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Abstract – Until recently, T cells were divided into two 

main categories, the helpers, expressing the CD4, and 

the cytotoxic, expressing the CD8 molecule. Their origin 

and differentiation have been well documented, leading 

to numerous discoveries and new therapies. But with 

time, immunologists identified T cell complexity. Step by 

step, scientists have identified more than ten different T 

cell subsets with their own lineage, role and specificity. 

For instance, the helpers T cells can now be divided at 

least into six subpopulations based on their general 

function. Additionally, each subset is further 

discriminated based on surface/intracellular markers. In 

addition of the classical  T cells,  T cells are 

specialized cells recognizing mainly phospho-antigens. 

All T cell differentiate after antigen recognition into 

different subsets of memory cells and ultimately may 

become senescent. In the present review we summarize 

the latest information about T cell development and 

differentiation as well as the particularities of each 

subset and discuss how this evolves over age. 

Index terms – ageing, development, differentiation, T cells, 

Thymus, Senescence 

                                                                                                                                                                                                                                                                                                                                                                                          

I. INTRODUCTION 

HE adaptive immunity, one of the most advanced 

defense mechanism known, is also probably the most 

complex system in biology. The ability to memorize the 

type of antigen encountered and its specificity for virtually 

any foreign organism are unique characteristics of adaptive 

immunity. The system relies on lymphocytes that act as a 

cornerstone that defined the type, the intensity and the 

duration of the immune response. 

The lymphocyte pool comprises T cells expressing CD3 

(helper, cytotoxic,  Natural Killer T cells, invariant 

Natural Killer T cells, Mucosa-Associated Invariant T cells) 

and B cells expressing CD19. 
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The B cells are mainly known for being the cells responsible 

for the production and secretion of antibodies. On the other 

hand, the T cells are considered as the soldiers of immunity 

as they can support and lead the immune response. Here, we 

will describe the fate of T cells from release of precursors 

from the bone marrow to their ultimate state of 

differentiation, senescence. 

In the bone marrow, some hematopoietic stem cells can 

initiate the acquisition of a common lymphoid progenitor 

(CLP) phenotype that will start dividing and differentiating. 

These still very progenitor-like cells will migrate to the 

thymus following a gradient of chemo-attractant released to 

sustain lymphopoiesis. There, they undergo very complex 

selection processes that will eliminate more than 90% 

immature T cells. This demonstrates that thymic maturation 

is very efficient in eliminating unwanted T cells but also its 

metabolic cost. After selection, mature naïve T cells will 

enter the blood circulation and reach the secondary 

lymphoid organs (SLO) where antigen presentation allows 

differentiation into a selection of memory subsets and clonal 

T cell proliferation (Figure 1). 

The differentiation is dependent on the stimulation 

provided by the antigen-presenting cell (APC). The helper T 

(TH) cells population is more heterogeneous than the 

cytotoxic T (TC) cells. The diversity of the TH population 

(beyond the TH1, 2 and T regulatory (TReg) phenotypes) is a 

recent discovery that dramatically increases the complexity 

of our understanding of the TH response. Until recently, the 

TH response was divided into the TH1, in response to viral 

infection (the cellular immunity) and the TH2 more 

prominent to antibody secretion (the humoral immunity). 

Later, regulatory T cells and their ability to suppress the 

immune response were discovered. This tripartite concerto 

(TH, TC and TReg) lasts until the discovery and understanding 

of the function and role of the TH3, TH17, TH9, TFH (for 

follicular helpers), NKT and  subsets. 

In this review we will cover the steps leading to 

generation of the various T cell populations, including their 

differentiation. How adaptive immunity and especially T 

cells may predict the aging of the immune system will be 

discussed. 

 

II. T CELL DEVELOPMENT IN HUMANS 

 

Like any type of blood cell, lymphocytes originate from 

pluripotent hematopoietic stem cells (HSC) located in the 

T 
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bone marrow, especially in the pelvis and iliac crest. These 

cells are able to divide asymmetrically: the daughter cell is 

the replication of the parent cell, while the parent cell keeps 

the capacity to generate more daughter cells without 

differentiation, the daughter cell will differentiate into the 

desired cell type. This property allows the bone marrow to 

keep a constant pool of self-renewing stem cells. The HSC, 

originating from the aorta-gonad-mesonephros in the 

embryo, expand in the fetal liver and then colonize the bone 

marrow [1]. 

Pluripotent HSC, identified as CD34
+
 CD59

+
 

Thy1/CD90
+
 CD38

low/-
 C-kit/CD117

+
lin

-
, can lead to the 

generation of the lymphoid and the myeloid lineage [2]. It 

was accepted for long that HSC were homogeneous and 

follow their path in a stochastic manner. As for other 

immune-related phenomenon, stochasticity has it limits. In 

fact, the HSC population can be divided into 3 subsets 

depending on their lymphoid/myeloid ratio (
L
/M), the 

balanced HSC (3< 
L
/M <10), the lymphoid-biased HSC 

(
L
/M >10) and the myeloid-biased HSC (0< 

L
/M <3) [3]. 

