ), since the bi

S ’s are given by
the covering relation ≺ of (N,N ). We complete the building by adding another branch bN,∅ by
connecting the node N with the node ∅.

In E(N,N ), we call circuit1, any sequence (b1, . . . , bm) of branches such that the bj ’s are
different and two consecutive edges are incident, as well as b1 and bm. For convenience, we also
may write a circuit as a sequence of m nodes (S0, S1, . . . , Sm = S0).

Now, one can attribute to the branches bi
S (resp. bN,∅) some weights IS→S∪i and VS→S∪i

(resp. IN→∅ and VN→∅), where Ib’s are the worths of a directed commodity flowing in the
branches called electrical current, and where Vb’s are worths proportional to currents Ib’s: Vb’s
are called potential drops and satisfy the well-known Ohm’s law : Vb = Rb · Ib, where Rb is said
to be the resistance of the non-oriented branch b. In our framework, we assign for any electrical
network a unitary resistance to every branch bi

S , so that Vb = Ib. Precisely, the necessary and
sufficient following conditions for the electrical current and potential drops must be satisfied:

First Kirchhoff’s law: The sum of all currents entering a node is equal to the
sum of all currents leaving the node.

Second Kirchhoff’s law: The directed sum of the electrical potential drops around
a circuit must be zero.

Therefore, let us now assign to any branch bi
S the coefficient pi

S of the marginalist value Φ,
with IN→∅ := 1. Thus Proposition 5 asserts that Φ satisfies the efficiency axiom if and only if
the first Kirchhoff’s law is satisfied in E(N,N ).

1This terminology shall also be used for (N,N )
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We also establish a straight link between the second Kirchhoff’s law and the regularity axiom
in Corollary 8. In this respect, for any circuit M := (b1, . . . , bm) on (N,N ), for j = 1, . . . ,m, if
bj represents the couple (S, S + i), we denote by p̄j = p̄i

S the signed coefficient of Φ associated
to bj relatively to its orientation in M:

p̄i
S :=

{

pi
S if in M, bj is directed in accordance with ⊆,

− pi
S otherwise.

As a consequence, the second Kirchhoff’s law fitted for the marginalist value Φ may be
expressed by

Circuit property: For any circuit (b1, . . . , bm) of (N,N ),
∑m

j=1 p̄j = 0.

We call potential over (N,N ) any real-valued mapping V defined on N satisfying for any
coefficient pi

S

pi
S = V(S + i) − V(S). (6)

Proposition 7 Let Φ be a marginalist value on G(N ) and {pi
S | i ∈ N,S ∈ N | S + i ∈ N}

be the set of associated coefficients. Then the circuit property holds if and only if there exists a
potential over (N,N ).

Moreover, for a given instance of coefficients p := (pi
S)(S,S+i)∈N 2 satisfying the circuit prop-

erty, there is a unique potential V vanishing at ∅. We call it the potential associated to p and
grounded on ∅, and denote it by Vp

0
.

Proof: The sufficiency condition is clear. Indeed, let (b1, . . . , bm) be a circuit of (N,N ),
where the bj ’s belong to E and (S0, S1, . . . , Sm = S0) be the same circuit expressed in terms of
coalitions. Then

m
∑

j=1

Vbj
=

m
∑

j=1

(V(Sj) − V(Sj−1))

= V(Sm) − V(S0)

= 0.

Conversely, assume that the circuit property holds. Let us define by induction on the cardinality
of the coalitions, the following correspondance:

V(∅) := 0,

∀S ∈ N \ {∅}, and i ∈ S, V(S) := V(S \ i) + pi
S\i.

Then by definition, V has the required property of a potential. Thus it remains to show that
this mapping is properly defined. Indeed, let S ∈ N and i, k two distinct players in S. By an
inductive argument, we make the assumption that V is properly defined on {T ∈ N | t < s}.
Thus we must show that V(S \ i) + pi

S\i = V(S \ k) + pk
S\k. Let S0 be any maximal element

of the set {T ∈ N | T ⊆ S \ i, T ⊆ S \ k} and m := s − s0 (m ≥ 2). Thus there is a circuit
M = (b1, . . . , b2m) such that b1 is directed from S0, bm = bi

S\i and bm+1 = bk
S\k. By induction,

we easily compute V(S \ i) = V(S0) +
∑m−1

j=1 p(bj) and V(S \ k) = V(S0) +
∑2m

j=m+2 p(bj).
Besides, if we denote by (S0, S1, . . . , S2m = S0) the same circuit in terms of coalitions, we get
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by the circuit property

2m
∑

j=1

Vbj
= 0

iff

m
∑

j=1

p(bj) =

2m
∑

j=m+1

p(bj)

iff V(S0) +

m−1
∑

j=1

p(bj) + pi
S\i = V(S0) +

2m
∑

j=m+2

p(bj) + pk
S\k

iff V(S \ i) + pi
S\i = V(S \ k) + pk

S\k.

