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Abstract. Comparative genomic hybridization (CGH) is an established genetic method which enables a genome-wide survey of
chromosomal imbalances. For each chromosome region, one obtains the information whether there is a loss or gain of genetic
material, or whether there is no change at that place. Therefore, large amounts of data quickly accumulate which must be put into
a logical order. Cluster analysis can be used to assign individual cases (samples) to different clusters of cases, which are similar
and where each cluster may be related to a different tumour biology. Another approach consists in a clustering of chromosomal
regions by rewriting the original data matrix, where the cases are written as rows and the chromosomal regions as columns, in a
transposed form. In this paper we applied hierarchical cluster analysis as well as two implementations of self-organizing feature
maps as classical and neuronal tools for cluster analysis of CGH data from prostatic carcinomas to such transposed data sets.
Self-organizing maps are artificial neural networks with the capability to form clusters on the basis of an unsupervised learning
rule. We studied a group of 48 cases of incidental carcinomas, a tumour category which has not been evaluated by CGH before.
In addition we studied a group of 50 cases of pT2N0-tumours and a group of 20 pT3N0-carcinomas. The results show in all
case groups three clusters of chromosomal regions, which are (i) normal or minimally affected by losses and gains, (ii) regions
with many losses and few gains and (iii) regions with many gains and few losses. Moreover, for the pT2N0- and pT3N0-groups,
it could be shown that the regions 6q, 8p and 13q lay all on the same cluster (associated with losses), and that the regions 9q
and 20q belonged to the same cluster (associated with gains). For the incidental cancers such clear correlations could not be
demonstrated.
Keywords: Artificial neural networks, bioinformatics, chromosome aberrations, cluster analysis, comparative genomic
hybridization, multivariate analysis, prostatic cancer, self-organizing maps

1. Introduction

Modern molecular biological methods may produce
large amounts of data which are difficult to survey. This
statement applies particularly to gene array techniques,
where the expression of thousands of genes may be
measured. Here the problem may arise to find clusters
of genes which behave in a similar manner [36,40]. To
a smaller extent, analogous problems are also found
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during evaluation of comparative genomic hybridiza-
tion (CGH) data [30].

CGH is a method which allows screening of the
whole genome for gains and losses of the genetic mate-
rial. Genomic DNA of tumor tissue as well as the DNA
of normal tissue are isolated, differentially stained and
hybridized to normal metaphase chromosomes. When
the tumor DNA is stained green and the reference DNA
is stained red, for example, this leads to a green stain
at locations with a gain of tumor DNA, whereas a
red stain is obtained at losses of tumor DNA because
here the normal DNA dominates. The results are quan-
titated by digital image analysis. This leads to a se-
ries of ratio profiles for the 24 chromosomes (22 auto-
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somes and 2 sex chromosomes). For convenience dur-
ing this paper each chromosome arm was taken as a
unit. Since the short arm of the acrocentric chromo-
somes and the sex chromosomes are uninformative,
and 5 regions showed no alteration in any group, 34
chromosome arms as chromosomal regions were taken
into account during this analysis. For each chromo-
some arm one of the alternatives ‘unchanged’, ‘loss’ or
‘gain’ (or equivalently 1, 0 or 2) is noted. In short, one
case is reduced (theoretically) to a matrix of the size
2× 34, in which each element can assume the value 0,
1 or 2.

This definition has the following basis. The imme-
diate finding of CGH for a certain chromosomal re-
gion is usually expressed as a rational number, i.e., the
fluorescence ratior of tumour DNA to normal DNA.
It is recommended to classify a finding as loss when
r < 0.8, as normal when 0.8 � r � 1.25, and as gain
whenr > 1.25 [5,8]. Our numerical values for loss,
normal state and gain are thus obtained as step function
y(r) = 0 for r < 0.8, y(r) = 1 for 0.8 � r � 1.25,
andy(r) = 2 for r > 1.25 on the basis of these thresh-
olds. This function definition was used to express equal
weights for losses and gains. The values thus repre-
sent equally strong deviations from the norm for loss
and gain, as the Euclidean distance of both values to
1 amounts to 1. Using this step function integer values
are obtained from primarily continuous data, which re-
sults in an ordinal scale. The statistical methods de-
scribed below are not restricted to continuous variables
but may be applied to integer values as well (for more
details and examples see [6,23,24]).