Under the influence of some cytokines and growth factors 

like SCF, Interleukin-3 (IL3) and GM-CSF, the HSC will 

differentiate into a common myeloid progenitor (CMP). 

This CMP will then differentiate into either a 

megakaryocyte and erythroid progenitor (MEP) or a 

granulocyte and macrophage progenitor (GMP). After a 

succession of division/differentiation steps, MEP will 

generate platelets and erythrocytes whereas GMP will 

generate monocytes (which may become macrophages or 

dendritic cells), neutrophils, basophils and eosinophils [4]. 

Concerning the lymphoid lineage, the main mechanism 

is very similar [5]. Under IL3 stimulation, the pluripotent 

HSC will start to asymmetrically differentiate into long 

term-HSC then short-term HSC to reach a multipotent 

 

Figure 1. General and non-exhaustive overview of T cell development and classification. HSC: 

hematopoietic stem cells; CLP: common lymphoid progenitor; CTL: cytotoxic T lymphocyte; TCR: T cell 

receptor; DN: double negative; TH: T helper; TFH: T folicular helper; MHC: major histocompatibility complex; 

IL: interleukin 
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progenitor state (MPP, that may lead to either a CMP or a 

CLP). When this progenitor is stimulated by IL7, it will 

shift toward a lymphoid lineage and become a CLP that will 

lose its myeloid potential. When the CLP is stimulated by 

SCF and IL2, it will follow the NK lineage, if stimulated by 

IL7, it will follow either the T or the B differentiation. If the 

“pro-B or pro-T” CLP expresses regulators such as Notch-1 

and GATA-3, it will shift to T lineage and if it expresses 

EBF, E2A and Pax-5 it will follow the B lineage. The future 

B cells reside in the bone marrow until they express IgM, 

and then join the secondary lymphoid organs to finish their 

differentiation in mature naïve B cells. The T cells 

development will take place nearly exclusively in the 

thymus [6]. At an undetermined stage, a very early T cell 

precursor leaves the bone marrow, enters the blood 

circulation, reaches the thymus and will be called 

thymocytes. Thymic T cell differentiation is driven by 

thymic stromal cells and the factors they are secreting 

(cytokines and growth factors). It is an incredibly complex 

fine-tuned and well-regulated phenomenon composed by a 

succession of selection steps that will end for 97% of 

developing T cells to apoptosis. To face the number of 

antigens an organism can encounter during its lifespan, the 

chosen strategy is to generate the highest variety of TCR 

specificities without compromising the quality of antigen 

recognition and avoiding anti-self responses. 

When a CLP enters the T lineage pathway, it will 

migrate from the bone marrow to the thymus. Once arrived 

in the thymic cortical area, under the influence of the stroma, 

it will become an early thymocyte progenitor (ETP) but still 

able to differentiate into myeloid cells [7]. This stage is very 

transient, as the ETP will quickly differentiate into the T 

lineage. The early T cells are CD44
+
 and negative for the 

common T lineage markers (CD3
-
CD4

-
CD8

-
CD25

-
TCR

-
) 

and are called double negative 1 (DN1). As the 

differentiation progresses, the DN1 cells will start to express 

the adhesion molecule CD44 and CD25 (the  chain of the 

IL2 receptor) [8]. At this stage the cells will initiate T cell 

receptor (TCR) rearrangement. The conventional T cells 

will rearrange a  T cell receptor while the non-

conventional T cells will rearrange a  TCR. The VDJ 

recombination is the mechanism that allows the generation 

of a huge diversity of T cell specificities. During the DN2 

stage T cells lose CD117 expression and are fully 

committed T cells [9]. At the DN3 stage (CD4
-
CD8

-

CD24
+
CD25

+
CD44

low
CD117

low
), T cells are located in the 

subcapsular zone, are definitely engaged in  or  fate, 

while still rearranging combinations for the ,  and  

chains [10]. Between the DN3a (CD27
low

) and DN3b phases 

(CD27
high

), a very important checkpoint occurs, the  

selection. The correct rearrangement of the  chain is 

verified thanks to an invariant  chain and the pre-TCR 

signaling [11]. All cells that fail the  selection will enter 

apoptosis. Then, cells maturate to the DN4 stage (CD4
-
CD8

-

CD24
+
CD25

-
CD44

-
CD117

-
), during which T cells move to 

the medulla. During their migration, DN4 cells will 

upregulate both CD4 and CD8 to become double positive 

(DP) (CD4
+
CD8

+
CD24

+
CD25

-
CD44

-
CD117

-
) and will 

rearrange their TCR  chain [8].  Here, cells will be 

positively selected depending on their TCR avidity for 

MHC molecules. Once the TCR in finalized, depending on 

which MHC molecule it recognizes, the DP cell will 

become single positive (SP) CD4
+
, if the TCR binds a 

MHC-II molecule, or CD8
+
, if the TCR binds a MHC-I 

molecule. Once in the medulla, the SP cells will undergo a 

negative selection step where all of the self-reactive T cells 

will enter apoptosis [12]. The surviving selected cells are 

now mature naïve T cells (TH0) and are ready to leave the 

thymus. 