Now, we show that if there are two mappings V1 and V2 satisfying (6), then they are the
same up to an additive constant. Let us denote by c the real number V2(∅) − V1(∅). For any
S ∈ N , there is a maximal chain (T0 = ∅, T1, . . . , Ts = S) from ∅ to S. Thus, by denoting ij
the singleton Tj \ Tj−1, we get by (6)

Vk(S) = Vk(Ts) = Vk(Ts−1) + pis
Ts−1

= Vk(Ts−2) + p
is−1

Ts−2
+ pis

Ts−1
= · · · = Vk(∅) +

s
∑

j=1

p
ij
Tj−1

,

for k = 1, 2. Thus, V2(S)−V1(S) = V2(∅)−V1(∅) = c. As a consequence, by fixing V on any
vertex, we have a unique possibility for the potential, which gives Vp

0
if ∅ is assigned to 0. �

Lastly, we deduce the following result, asserting that Φ satisfies the regularity axiom if and
only if the second Kirchhoff’s law is satisfied in E(N,N ).

Corollary 8 Let Φ be a marginalist value on G(N ):

Φi(v) =
∑

S∈N|S+i∈N

pi
S (v(S ∪ i) − v(S)),

where pi
S are real numbers, for all i ∈ N . Then Φ satisfies the regularity axiom if and only if

the circuit property holds.

Proof: The regularity axiom means that along any maximal chain of (N,N ), for an equidis-
tributed game v, the cumulative sum of marginal contributions of players do not depend on the
considered maximal chain. Since v is equidistributed, worths v(S) only depend on a multiplica-
tive constant, thus it is equivalent to only consider coefficients along the chain.

Assuming firstly that the circuit property holds, we consider any potential V associated to
the coefficients pi

S’s. Therefore, if C := (∅, Sσ(1), . . . , Sσ(n) = N) is any maximal chain of (N,N )
and v is any equidistributed game defined by v(S) := ν · s, ∀S ∈ N , we obtain

mC
Φ(v) = ν

n
∑

j=1

(V(Sσ(j)) − V(Sσ(j) \ σ(j)))

= ν · (V(N) − V(∅)),

which does not depend on C, and thus the regularity axiom holds.
Conversely, if the regularity axiom holds, we build the same correspondance than in the

proof of Proposition 7, that is to say
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V(∅) := 0,

∀S ∈ N \ {∅}, and i ∈ S, V(S) := V(S \ i) + pi
S\i.

Then by a similar argument than in the proof of Proposition 7, we show that V is a potential,
which will implies that the circuit property holds. Once again, we just have to show that
V is properly defined, that is to say, by making again the assumption that V is properly
defined on {T ∈ N | t < |S|}, where S ∈ N and i, k ∈ S (i 6= k), we must show that
V(S \ i) + pi

S\i = V(S \ k) + pk
S\k. Let C1 := (b1

1, . . . , b
1
n) and C2 := (b2

1, . . . , b
2
n) be any two

maximal chains such that b1
s = (S \ i, S), b2

s = (S \ k, S) and b1
j = b2

j for every j > s. We easily

verify that V(S \ i) =
∑s−1

j=1 p(b1
j ) and V(S \ k) =

∑s−1
j=1 p(b2

j ). Besides, by the regularity axiom

applied on C1 and C2

n
∑

j=1

p(b1
j) =

n
∑

j=1

p(b2
j )

iff V(S \ i) + pi
S\i +

n
∑

j=s+1

p(b1
j) = V(S \ k) + pk

S\k +

n
∑

j=s+1

p(b2
j)

iff V(S \ i) + pi
S\i = V(S \ k) + pk

S\k.

�

To sum up, we could say with a slight abuse of language that the unique efficient regular
value on G(N ), is also the unique marginalist value satisfying the Kirchhoff’s laws in the sense
that it satisfies (4), (5) and the circuit property. That is why we may call ΦK the Kirchhoff’s
value or also the Shapley-Kirchhoff value.