Our task consists in the formation of a certain num-
ber of groups (clusters), to which the chromosomal re-
gions are assigned in a biologically meaningful man-
ner. This task has to be fulfilled without knowing fur-
ther variables, which is usual for clustering methods,
solely on the basis of the CGH data. The present pa-
per is an example to achieve this for prostatic cancer,
which has been intensively studied by CGH [1,2,15,31,
32]. Cluster analysis can be used to assign similar in-
dividual cases (samples) to different clusters of cases,
where each cluster may be related to a different tumour
biology [3,30]. Another approach consists in the clus-
tering of chromosomal regions. The idea of clustering
variables instead of cases (samples) is a classical op-
tion in cluster analysis in general, based on a transpo-
sition of the original data matrix [17]. While in sample
clustering the cases are written as rows and the vari-
ables as columns, the variables are now written as rows
and the cases as columns. Recently this approach has

been widely applied to gene expression data [11]. Both
approaches can be coupled in the same study [4,12].

The required grouping can be principally obtained
by all kinds of clustering techniques. For example,
hierarchical cluster analysis,k-means, fuzzyc-means
and other techniques can be used. Here we concen-
trate on two implementations of an artificial neural net-
work developed by Kohonen, the self-organizing map:
SOM (Kohonen network) [24,25,45] in comparison
with a classical hierarchical cluster analysis. Recently
such neural networks were successfully used for clus-
ter analysis in gene expression [40]. Our group has re-
cently used a SOM for sample cluster analysis of CGH
data [30], and we have applied related networks with
a supervised learning rule for predictive purposes in
prostate carcinoma research [25,28,29].

2. Materials and methods

2.1. Patient population

Group I. The archive of the Department of Pathology
of the University of Ulm from 1990–99 was searched
for all patients from the Department of Urology of
the University with incidental prostatic cancer (tumour
category T1). On the whole, this included 66 cases (re-
section specimens and adenomectomies), removed be-
cause of benign prostatic hyperplasia, and in which a
prostatic carcinoma was incidentally found. Incidental
carcinomas within cystoprostatectomy specimens were
excluded from the study. The current TNM classifica-
tion according to the UICC was used, and the series
included cases in categories T1a and T1b [37,43]. All
cases from which technically acceptable CGHs could
be obtained, were selected for the study (43 TUR-
specimens and 5 adenomectomies).

Group II. This material consisted of 50 prostatec-
tomy specimens with preoperatively diagnosed pros-
tate carcinomas. The pTNM classification was pT2N0
[37]. Small tissue blocks of tumor material and normal
tissue from the same patient were flash-frozen in liq-
uid nitrogen immediately after surgical removal. Five
µm sections were cut from freshly frozen tumor and
normal tissue blocks and stained with hematoxylin and
eosin to ensure the histological representativeness of
the samples. Based on microscopic evaluation the tu-
mor region was selected and removed for DNA extrac-
tion with a scalpel [35]. For DNA isolation we used
the Qiagen-Blood & Cell Culture-Kit (Qiagen GmbH,
Hilden, Germany), following the instructions of the
supplier.
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Group III. This material consisted of 20 prostatec-
tomies with prostate carcinomas. The pTNM classi-
fication was pT3N0. Preparation and DNA-isolation
were performed in the same manner as described for
group II.

Pathology. The specimens removed with incidental
carcinomas and the prostatectomy specimens were step
sectioned at 3–5 mm slice thickness. In prostatectomy
specimens, at least 2 additional sections from the resec-
tion margins and at least 1 additional section from each
seminal vesicle were taken. The tumor-bearing slides
of all cases were reevaluated by the first author.