Homing is a very important part of T cell development: 

from bone marrow to thymus, through the different thymic 

areas, to the secondary lymphoid organs (SLO) and later, to 

the site on infection. Mice studies helped to dissect the 

succession of factors that drive cells through their path. It is 

not clear which factors attract CLP to thymus through the 

cortico-medullary blood vessels but CCR9 (chemokine 

receptor 9)-ligand seems to be involved [13]. Inside the 

thymus, ETP migrate to the subcortical zone via the CCR7 

[14]. It is highly expressed in DN1/2 population. CCR7 is 

also required for DP cells migration in the medulla [15]. The 

mature naïve T cells emigration from thymus to the SLO 

requires, in newborn mice, CCL19-CCR7 interactions [16]. 

Another receptor is engaged in SLO homing, the 

sphingosine-1-phosphate receptor 1 (S1P1) [17]. It is 

expressed on both type of SP and naïve cells and is also 

involved in emigration from SLO to lymphatic vessels. 

 

III. GENERATION OF MEMORY T CELLS 

 

Memory T cells are antigen-experienced, long-lived T 

cells that are different from naïve cells in numbers and 

functions due to their previously encounter with antigens 

following infection or vaccination. They can mediate 

protection by mounting a faster and stronger immune 

response to subsequent encounters with the invader. More 

than 90% of responding cells die after infection while for 

the 10% surviving, IL7 [18], IL12 [19] and an 

IL21/IL10/STAT3 pathway [20] seem to play a decisive 

role in their differentiation/maturation/maintenance, at least 

in the CD8
+
 memory T cells. 

Memory T cells may be divided into three 

subpopulations based on their homing capacity, namely 

central memory cells (TCM), effector memory (cells TEM), 

and tissue-resident memory cells (TRM) [21]. While the 

majority of memory cells are left behind following the 

massive apoptosis of effector T cells, a significant 
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proportion (easily detectable in blood) remains after an 

immune response. TCM express CCR7 and CD62L (L-

selectin) as well as secrete IL2 however lack the capacity to 

produce interferon-gamma (IFN) and IL4. Because TCM 

display higher self-renewal capacity, they are associated 

with a memory stem cells capacity -that still need a 

consensus, and regarded as superior to TEM. On the other 

hand, TEM do not express CCR7 or CD62L, are less 

proliferative, but produce higher levels of IFN and IL4. 

The CD4
+
 and CD8

+
 TCM mainly reside in secondary 

lymphoid organs, while TEM can be found in peripheral 

compartment [22]. After infection, populations of memory T 

cells can also reside in peripheral tissues, and recently 

designated as tissue-resident memory T cells (TRM) 

expressing CD103 and CD69 molecules [23]. TRM are 

present in various tissues, such as brain, lung, vagina, gut, 

and skin. In mice it has been shown that skin infection 

generates TRM that provide skin-specific immunity against 

further infection. Likewise, a similar population of T cells 

was found in human skin [24]. The generation of memory T 

cells can be fated at different stages of T cell life, and is 

influenced by complex variables such as antigen, 

costimulatory molecules, cytokines, chemokines, 

metabolism, and transcription factors. For example, chronic 

infection whereby antigen and inflammation are present at 

high and constant levels, generation of effector cells is 

favored against memory cells [25]. On the impact of the 

soluble factors influencing T cell differentiation it was 

shown that STAT3- SOCS and IL10 signaling favors 

memory T cell; while IL12 and also IL2 may exert negative 

regulation of memory T cell formation [26, 27]. 

Furthermore, transcription factors such as T-bet and Blimp1 

favor effector T cells fate [28, 29]; while transcription 

regulators Bcl6, Id2 and Id3 as well as Wnt--catenin 

signaling pathway influence memory T cell generation in 

positive manner [30-32]. This suggests a complex 

mechanism, including signaling crosstalks and negative 

feedback loops, has been developed to fine-tune the 

generation of memory cells. 

 

IV. THE DIVERSITY IN HELPER T CELLS 

DIFFERENTIATION 
 

Following recognition of foreign antigens, the antigen-

presenting cell (APC) is activated and will migrate to the 

SLO (Figure 1). When naïve T cell are activated by APC, 

they acquire effector functions while differentiating into 

TH1, TH2, TH3, TH9, TH17, TFH, TReg, or cytotoxic T cells
 

[33]. CD4
+
 T cell fate will be highly influenced by the 

cocktail of cytokines present in the milieu during antigen 

presentation. After activation, cytotoxic T lymphocytes 

(CTL) become fully functional (cytotoxic and then memory) 

and dispose of their entire arsenal (granzyme, Fas, perforin) 

to eliminate infected cells. 