This being introduced, we have now a sufficient material to show Theorem 6, that is made
in Appendix A.

6 Shapley-Kirchhoff value and monotonicity axioms

At this point of the work, a natural question arises about a last property of the Shapley-Kirchhoff
value. Indeed, ΦK satisfies linearity axiom, null axiom, efficiency axiom and regularity axiom.
However, we have no information about the monotonicity axiom, that would make of ΦK a
probabilistic value. With this in mind, we present the following handy short result.

Lemma 9 Let Φ be a marginalist value on G(N ), defined by

Φi(v) =
∑

S∈N|S+i∈N

pi
S (v(S ∪ i) − v(S)),

for every game v and for all i ∈ N , where pi
S are real numbers. Then Φ satisfies the monotonicity

axiom if and only if all pi
S’s are nonnegative.

Proof: Let v be a game on G(N ). If all pi
S’s are nonnegative and v monotonic, Φi(v) is clearly

nonnegative for any i ∈ N .
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Conversely, let i ∈ N and S ∈ N with S + i ∈ N , such that pi
S < 0. Let ûS ∈ G(N ) be the

unanimity game defined by

∀T ∈ N , ûS(T ) =

{

1 if T ) S

0 otherwise.

Thus, uS is clearly monotonic, nevertheless Φi(v) = pi
S < 0. �

In the light of this result, for ΦK to satisfy monotonicity axiom, we should show that coeffi-
cients pi

S ’s are nonnegative. Actually, it turns out that there are regular set systems for which
the Shapley-Kirchhoff value does not satisfy the monotonicity axiom, as the counterexample
given in Appendix B proves it.

Nevertheless, it appears that there are other kinds of monotonicity axioms in the framework
of cooperative games, as Young worked out in [19]. Indeed, monotonicity is a general principle
of fair division which states that as the underlying data of a problem change, the solution
should change in parallel fashion. We give the following monotonicity axioms adapted to our
framework (cf. p.7).

A frequently encountered form of monotonicity is aggregate monotonicity. This principle
states that if the worth of the coalition of the whole increases, while the worth of all other
coalitions remains fixed, then no player should get less than before.

Aggregate monotonicity axiom (AM): Let v,w two games in G(N ) such that
w(N) ≥ v(N) and w(S) = v(S) for other coalitions S ∈ N . Then, ∀i ∈ N, Φi(w) ≥
Φi(v).

Coalitional monotonicity is satisfied if an increase in the worth of a particular coalition
implies no decrease in the allocation to any member of that coalition. Thus the following axiom
is stronger than the previous one.

Coalitional monotonicity axiom (CM): Let S ∈ N and v,w two games in
G(N ) such that w(S) ≥ v(S) and w(T ) = v(T ) for other coalitions T ∈ N . Then,
∀i ∈ S, Φi(w) ≥ Φi(v).

Coalitional monotonicity refers to monotonic changes in the absolute worth of the coalitions
a given player. There are also situations where the worth of coalitions containing a given player
i increase relatively to the worth of coalitions not containing i:

Strong monotonicity axiom (SM): Let v,w two games in G(N ) and a player i
such that for every S ∈ N satisfying S + i ∈ N , w(S ∪ i)− w(S) ≥ v(S ∪ i) − v(S).
Then Φi(w) ≥ Φi(v).

Having described these monotonicity axioms, we give results in context of games over regular
set systems.

Proposition 10 Under linearity and null axioms, (M), (SM) and (CM) are equivalent.
In addition, these axioms are strictly stronger than (AM), whatever the regular set system is.

Proof: We successively show that (M) ⇔ (SM) and (M) ⇔ (CM).
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• Due to Lemma 9, if (M) holds, then (SM) also holds since Φi(v) depends only on the
marginal contributions of player i. Conversely, let i ∈ N and S ∈ N with S + i ∈
N , such that pi

S < 0, so that (M) is not true. Let v,w be any two games such that
w(S ∪ i) − w(S) = v(S ∪ i) − v(S) + 1, and for any other coalition T ∈ N satisfying
T + i ∈ N , w(T ∪ i)−w(T ) = v(T ∪ i)− v(T ). Then assumption of (SM) is satisfied but
Φi(w) − Φi(v) = pi

S < 0, that is to say (SM) does not hold.