2.2. Comparative genomic hybridization

CGH was performed as described previously [9,18,
19,42,43] with minor modifications. We currently used
standard nick translation for labeling genomic DNAs
with biotin-16-dUTP (tumor DNA) and digoxigenin-
11-dUTP (normal DNA). The fragment length of our
genomic probes after nick translation was 500 to
1600 bp. Oneµg of labeled tumor and normal DNA
were precipitated together with 70 g Cot-1 DNA.
The mixture was dissolved in 12µl of hybridiza-
tion buffer: 50% formamide, 10% dextran sulfate, and
2× SSC (1× SSC: 0.15 M NaCl, 0.015 M sodium
citrate, pH 7). This hybridization mixture was de-
natured at 75◦C for 6 minutes and pre-annealed for
30 minutes at 37◦C and hybridized to a slide with nor-
mal male lymphocyte (46,XY) metaphase spreads, de-
natured separately in a formamide solution (70% for-
mamide, 2× SSC, pH 7–7.2) for 2 minutes at 70◦C
and dehydrated through a series of graded solutions
of 70%, 90% and 100% ethanol. The hybridization
was performed for 2 to 3 days at 37◦C in a moist
chamber. After hybridization, the slides were washed
3 times in 50% formamide, 2× SSC, pH 7–7.2 for
5 minutes at 42◦C and 3 times in 0.1× SSC, pH 7–
7.2 for 5 minutes at 60◦C. The tumor DNA was de-
tected with a single layer of avidin-conjugated fluores-
cein isothiocyanate (FITC) (Vector Laboratories, Inc.,
Burlingame, CA), and the normal DNA was detected
with anti-digoxigenin antibody conjugated to rho-
damine (Roche Diagnostics GmbH, Mannheim, Ger-
many) for 45 minutes at 37◦C. The chromosomes were
counterstained with 4,6-diamidino-2-phenylindole
(DAPI) (Sigma-Aldrich Chemie GmbH, Steinheim,
Germany) and embedded in antifade solution (Vector
Laboratories, Inc., Burlingame, CA).

2.3. Digital image analysis

Three single-color images (matching DAPI= blue,
FITC = green and rhodamine= red) were acquired
from 15–20 metaphases using a Zeiss fluorescence
microscope (Carl Zeiss, Oberkochen, Germany) and
a Hamamatsu chilled charge-coupled-device (CCD)
camera (Hamamatsu Photonics K.K., Tokyo, Japan)
interfaced to a computer workstation. The selection
of metaphases for CGH analysis was based on qual-
ity control criteria as known from the literature [20,
22]. The ISIS digital image analysis system (Meta-
system GmbH, Altlussheim, Germany) was used with
CGH analysis software (Version 3.02). Fluorescence
ratio (green : red) for each chromosome type were de-
rived for these metaphase cells. All of the ratio pro-
files from a chromosome type were averaged, and the
standard deviation of the profile set was calculated
at each point. For all the profiles, losses of DNA se-
quences are defined as chromosomal regions in which
the mean green : red ratio is below 0.8 whereas gains
are defined as chromosomal regions in which this ra-
tio is above 1.25. These threshold values are symmet-
ric cutoff values, 1.25 and its reciprocal value, 0.8 (see
above). Interpretation of CGH-results followed previ-
ously described protocols [20]. Hybridization of two
differentially labeled mismatched normal DNAs were
used as a control experiment for each batch of hy-
bridization. Heterochromatin blocks such as the distal
long arm of the Y chromosome or the centromeres, and
the near-centromere heterochromatic regions of chro-
mosomes 1, 9, 16 were excluded from CGH analysis
as well as centromeres and short arms of the acrocen-
tric chromosomes (13p, 14p, 15p, 21p and 22p). Fur-
thermore, chromosomal regions that showed no aber-
rations in any case (6p, 10p, 11p, 12p and 15q), were
considered as uninformative.