Activated CD4+ T cells ‘help’ to modulate the function 

of B cells and cytotoxic T cells via cytokine secretion and 

cell-cell contact.  In addition, TH cells also participate in the 

regulation, enhancement, and recruitment of innate cells 

such as macrophages, neutrophils, mast cells, and 

monocytes [34]. Activation of naïve CD4 T cells by APC 

involves binding of TCR with MHC-II as well as binding of 

B7 co-stimulatory molecule to T cells’ CD28 receptor [35]. 

In addition, signals provided by distinct cytokines will 

program naïve CD4 T cells into different TH subsets. A 

defined TH subset should have a signature cytokine profile 

and distinct transcription factor(s) that regulates its 

development into terminal differentiation. 

The first two subsets of TH cells discovered, TH1 and 

TH2, were categorized based on cytokine secretion [36]. TH1 

cells produce IFN and are associated in cell-mediated 

immune responses against intracellular pathogens; while 

TH2 cells produce IL4, IL5, IL13, and IL10 (Figure 1) and 

are thought to drive humoral immune responses against 

parasites [34, 37, 38]. To induce TH1 cell differentiation, 

IL12 secretion from DC has been identified as the key 

cytokines required to upregulate T-bet as master regulator 

[39, 40]. Meanwhile, IL4 drives TH2 subset via GATA-3 

transcription factor induction, which leads to IL4, IL5, and 

IL13 secretion [34, 37, 38]. The main effector cell for TH1 

immunity comprise of macrophages, CTL, IgG B cell, and 

IFN producing CD4 T cell; while the main effector cells 

for TH2 immunity are eosinophils, basophils, mast cells, IgE 

B cells, and IL4/IL5 producing CD4 T cells. 

The restricted TH1/TH2 hypothesis has been re-

evaluated because of the identification of another TH subset, 

the TH17 cells. This third TH subset was discovered through 

autoimmune disorder studies and has been shown to develop 

independently from TH1 and TH2 lineages [41, 42]. 

Transcription factors such as T-bet and gata-3 that are 

important for TH1 / TH2 differentiation are negative 

regulators of TH17 differentiation [43, 44]. TH17 cells 

secreted IL17, IL1, TNF, IL21 and IL22 to mediate 

protection against extracellular bacteria and fungal infection 

instead of secreting TH1/TH2 cytokines IFN or IL4 [34, 45]. 

Additionally, TH17 cells also mediate B cell responses by 

inducing proliferation and isotype switching [46]; as well as 

drive the differentiation of plasma cells via IL21 secretion 

[47]. TRegs and TH17 cells balance is tightly regulated 

especially in the mucosa as both require TGF for their 

development [48]. However the involvement of IL6 and 

IL21 upregulates RORt, the typical TH17 transcription 

factor, and drive the cells towards TH17 differentiation [49
, 

50]. Factors such as vitamin A, retinoic acid, and IL6 were 

shown to promote TRegs differentiation, while IL6 inhibition 

promotes TH17 formation [51]. 
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Another subset, the TH9 cells has been identified after a 

population of CD4 T cells was reported to secrete 

substantial amounts of IL9 while failing to secrete TH2 

cytokines upon TGF and IL4 stimulation [52]. For TH9 

cells development, the PU.1 and IRF4 transcription factors 

are required [53, 54]. Functionally, TH9 cells are thought to 

play significant role in extracellular parasite infection and 

allergy disorders [55]. However, TH17 and TRegs are also 

reported to secrete IL9 [56], and hence future studies are 

needed to further elucidate the function and characteristic of 

TH9 cells (Figure 1). 

Recently, a distinct subset of human skin homing 

memory T cells was shown to produce IL22, IL26, and IL13, 

while failed to secrete IL17 and IFN [57], and was coined 

as the TH22 subset. These cells are thought to have an 

important role in skin immunity and in a variety of 

autoimmune diseases [58]. Distinctively, TH22 express 

CCR6, CCR4, CCR10, and characteristic transcription 

factor aryl hydrocarbon receptor (Ahr) [57]. However, TH17, 

TH1, NK, and NK T cells are also known to secrete IL22 

cytokine. 

Additionally, the T follicular helper (TFH) cells are a TH 

subset that is essential in assisting B cells to maintain a 

long-lived antibody response in the germinal centers of 

secondary lymphoid organs. They interact with matured B 

cells that differentiate into high affinity plasmocytes or 

memory B cells that produce long-lasting antibodies [59]. 