• Due to Lemma 9, if (M) holds then (CM) clearly holds. Indeed, if only the worth of
a coalition S increases in the game v, then for any player i of the coalition, in Φi(v),
the associated marginal contribution pi

S\i(v(S) − v(S \ i)) increases, and other marginal

contribution remain the same. Conversely, let us assume that (M) is not satisfied, that
is to say there is a player i ∈ N and a coalition S ∈ N with S + i ∈ N , such that pi

S < 0.
Let v,w be any two games such that w(S ∪ i) = v(S ∪ i) + 1, and w(T ) = v(T ) for any
other coalition T ∈ N . Then Φi(w)−Φi(v) = pi

S < 0, that is to say (SM) does not hold.

Second part of the result is clear and is an immediate consequence of Lemma 11. �

Thus, as the aggregate monotonicity axiom is weaker than the classical one, one may wonder
if the Shapley-Kirchhoff values satisfies it. The answer is actually positive and rests on the
following characterization.

Lemma 11 Let Φ be a marginalist value on G(N ), defined by

Φi(v) =
∑

S∈N|S+i∈N

pi
S (v(S ∪ i) − v(S)),

for every game v and for all i ∈ N , where pi
S are real numbers. Then Φ satisfies the aggregate

monotonicity axiom if and only if for every i in N such that N \ i ∈ N , pi
N\i is nonnegative.

Proof: The sufficient condition derives from Lemma 9. Indeed, if all pi
N\i’s are nonnegative

and v,w any two games having the same worths, except for N with w(N) ≥ v(N), then
Φj(w) −Φj(v) = pj

N\j (w(N) − v(N)) or vanishes, depending on whether N \ j is a coalition of

N or not. Conversely, let us assume that there is a player i ∈ N satisfying N \ i ∈ N , such that
pi

N\i < 0. Let v,w be any two games such that w(N) = v(N) + 1 and w(T ) = v(T ) for any

other coalition. Then Φi(w) − Φi(v) = pi
N\i < 0. Thus the necessary condition is satisfied. �

Finally, we show this final result, whose proof uses the Maximum Principle applied to a
valued graph (see Appendix A).

Theorem 12 For any regular set system (N,N ), the Shapley-Kirchhoff value ΦK satisfies the
aggregate monotonicity axiom.

APPENDICES

A Dirichlet problem on a graph and potentials

The problem of finding the currents on the branches of a resistor network, an entering current
being given, is easy to solve if seen as the solution of a Dirichlet problem associated to that
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network [8, 6]. Thus, we introduce now a few rudimentary notions of discrete potential theory,
in order to prove Theorems 6 and 12.

Let G = (V,E) be a non-oriented connected graph where the set of vertices V is randomly
divided into two distinct categories, a non-empty set of boundary points V0 and the set of interior
points V1 = V \V0. For any interior point x, we denote by d(x) the degree of vertex x in G, that
is to say d(x) :=

∣

∣

{

y ∈ V | {x, y} ∈ E)
}∣

∣. A function f defined on V is said to be harmonic on
G if, for points x in V1, it has the averaging property

f(x) =

∑

{x,y}∈E f(y)

d(x)
, (7)

with no restriction on the values of f at the boundary points.
Now the problem of finding a harmonic function given its boundary values is called the

Dirichlet problem, and the Uniqueness Principle for the Dirichlet problem asserts that there
cannot be two different harmonic functions having the same boundary values. We approach the
Uniqueness Principle by way of the Maximum Principle for harmonic functions.

Maximum Principle. A harmonic function f defined on V takes on its maximum
value M and its minimum value m on the boundary.

Proof: If M is the maximum value of f and if f(x) = M for x an interior point, then since
f(x) is the average of the values of f at its neighbors, these values must all equal M also. By
working our way, repeating this argument at every step, we eventually reach a boundary point
x0 for which we can conclude that f(x0) = M . That same argument works for the minimum
value m. �

Uniqueness Principle. If f and g are harmonic on V such that f = g on V0, then
f(x) = g(x) for all x ∈ V .

Proof: Let h := f − g. Then if x is any interior point,
∑

{x,y}∈E h(y)

d(x)
=

∑

{x,y}∈E f(y)

d(x)
−

∑

{x,y}∈E g(y)

d(x)
= f(x) − g(x) = h(x).