2.4. Hierarchical cluster analysis

Hierarchical agglomerative cluster analysis is a clas-
sical deterministic method to find clusters in an
n-dimensional space of data points (input vectors).
Clusters are found among the data points according
to the interpoint and intercluster distances (or squared
distances). How these are measured in detail depends
on the specific algorithm applied (see, e.g., [13]). The
algorithm of Ward, to which the property is ascribed
to provide ‘good and homogeneous’ clusters [39], was
used to select a specific clustering from the dendro-
gram. Hierarchical cluster analyses were performed



170 T. Mattfeldt et al. / Cluster analysis of chromosomal regions using comparative genomic hybridization data

in series of 1–15 clusters per case group. The mean
quadratic distance between the data points and their
corresponding cluster centre (quantization error) di-
minished for an increasing number of clusters. This be-
haviour does not necessarily indicate better clustering
as the complexity of the system increases. In the ex-
treme case, one could use the same number of cluster
points as data points and obtain an error of zero. The
number of clusters generated is to a certain degree ar-
bitrary. However, plausible hints can often be obtained
from the dendrogram [39]. For example, in the present
study, the dendrograms appeared consistent with three
major clusters of variables per case group (Fig. 1). We
used the implementation of hierarchical cluster analy-
sis by SAS [34].

2.5. Self-organizing feature maps (SOM)

Artificial neural networks (ANN) are information
processing systems consisting of a number of units
(neurons), communicating with each other through
connections. Such systems ‘learn’ by processing exter-
nal information adapting to a learning rule. They are
classified into ANNs with supervised learning and with
unsupervised learning. In most applications to biolog-
ical material so far, networks with supervised training
have been used. In our recent paper on case cluster
analysis on the basis of CGH data we showed that also
unsupervised networks can provide useful information
from biological data [30]. Here we want to extend this
view to the clustering of chromosomal regions.

Self-organizing maps (SOMs) belong to the ANNs
with an unsupervised learning rule. To such networks
only input vectors (input data, input information) are
presented, and no output vectors. In this application,
the input vectors are simply the CGH data. The task
of a typical SOM consists in finding clusters of the
input vectors, with similar vectors in the same clus-
ters. A short nontechnical introduction to SOMs can be
found in [40], whereas the subject is presented in depth
in [24]. Briefly, the fundamental structure of a SOM
is a layer of neurons with a simple geometric shape,
e.g., a rectangle or a line (chain) in the plane. These
neurons are connected to weight vectors, that lie in the
n-dimensional space of the input vectors. These basic
active neurons are called Kohonen neurons, the layer
is the Kohonen layer. During the learning process the
weight vectors are moved in then-dimensional space
until they have moved as close as possible to the input
vectors. That neuron whose weight vector has come
nearest to an input vector is called a winner neuron.

Fig. 1. Dendrogram of 34 chromosomal regions of group I (inciden-
tal prostate carcinomas), obtained by hierarchical cluster analysis by
SAS-software using the algorithm of Ward. Vertical axis: number of
chromosomal region extending from 1 (region 1p) to 34 (region 22q),
compare Table 3. Horizontal axis: Sum of squares between clusters.
The upper part of the dendrogram consists of chromosomal regions
with no difference between them (a homogeneous cluster of normal
chromosomal regions). In the lower part at least two further clusters
are found. Similar results were found for group II and III.
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On the whole, the learning process has the effect that
properties of then-dimensional input vectors are trans-
ferred to the low-dimensional space of the Kohonen
neurons (d = 1 or 2). In particular, input vectors lying
close to each other in space will generate a cluster in
the Kohonen layer.

The classical implementation of a SOM is the
package SOMPAK [24,26]. At http://www.cis.hut.fi/
research/som-research/nnrc-programs.shtml it can be
obtained as free academic software by internet. The
programs are available as a set of source files for Linux
or DOS, and as binary (executable) files for Windows.
For our study only the implementation of SOM under
Linux was used. The input variables are fed as ASCII
file into the system, and the user has to enter a num-
ber of system parameters such as the number of neu-
rons (nodes) in the Kohonen plane, the neighbourhood
function and others. As result, the program provides
thex,y-coordinates of the winner neurons.