TFH are distinct from other TH subset by the signature 

expression of BCL-6 and CXCR5 [60]. TFH cells also 

produce high levels of IL21 that serves as germinal center B 

cell survival and differentiation factor, and low levels of IL4, 

IFN, and IL17 [61]. Their development, far from being 

fully understood, seems very dependent of STAT3 and of 

IL21-inducing cytokines such as IL6 [62], IL12 [63], IL21 

[64] and IL27 [65]. This enlightens even more the role of 

the cytokines present in the microenvironment of 

developing TH.  

 

 

V. GENERATION OF OTHER T CELL 

POPULATIONS 

 

A)  REGULATORY T CELLS 

 

Regulatory T cells (TRegs) were discovered by 

Sakaguchi et al. in 1995 [66]. They participate in the 

immune response by suppressing immunity to contain its 

duration and its intensity that prevents septic shocks. They 

are CD4
+
 T cells characterized by a constitutive expression 

of CD25 (IL2R) and a specific transcription factor, FoxP3 

[67]. TRegs population was thought to be homogeneous but it 

appears that at least 2 subpopulations coexist: the natural 

TRegs (nTRegs) and the induced TRegs (iTRegs) [68]. While 

nTRegs originate from thymic maturation the iTRegs undergo a 

post-thymic maturation (Figure 1). 

The nTRegs develop in the thymus from autoreactive T 

cells with a TCR having a medium to high affinity for self-

antigens [69]. The selection process seems to begin when 

the TCR avidity for self-antigens is comprised between the 

ones that influence positive and negative selection steps [70]. 

Moreover, the repertoire of classical TH cells is different 

from that of nTReg cells with only a little overlap and the 

latter is much more autoreactive [71]. To underline the 

importance of nTRegs, it has been shown that their TCR-

dependent selection seems to be quite permissive as it is 

possible that a part of the autoreactive T cell has its 

regulatory doppelganger [69]. Downstream of the TCR 

signaling, Akt (Protein kinase B)-mammalian Targent of 

Rapamycin and NF-B pathways (particularly the 

transcription factor cREL) are deeply implicated in the 

nTRegs differentiation with the latter supposed to be 

necessary and sufficient for regulatory fate [72]. After the 

TCR-dependent step, a TCR-independent step occurs where 

IL2 and IL15 [73] definitely drive the cell toward the nTReg 

state. 

The iTRegs develop in the thymus as naïve conventional 

TH cells until they meet their antigen in the periphery. They 

can be divided in 2 subsets: the Tr1 cells, producing IL10 

but not expressing FoxP3
 

[74], and TH3, producing 

TGFand expressing FoxP3 [75]. It seems that a weak TCR 

avidity for antigen is a determining feature for 

differentiation into a regulatory state [76] and CD28 co-

stimulation is not required [77]. Recently, it has been shown 

that beads coated with PD-L1 on their membrane were able 

to induce iTRegs [78]. iTRegs play their regulatory role by 

secreting the cytokine that induce their differentiation, i.e. 

Tr1 mainly secrete IL10 and TH3 mainly secrete TGF 

(although each of them can secrete both molecules). 

Despite the fact regulatory T cells are mainly known as 

FoxP3
+
 cells and that FoxP3 mutations lead to the IPEX 

syndrome (Immunodysregulation Polyendocrinopathy and 

Enteropathy X-linked syndrome) [79], the fact that Tr1 cells 

are FoxP3
-
 widens the spectrum of regulatory activities by T 

cells. 

 

B) CELLS  

 

Unlike the majority of T lymphocytes, the  T cells 

bear a non-conventional TCR made up of one  and one  

chain that recognizes a restricted antigen diversity [80]. 

They represent 5-10% of the T cells but are more abundant 

in the gut mucosa within the intraepithelial lymphocytes 

[81]. Due to their locations (tongue, lung, guts, or skin) they 

act as a first line of defense and are a bridge between innate 

and adaptive immunity. Their TCR repertoire is much more 

limited than the conventional T cells’ and is variable 
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depending on their localization. This may be an adaptation 

to the pathogens they meet in the environment they reside in 

[82]. As they rearrange and display a TCR, they are part of 

the adaptive immune system; although the TCR acts more 

like a Toll-Like Receptor recognizing pathogen-associated 

molecules, as it is limited in the repertoire. Finally, the  T 

cells were shown to be capable of phagocytosis [83]. 

In the thymus the cells that are successful in 

rearranging a TCR in a very early state will become 

cells and will not rearrange a  TCR. Those who 

failed will begin rearrangement of their  chain and become 

T cells, if successful. The mechanism(s) influencing the 

choice of a  or  fate are still unknown but it seems that 

the TCR itself and the way it is stimulated plays a very 

important role [84]. For T cells, the intensity of the TCR 

avidity will favor the differentiation toward  if the 

interaction is strong or  if the interaction is weak  

Moreover, several cytokines are able to modulate the  

lineage development. Knock-out mice for IL7 are not able 

to generate  T cells [85]. It has also been shown that IL4 

was able to promote both growth and differentiation of 

thymocytes toward  and  T cells with a preference for 

the latter [86]. IL15 is also very important for  T cells as it 

acts as a growth factor and is essential for survival of the 

dermal subset [87]. It has been demonstrated that IL2R 

was crucial for the T cell development, as it is part of the 

IL15R. IL10 may also play a role during the fetal 

development of  T cells [88]. The addition of very low 

concentrations of IL10 in a fetal thymic organ structure was 

shown to increase the generation of  T cells. 