Therefore h is a harmonic function which vanishes on V0, and hence, by the Maximum Principle,
the maximum and minimum values of h are 0. Thus h is identically null, and f = g. �

Once again, let us consider graph G = ((V0, V1), E) as an electrical network, where V =
V0 ∪ V1 is the set of nodes, with |V0| = 2, and E is the set of branches, each of them having a
unit resistance. If a voltage V is given on V0, and satisfies the first Kirchhoff’s law for interior
points:

∀x ∈ V1,
∑

{x,y}∈E

(V(y) − V(x)) = 0, (8)

then V is precisely a harmonic function. Indeed, since all resistances of the branches are unitary,
the current in the oriented branch (x, y) is expressed by the potential drop V(y) − V(x).

Let x be an interior node, then solving (8) for V(x) straightforwardly gives the averaging
property (7), and by the Uniqueness Principle, we conclude that f = V. It remains to show
that such a function exists, which rests on basic linear algebra. Indeed, by expressing (8) (or
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(7)) for each interior point, we easily obtain a linear system Γ(V1) = B, Γ being a v1 × v1

morphism, V1 being the vector of unknown variables (V(x))x∈V1
, and where the right-hand

member B depends only on the values taken by V on the boundary points. Γ being an injective
endomorphism, then it is also bijective. Thus by

V1 = Γ−1(B), (9)

the existence of V follows.

Proof: [Theorem 6]
Let V0 := {∅, N} and V1 := N \ V0. By the Uniqueness Principle, given a real number R, there
is a unique potential V defined on N , such that V(∅) = 0, V(N) = R, and satisfying the first
Kirchhoff’s law on V1. Moreover, we know by (9) that V is linearly dependent on R, that is to
say, proportional to R:

∀S ∈ N , V(S) = V1

0(S) · R,

where V1

0
is the required potential for R = 1. Thus one can adjust the value of R so that

∑

S≻∅

V(S) = 1. (10)

Indeed, let CN :=
∑

S≻∅ V1

0
(S) and RN := C−1

N (note that CN is non null since by the argument
used for Maximum Principle, all V1

0
(S)’s, S 6= ∅, are necessarily strictly positive). Thus for

R = RN , (10) holds. We denote by V0 the associated potential, that is to say, satisfying
V0(∅) = 0 and V0(N) = RN .

Now, for any (S, S + i) ∈ N , define pi
S := V0(S + i) − V0(S). Therefore, the marginalist

value associated to the coefficients pi
S ’s is an efficient regular value. Indeed, by Proposition 7,

the circuit property holds, and thus by Corollary 8, the regularity axiom also holds. Besides, by
Proposition 5, the efficency axiom holds, (5) being equivalent to (8), and (4) being expressed
by (10) on the one hand, and by conservation of the flow pattern (pi

S)(S,S+i)∈N 2 on the other
hand.

Lastly, coefficients pi
S ’s being determined by the unique potential grounded on ∅ and satis-

fying (10), the unicity of ΦK is also shown. �

Proof: [Theorem 12]
Let V be a potential associated to the coefficients pi

S’s of ΦK . The source node of the electrical
network being ∅, V is necessarily greater on bound N than bound ∅. Then by the Maximum
Principle, ∀i ∈ N such that N \ i ∈ N , pi

N\i = V(N)−V(N \ i) is nonnegative. By Lemma 11,
the result follows. �

B Example of regular set system for which ΦK does not satisfy

the monotonicity axiom

Let N := {α, β, γ, 1, 2, . . . , n′} be the set of players, with N ′ := {1, . . . , n′} and n′ ≥ 1. We
make the assumption that the set of coalitions N is defined by

N :=
{

∅, N,N \ β,N \ γ
}

∪
n′
⋃

i=0

{

{α, 1, 2, . . . , i}
}

∪
⋃

S∈2N′

{

S ∪ β
}

.
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Then (N,N ) is a regular set system. The associated Shapley-Kirchhoff value defined over G(N )
satisfies the monotonicity axiom if and only if n′ < 5. Indeed, we show that if it is not the
case, coefficient pβ

N ′∪α is negative, which corresponds to a negative current in the associated
directed branch (N ′ ∪ α,N ′ ∪ αβ) (cf. Section 5). Fig. 2 is given with n′ = 5, where the bold
line represents the above mentionned branch.

Proof: The first point is to verify that (N,N ) is a regular set system. By checking that each
coalition S of N has all its successors (for inclusion order) T satisfying |T \S| = 1, we have the
result.