An alternative to SOMPAK is the recently published
SOM Genecluster [40]. The input data are also given as
an ASCII data set. For the calculations only very few
parameters have to be indicated to the system, most
parameters are preset to standard values. The result
consists in tables where each data point is assigned to
one cluster; here we selected to ascribe the data to 1–
25 clusters for first exploration, and concentrated on
3 clusters finally. Genecluster is free academic soft-
ware and runs under Windows NT. It can be obtained
by internet under http://genome.wi.mit.edu.

Attempts were made to compare the clustering re-
sults obtained by HCA and the two implementations
of SOMs by statistical evaluation. The classifications
of the same set of data by two clustering methods
into n clusters can be represented as a contingency ta-
ble of sizen × n, where the number of data (here:

chromosomal regions) in theith cluster according to
method 1 and simultaneously in thejth cluster accord-
ing to method 2 isBi,j . The null hypothesis means here
that the number of itemsBij for i �= j is symmetric to
the main diagonal of the table. This test of symmetry
can be seen as an extension of the well-known McNe-
mar test for 2× 2 tables ton × n tables [7,10,33,38].
Before the test was performed, the clusters were or-
dered solving the linear assignment problem [27]. The
test statistic was estimated using the equation:

χ̂2 =
j−1∑

i=1

∑

i>j

(Bij − Bji)2

Bij + Bji

with n(n − 1)/2 degrees of freedom. The resulting
value χ̂2 itself may be considered as a measure for
the dissimilarity of the two compared methods [33].
In practice, the clustering results of our 34 chromo-
some regions as provided by hierarchical cluster analy-
sis, were compared with those provided by SOMPAK
and Genecluster by this test. No difference between
the methods was detected at a significance level of
p < 0.05. Hence we decided to present the output of
GeneCluster only and to omit the results of the other
programs to save space. Also the quantization error de-
creased strongly with rising number of clusters when
using the two types of SOMs, as reported above for
hierarchical cluster analysis.

3. Results

3.1. Basic findings

The basic findings in the three groups are summa-
rized in Table 1. There is a significant increase of mean

Table 1

Basic data of group I–III

Group

I II III

Stage T1 pT2 pT3

Number of cases 48 50 20

Mean number of losses per case 0.33± 0.88 0.90± 1.53 2.00± 2.96

Mean number of gains per case 0.46± 1.11 0.58± 1.26 1.50± 1.67

Mean Gleason score 5.06± 1.73 5.60± 1.09 7.25± 1.29

Mean WHO grade 1.69± 0.56 1.88± 0.42 2.43± 0.40

Percentage of cases with aberrations 29 46 70

In this table mean values with standard deviations are presented for our three case series. There is a monotonous increase of the number of losses
and gains from T1 carcinomas to pT2N0 to pT3N0 cases. The percentage of cases with aberrations also rises monotonously from T1 to pT2N0
to pT3N0. Such an increase appears to apply also for Gleason score and WHO grade at first sight, however for the grading systems the difference
is significant for pT3N0 versus pT2N0, but not for pT2N0 versus T1 (see Discussion).
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Gleason score and mean WHO grade from pT2N0- to
the pT3N0-carcinomas. Also we found a rising fraction
of the number of cases with aberrations detectable by
CGH per total number of cases from T1 to pT2N0 to
pT3N0. Parallel to this global increase of aberrations,
the mean number of losses and of gains per case in-
creased with tumour stage. Summarizing, in our cases
the histopathological grading parameters as well as the
genetic aberrations detected by CGH rose with increas-
ing tumour stage.

Table 2 shows the original data matrix of group III:
cases with stage pT3N0. It is a rectangular matrix with
20 rows, representing the cases (patients) 1–20, and
34 columns representing the 34 chromosome regions
1p–22q as shown in the three lines above the table.
Each number is a result of a CGH examination, where
a ‘1’ represents a normal content of chromosomal ma-
terial, a ‘0’ is a loss of chromosomal material in that re-
gion, and a ‘2’ indicates a gain of chromosomal mater-
ial there. One can apply directly some method of clus-
ter analysis to such a matrix, in that case a clustering

by cases (samples) is performed [11,30]. Each cluster
consists of a number of patients, who can be further
characterized in terms of clinical parameters.