The biology of  T cells are not yet fully understood but 

their role in immunity, quick responsiveness and their link 

between innate and adaptive immunity make them a very 

interesting target for immunotherapies in numerous 

infections, cancers and autoimmune diseases. 

 

C) NK T CELLS 

 

In the early 1990s, several groups discovered subsets of 

αβ-DN and CD4
+
 T cells that had intermediate TCR level 

and were potent cytokines producers while expressing NK-

cells marker NK1.1[89]. Their development do not require 

MHC class II expression, but dependent on the non-

polymorphic MHC class-I molecule CD1d, a non-classical 

antigen-presenting molecule that binds to glycolipids and 

associates with β2-microglobulin (β2m) [90]. These cells 

also express higher frequency of TCR Vβ11 in human than 

conventional T cells [91] and skewed to usage of invariant 

TCR  chain Vα14-Jα281 (Vα14-Jα18) in mice and V

α24-JαQ (Vα24-Jα18) in humans [92]. Hence, Natural 

killer T (NK T) cells first emerged as a term to describe a 

subset of T cells that express NK1.1 marker in the mouse 

(CD161 in human) [93]. However, this initial definition is 

rather simplistic as a broader NK T-cell family consisting of 

different types of T cells were discovered, some of which do 

not express NK1.1 [94]. Therefore, it is now more 

appropriate to designate NK T cells as CD1d-dependent 

NK-like T cells. 

NK T cells differ from conventional T cells that interact 

with MHC class I and II peptide complex and are 

distinguished from NK cells by the expression of TCR α/

β with restricted repertoire. Upon activation, NK T cells 

exert innate-like rapid response to self and foreign 

glycolipid antigens and produce Th1 and Th2 cytokines 

such as IFNγ , IL4, and GM-CSF to bridge adaptive 

immunity [95]. NK T cells have been found to be essential 

in infections, tumor immunity, allergy and autoimmune 

diseases such as asthma, diabetes and atherosclerosis [96]. 

In general, NK T cells are categorized into type I and 

type II NK T cells [94]. Type I NK T cells are the ones 

expressing the invariant Vα24-Jα18 in humans and are 

well known as invariant NK T cells (iNK T cells). The 

transcription factor promyelocytic leukemia zinc finger 

(PLZF) was found to direct the development of iNK T cells 

[97]. Recently, Olszak et al. demonstrated that the absence 

of microbial exposure in neonatal mouse led to pathological 

accumulation of mucosal iNK T cells and immune 

morbidity [98]. These cells are CD1d-dependent and vary in 

CD4 and CD8 expression. Two subpopulations are defined 

within the type I NK T cells: CD4
+
 and DN population. 

Type II NK T cells (non-invariant) consist of all other 

NK1.1
-
 cells that are CD1d-dependent. These cells mostly 

express CD4 but are not reactive to α -GalCer-although 

they are also restricted by CD1d [96]. This subset was found 

in the thymus of both human and mice and was shown to 

produce higher IL4 and lower IFNγ level in comparison to 

type I NK T cells [99]. Additionally, CD1d-independent NK 

T-like cells have been identified [100], which most likely 

are T cells that express NK1.1
+
 but otherwise are not related 

to NK T cells.  

NK T cells develop in the thymus from the same 

precursor than conventional T cells [101] but follow a 

different path. They are selected by interacting with their 

TCR with DP thymocytes expressing endogenous 

glycolipids presented by CD1d molecules [102]. Many 

pathways are involved in NK T cells differentiation like Src 
kinase Fyn [103] signaling mediated through Slamf

1
 and 

Slamf6 receptors [104]. NK T cells were shown to receive a 

stronger TCR signal during their development [105], 

proving that they were positively selected by self-lipid. It is 

still unknown if they undergo a negative selection step or if 

they are more resilient to the apoptosis this step would 

induce. During the maturation, the expression of cytokines 
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such as IL4, IFN, IL2 and IL15R β-chain varies until cells 

divide and begin to express NK markers such as NK1.1, 

Ly49s and CD94 [106]. During this expansion, T-bet [107], 

GATA3 [108] and IL15 signaling [109] are required.  

Contrary to conventional T cells, NK T cells become 

immediately functionally active after the positive selection 

by expressing PLZF [97] and respond to TCR stimulation 

by expressing high levels of IL4 and low levels of IFN. 