We compute now the different coefficients pi
S of the Shapley-Kirchhoff ΦK value associated

to the regular set system (N,N ). Let us denote by x the coefficient pβ
∅ and y the coefficient

pβ
N ′∪α. On the one hand, we consider the sub-order N ′

β induced by all vertices associated to

coalitions including β and included in N ′ ∪ β. N ′
β being isomorphic to the Boolean lattice 2N ′

,
any permutation of N ′ leaves unchanged N ′

β, and since the circuit property is a symmetric rule
(in the sense that labels of players have no importance for it), the coefficients computed for
the edges of N ′

β are proportional to the coefficients of the classical Shapley value over G(N )

whenever N = 2N ′

. Indeed, for any subset S of N ′ and any i ∈ N ′ \ S, let us denote by x1
s the

coefficient pi
S∪β. By Proposition 5, we get

x1
0 =

x

n′
,

s · x1
s−1 = (n′ − s) · x1

s, ∀s ∈ {1, . . . , n′ − 1},

which immediately conducts by induction on s to

x1
s =

s!(n′ − s − 1)!

n′!
· x, ∀s ∈ {0, . . . , n′ − 1}.

Remark that the left coefficient also known under the form p1
s(n

′), is well-known since being a
coefficient of Shapley for games with n′ players (cf. (1)).

Naturally, we also get pα
N ′∪β =

∑n′

i=1 x1
n′−1 = x.

On the other hand, also by Proposition 5, we successively deduce:

• On node ∅, pα
∅ = 1 − x.

• On nodes α1 . . . i, i ∈ N ′, p1
α = p2

α1 = · · · = pn′

α12...(n′−1) = 1 − x.

• On nodes N ′ ∪ α,N \ β,N \ γ, pγ
N ′∪α = pβ

N\β = 1 − x − y, and pγ

N\γ = x + y.

Now, let M1 be the circuit (∅, α, α1, α12, . . . , N ′ ∪ α,N \ γ,N ′ ∪ β, . . . , β12, β1, β, ∅) and
M2 be the circuit (N,N \ γ,N ′ ∪ α,N \ β,N). Then by the circuit property applied to these
two circuits, we have the system:

{

(n′ + 1)(1 − x) + y − x −
∑n′−1

s=0 x1
s − x = 0

−(x + y) − y + 2(1 − x − y) = 0
.

By denoting ς(n′) the sum of the coefficients of Shapley
∑n′−1

s=0 p1
s(n

′), the above system writes

{

(n′ + 3 + ς(n′))x − y = n′ + 1

3x + 4y = 2
,
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and has for determinant the strictly positive number ∆ := 4(n′ + ς(n′)) + 15. Thus, we obtain

x =
4n′ + 6

∆
and

y =
2ς(n′) − n′ + 3

∆
.

For all the above pi
S ’s given in terms of x and y, except for pβ

N ′∪α = y, we straightforwardly
verify that pi

S > 0, for all n′ ≥ 1. Thus it remains to find condition on n′ so that y is
nonnegative. For n′ ≤ 4, it can be checked that 2ς(n′)−n′+3 is positive. Besides, ∀n′ ≥ 1,∀s ∈

{0, . . . , n′ − 1}, p1
s(n

′) = s!(n′−s−1)!
n′! ≤ (s+(n′−s−1))!

n′! = 1
n′ , the inequality being strict whenever

s 6= 0, n′ − 1. Thus, ∀n′ > 2, ς(n′) =
∑n′−1

s=0 p1
s(n

′) < 1. Moreover,

∆ · y/2 = ς(n′) − (n′ − 3)/2,

where (n′ − 3)/2 ≥ 1,∀n′ ≥ 5. As a consequence, ς(n′) − (n′ − 3)/2 < 0,∀n′ ≥ 5, and so is y.
The result finally follows, by Lemma 9.

In particular, whenever n′ = 5, which corresponds to the regular system of Fig. 2, ΦK is not
monotonic, with pβ

α12345 = − 14
557 . �

∅

α

α1

α12

α123

α1234

N ′ ∪ α N ′ ∪ β

N \ γN \ β

N

β

β1 β2 β3 β4 β5

β12 β13 β14 β15 β23 β24 β34 β25 β35 β45

β123 β124 β134 β125 β135 β145 β234 β235 β245 β345

β1234 β1235 β1245β1345 β2345

Figure 2: A regular set system where (M) does not hold for ΦK
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