3.2. Cluster analysis of chromosome regions from
CGH data

Another idea of clustering is known from data analy-
sis in gene expression [11,21,40]. The data matrix in
many gene expression studies is a rectangular matrix
of rational numbers indicating intensity of expression,
where the rows indicate genes and the columns rep-
resent the samples, e.g., different patients or different
time points in an experiment. By transposition of the
matrix, one can either obtain a study for sample clus-
tering or gene clustering [11]. In our present study we
have CGH data relating to chromosomal regions and
not genes, and natural instead of rational numbers, but
otherwise the structure of the data is analogous.

The data for this analysis were obtained by trans-
position of Table 2, but this matrix was omitted here

Table 2

Original data matrix

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

1 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9 0 1 2 3 4 6 6 7 7 8 8 9 9 0 0 1 2

p q p q p q p q p q q p q p q p q q q q q q p q p q p q p q p q q q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 1 1

3 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

9 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 0 1 1 1 2 1 0 1 1 0 1 1 0 2 1 1 1 1 1 0 1 1 0 1 1 2 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 0 0 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1

14 1 1 0 1 1 1 0 1 1 1 1 2 1 0 2 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

15 0 0 1 0 1 1 1 0 2 0 0 1 1 0 0 1 2 1 1 1 0 1 1 0 1 1 0 0 1 1 1 2 1 1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 1 1

19 1 1 1 1 1 1 1 1 2 0 1 2 2 0 1 1 2 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 2 1 1 1 1 0 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The original data matrix of group 3 (20 pT3N0 cases). Each row represents the CGH data of 34 chromosome arms of one case, each column
indicates the findings at the chromosome region listed at the top. In this form the data matrix is suitable for a cluster analysis of samples.
Note the unsupervised approach with merely input vectors in contrast to supervised methods for classification, such as multilayer feedforward
networks and learning vector quantization.
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to save space. After transposition the chromosomal re-
gions are represented as 34 rows and the case num-
bers represent the 20 columns. If a value in theith row
and in thejth column is denoted asoij in the orig-
inal matrix and astij in the transposed matrix, then
tij = oji and tji = oij . Now a cluster analysis ap-
plied to this matrix means clustering by chromosomal
regions. While the aforementioned study by samples
attempted more at the identification of different case
groups, the present investigation is directed primarily
towards a better understanding of losses and gains of
chromosomal material at certain regions and the inter-
relations between them.

All studies in groups I–III were performed with hi-
erarchical cluster analysis and the SOMs Genecluster
and SOMPAK. There were 34 input variables each,
corresponding to all chromosome arms that could be
studied by CGH and in which at least one imbalance
had occurred. In the following learning process, the
SOM gets information solely on the input variables.
When operating with the SOMs, standard settings were
used. The number of clusters was set to 3 correspond-
ing to a chain of 3 units length. Very high numbers
of clusters are not informative for small sample sizes.
Furthermore it is to a certain extenta priori plausible
to divide cancer cases into three clusters, which may
be understood as low, intermediate and high degrees of
malignancy [30]. Plots of dendrograms of the hierar-
chical cluster analysis were also consistent with three
clusters (Fig. 1). The number of iterations per run was
set to 5000, as thereafter one could not see significant
changes of the error. As the neighbourhood function
of the SOM the step function (bubble) was used. The
initial and final learning rate values wereαi = 0.1
andαf = 0.005, and the initial and final radius val-
ues of the step function wereri = 5 andrf = 0.2.
The map was initialized using random vectors. We per-
formed 10 repeated runs for each network. The results
were mostly identical within repetitions, and some-
times there was one clustering result different from the
others (see also [30]). The programs were applied to
the groups I, II and III separately (no pooling), and the
outcome is shown in Tables 3, 4 and 5, respectively.