Mature NK T cells express CD44, a marker of antigen 

experience, and CD69, an early activation marker, showing 

that they are not naïve when they leave the thymus. 

Altogether, these findings demonstrate that NK T cells 

possess a unique way to differentiate sharing both naïve and 

effector cells capacities. 

 
VI. T CELLS AS MARKERS OF 

IMMUNOLOGICAL AGEING AND LONGEVITY? 

 

All the cells described previously will, as any other cell 

of the body, age. Cellular turnover can be very intense in 

some tissues such as in the digestive tract or very slow to 

inexistent such as in the brain and the heart. In the case of 

immune cells, cellular turnover varies from cell type to cell 

type. With the ageing of the cell some dysfunction may 

occur and this phenomenon is called immunosenescence 

[110]. Innate cells such as neutrophils have a very short live 

(approximately 24h) that can be expanded following 

response to antigens (via GMSCF). While antibody-

producing B cells (plasma cells) may operate for several 

weeks before decreasing their activity and numbers of the 

antigen-specific memory T cells may survive for years and 

decades. This provides an essential protection against 

invaders during lifespan. 

However, older individuals display a higher susceptibility to 

different infections, often lose immunity against latent 

infection and are more susceptible to Influenza and its 

adverse effects. One of the key features of an aged immune 

system is the decline of naïve T cell frequency as well as the 

deterioration in functions of T cell subsets. Diminished 

capacities of the hematopoietic stem cells to generate 

lymphoid progenitors as well as the involution of thymus 

are accounted for the observed decrease in T cell 

frequencies [111]. In addition, aged T cells displayed a more 

advanced memory differentiated phenotype.  

Apart from the classical TH/TC classification, memory 

cells are also distinguished by their surface markers 

expression; namely the CCR7
+
CD45RA

−
CD45RO

+ 

CD28
+
CD27

+ 
TCM, CCR7

−
CD45RA

−
CD45RO

+
CD28

+/-

CD27
+/- 

TEM, and the CCR7
−
CD45RA

+
CD45RO

low
CD28

− 

CD27
−
 late differentiated cells. Memory T cells display 

reduced telomere length and upregulate senescence markers 

such as CD57, KLRG-1, CTLA-4, and PD-1 [112]. The 

proportion of CD28
-
 T cells which comprise both the 

effector memory and TEM re-expressing CD45RA (TEMRA) 

cells are significantly increased in the elderly in comparison 

to younger subjects [113]. In particular, the cytomegalovirus 

(CMV)-specific memory CD8
+
 T cells tend to expand more 

than those specific of Influenza or HIV, with majority 

expressing the senescence markers CD57 and/or KLRG-1 

(Figure 2) [114]. As the consequence, the naïve T cell pool 

is reduced in elderly but this is strongly initiated and driven 

by CMV that may accelerate immunosenescence [115]. 

Conflicting reports are published regarding whether CMV 

infection, additionally to affecting the T cell phenotypes, 

could also affect responses to other viruses in the elderly; 

hence, further work is required [116]. This impact of 

persistent/latent infections is relevant in the elderly, as the 

number of late-differentiated T cells and level of expression 

of senescence markers may be proportionate to the number 

of antigenic challenge it encounters through an individual’s 

life (Figure 2). Hence subsequently, the ageing of the 

immune system is not only determined by age but by the 

immunological history. A hierarchy in the pathogens that 

may drive the ageing of the immune system exists. However, 

much work is needed to classify the most common 

pathogens and understand how poly-infection is dealt with 

 

Figure 2. T cell subset changes during ageing. An 

increased frequency of senescent T cells is observed 

during ageing. The expression of CD57, Program Death-

1 (PD-1], Killer Lectin Receptor G-1 (KLRG-1] are 

hallmarks of changes in T cell functionality. 
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in this regard. 

 

Senescence [110, 117] and exhaustion [25] can be seen 

as the T cells ultimate state of development and 

differentiation. Senescent and exhausted T cells will lose 

expression of activatory molecules such as CD27 and CD28 

and upregulate inhibitory molecules such as CD57, KLRG-1 

and PD-1 (Figure 2). Their resistance to apoptosis is 

decreased by the decline of Bcl-2 and Akt expression. Their 

proliferation capacity [118], as well as their capacity to 

secrete IL2 [119] is inhibited whereas their 

inflammatory/cytotoxic potentials are increased 

(upregulation of IFN, TNF, granzyme and perforin) [120]. 

A consensus for alteration describing immunosenescence 

exists and includes a deregulation of intracellular signal 

transduction [121], a shrinkage of the TCR repertoire [122],  

a decrease of the cytotoxic activity of the some subsets 

[123], an accumulation and a clonal expansion of memory 

and effector T-cells [119] and a decreased immunity 

against viral pathogens, especially by cytotoxic CD8
+
 T 

cells [124]. STC and ETC appear during ageing and chronic 

diseases like AIDS, hepatitis C, CMV and Epstein-Barr 

Virus infection. As senescence can be interpreted as an anti-

oncogenic process by turning off the proliferation of aged 

cells, exhaustion could be interpreted as a way to shorten 

long immune response to avoid collateral damages. 

Furthermore, several changes were reported in other 

subsets of T cells such as the NKT cells and the T cells in 

the elderly. Ageing has been shown to affect the frequency 

of iNKT cells, alter their subset distribution, proliferation 

capacity, as well as cytokines response in the human 

peripheral blood [125]. The reduction of iNKT cell number 

is suggested as the result of thymic involution in ageing 

[101], or redistribution of these cells in different tissues. 

Increase of CD4
+
 iNKT cells were observed in line with 

decrease of CD4
-
CD8

-
 DN subset; and cytokine profile of 

iNKT cells was shifted from Th1 to Th2 in the elderly [125].  

Similarly, impairment in cytotoxicity and IFNγ production 

was reported in old mice and human; although very old 

mice and human centenarians do not suffer this defect and 

have satisfactory number of NKT cells [126, 127]. Likewise, 

majority of the reports also demonstrated reduced frequency 

of T cells in the elderly [128]. The reduction of V2
+
 

subset mainly accounts for the decline in number while the 

V1
+
 population remains stable [128]. The reduction of 

naïve and central memory subsets (CCR7
+
CD27

+
) and a 

shift into more differentiated phenotypes (CCR7
+/-

CD27
+/-

) 

were accounted for this observation [128]. Recently, CMV 

has also been associated with age-related alterations in the 

T cells [129]. Consequently, defects in these T cell 

subsets upon ageing could dampen efficient tumor 

immunosurveillance, contribute to the deregulation of the 

cytokine network, and translate to age-related disease. 

The common point between every subset of T cells 

affected by senescence is that their ability to divide will be 

inhibited and they will turn into a proinflammatory state. 

This could be the result of a continuous exposure to external 

agents [130]. With the thymic output running low [131, 132] 

and the accumulation of memory T cells resulting from the 

past infections [133], the possibility to generate new cells to 

fight newly met pathogens is reduced dramatically. It is one 

of the reasons behind yearly “epidemic of deaths” due to 

new strains of influenza. Moreover, as the tissue/organs of 

the body ages quite homogeneously, the dampening of the 

immune response can be seen as an adaptation to an old 

body composition and function as it is possible that a 

“young” immune response may not be adapted to an “old” 

environment. But, as life expectancy has been increased in 

most countries this provides statistically higher chances to 

meet new infectious agents. Ageing can be seen as a 

consumption of reserves due to these various encounters and 

responses. In a more realistic model, each infection 

contracted throughout life consumes a certain amount of 

reserve, depending on the weight of the disease. This can 

lead to a quicker depletion of the reserve and induces a 

higher exhaustion prior to clinical outcomes such as death. 

Although quite simplistic, as other factors could induce a 

decrease of the reserve (stress, depression, lifestyle, genetics, 

etc.), this model could explain why some elderly respond 

and survive to influenza infection and others not. This raises 

a very interesting possibility: using the T cells pool as a 

reserve gauge. By analyzing the phenotype of T cell subsets 

of a given elderly individual, it is possible to draw a portrait 

of his immunological history (at least quantitatively). The 

gap that needs to be filled with evidence is how to translate 

this into reserves that may not only predict the robustness of 

his immune system (be it adaptive) but also identify 

individuals at risk. A classification of immunological 

challenges and diseases based on their impact of the 

reserves is needed. While acute infections such as Influenza 

and benign surgery may minorily affect the reserves, 

diseases such as AIDS, hepatitis C, CMV infection or 

cancer would substantially reduce them. Recently, a 

moderate abdominal fat tissue was found to provide a 

survival advantage [134] for elderly, which corroborates the 

theory of reserves. Fat is a source for energy and hormones 

secretion that may be of critical help during infections and 

their adverse events. This theory is also plausible when 

considering the impact of stress on lifespan [135], 

inflammation [136] and the immune system in general [137]. 

A comprehensive implementation of the reserve may prove 

difficult at the clinical level and also for researchers. Indeed, 

fat, muscle, the antioxidative potential, the metabolism rate 

or even the thymus involution could be components of a 

reserve index.  
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Currently, the frequency of CD28
-
 and CD27

-
 T cells 

correlate with ageing as well as seropositivity to persistent 

infections such as CMV. The frequency of CD8+CD28- T 

cells was associated to an Immune Risk Profile (IRP) that 

predicted survival over a 2, 4, 6 and 8-years period in the 

elderly. Because of the feasibility and non-invasiness of 

assessing T cell phenotypes and functions in humans, 

further identifying biomarkers of immunological ageing in T 

cells will provide an advantage. A better stratification of the 

elderly individuals will also allow to better correlate 

immunological ageing, health, reserves and longevity. 
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