In Table 3, we see the results of clustering the 34
selected chromosomal regions of 48 patients with inci-
dental carcinomas evaluated with Genecluster. The ta-
ble is sorted by the three clusters indicated by the num-
bers 1, 2 and 3. The first cluster consists only of chro-
mosomal regions with at least one gain. Only one re-
gion shows losses (region 8p with 5 losses). The sec-
ond and largest cluster consists mainly of domains with

no genetic aberrations at all, plus 4 regions with low
numbers of losses and gains. In the third cluster we find
regions all of which show losses. In general, the system
has generated three clusters which may be character-
ized as nearly normal, rich in gains, and rich in losses.

In Table 4 (pT2N0-cases) the clustering achieved is
similar, however the succession of the clusters is re-
versed on the Table. The first cluster consists of 6 re-
gions with losses, in some of these regions infrequent
gains could also be found. Again the system found a
large cluster of cases with normal genome plus a few
cases with a low number of losses and gains (clus-
ter 2). The last cluster contains regions with a rather
high number of gains. The most frequent losses occur
in cluster 1 on 13q, 8p and 6q. The most frequent gains
are found in cluster 3 on 17q, 20q and 9q.

Finally, Table 5 shows the results for the pT3N0
cases. The first cluster consists of regions with gains
only. The second cluster contains normal regions and
regions with a single loss and 1–3 gains. The third clus-
ter consists of regions with losses only. Clearly the per-
centage of regions without alterations is lowest in this
group. The most frequent losses are localized on re-
gions 8p, 6q, 13q and 18q. The most frequent gains are
found on 7p, 8q, 9q and 20q.

4. Discussion

In the present paper, we have applied self-organizing
maps for the first time to perform cluster analysis
of chromosomal regions studied by comparative ge-
nomic hybridization. The small datasets used here
(20–50 cases) are typical for CGH, because evalua-
tion of a single case is rather laborious. In order to
make SOMs for CGH popular, we used also the pro-
gram ‘Genecluster’, equipped with a graphical inter-
face of Windows-type and preset parameters (which
can be changed if desired, nevertheless). The compar-
ative studies with two SOMs and hierarchical cluster
analysis gave no evidence for significant differences
between methods in clustering the chromosome re-
gions when the same numbers of clusters were used.
This view can be strictly only stated for the present
data sets from prostate cancer cases. In other papers
it has been reported that different results may be ob-
tained when hierarchical or neuronal methods are used,
in particular when the data sets are noisy [16,40,44].

We have applied cluster analysis for the second time
to CGH data from prostate carcinomas. The clustering
itself was performed by means of the SOM Geneclus-
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Table 3

Results of cluster analysis in Group I

Region Cluster Number of Number of

losses gains

2p 1 . 1

7p 1 . 1

7q 1 . 2

8p 1 5 1

8q 1 . 1

9q 1 . 3

17p 1 . 4

17q 1 . 6

1p 2 . .

1q 2 . .

3p 2 . .

3q 2 . 1

4p 2 . .

4q 2 . .

5p 2 . .

6q 2 . .

9p 2 . .

12q 2 . .

14q 2 . .

16p 2 . .

16q 2 1 .

18p 2 . .

18q 2 2 .

19p 2 . .

19q 2 . .

20p 2 . .

20q 2 . 1

21q 2 . .

22q 2 . .

2q 3 1 .

5q 3 2 .

10q 3 1 1

11q 3 1 .

13q 3 3 .

Here the result of cluster analysis with the SOM Genecluster for
group 1 (incidental carcinomas) is presented. The data are now
sorted by clusters numbered from 1–3. Cluster 1 has only one region
with losses, in each region has occurred at least one gain. Cluster 2
has many regions which show no deviation from the norm according
to CGH, and a few regions with 1–2 losses and gains. There is no
region with a combination of gains and losses, however. Cluster 2
can thus be characterized as normal plus a few regions with a low
number of isolated losses or gains. In cluster 3 we have only domains
with one or more losses, in one region in combination with a single
gain.

Table 4

Results of cluster analysis in Group II

Region Cluster Number of Number of

losses gains

5q 1 3 .

6q 1 5 .

8p 1 9 .

13q 1 11 1

16q 1 4 1

18q 1 3 .

1p 2 2 .

1q 2 . .

2p 2 . .

2q 2 1 .

3p 2 . .

3q 2 . 1

4p 2 . .

4q 2 . .

5p 2 1 .

7p 2 . .

7q 2 . 1

9p 2 1 .

10q 2 1 1

11q 2 . .

12q 2 . .

14q 2 1 .

16p 2 . .

18p 2 . .

19p 2 . .

19q 2 . .

20p 2 2 1

21q 2 . 1

22q 2 . .

8q 3 1 3

9q 3 . 5

17p 3 . 3

17q 3 . 6

20q 3 . 5

The tabulated result of cluster analysis with Genecluster for group II
(pT2N0 carcinomas) is shown. The data are sorted by clusters num-
bered from 1–3, and cluster 2 consists of domains without aberra-
tions or with maximally one isolated loss or gain detectable by CGH.
The other clusters have similar characteristics as in group I, but here
the succession is reversed: cluster 1 at the top is rich in regions which
show losses and contain no or maximally 1 gain, whereas cluster 3
has regions with multiple gains and no more than 1 loss. On the
whole the table shows only 74 aberrations in 50 cases, which is pre-
sumably due to the rather limited tumor stage with restriction of the
tumor cells to the prostate gland and lack of lymph node metastases.
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Table 5

Results of cluster analysis in Group III

Region Cluster Number of Number of

losses gains

5p 1 . 2

7p 1 . 4

7q 1 2 2

8q 1 1 4

9q 1 . 3

12q 1 . 2

20p 1 . 1

2p 2 1 .

3p 2 . .

3q 2 . 2

4p 2 1 .

9p 2 . .

10q 2 1 .

11q 2 1 .

14q 2 . .

16p 2 . .

17p 2 1 2

17q 2 . 2

18p 2 1 1

19p 2 . .

19q 2 . .

20q 2 . 3

21q 2 . .

22q 2 . .

1p 3 1 .

1q 3 2 .

2q 3 2 .

4q 3 2 .

5q 3 6 .

6q 3 4 .

8p 3 7 .

13q 3 3 .

16q 3 3 2

18q 3 4 .

Cluster analysis of the 20 pT3N0 cases shows basically the same re-
sults as for the lower tumor categories. However, the number of chro-
mosome regions in cluster 2, with predominantly normal and slightly
changed domains, has diminished, whereas the number of regions
in cluster 1 and 3 with multiple gains and losses, respectively, have
considerably increased. This behaviour obviously results from the
increased frequency of aberrations and loss of differentiation with
increasing stage (see Table 1).

ter, the well-known SOMPAK package and hierarchi-
cal cluster analysis. In contrast to the previous investi-
gation, where cases were clustered, we have now per-
formed a clustering of changes of chromosomal re-
gions. Both approaches have different goals. In case

clustering the individual case is the unit, of which
usually many other clinical data are known, such as
histopathological grade, PSA values, tumour progres-
sion and many others. Hence mean values of these data
can be computed for the clusters, and the usefulness
of the clustering can be judged from the homogene-
ity of the individual clusters and the contrasts between
the clusters. Clustering of chromosomal regions as per-
formed here is different inasmuch as series of chromo-
some domains ofall cases contribute toall clusters.
It is however possible to find relations between differ-
ent chromosomal regions and the total number of aber-
rations per region. The strategy of our paradigms has
been to construct three rather homogeneous clusters in
all three groups: a cluster of normal or nearly normal
chromosomal arms, a cluster of regions with predom-
inant losses, and a cluster of regions where gains pre-
dominate. The fraction of these clusters is influenced
by the tumor category: in T1 carcinomas the normal
group is the largest, in the pT3N0 group the fraction
of normal cases is much lower because we have more
aberrations in these advanced cases, and the pT2N0-
group behaves intermediate. While our results were
obtained by genuine multivariate techniques such as
HCA and SOMs, this excludes by no means that sim-
ilar relations could have been obtained by other ap-
proaches which may be considered as simpler. For ex-
ample, it is possible to estimate partial correlation co-
efficients between the variables, or to estimate contin-
gency tables. By this approach it may be possible to
identify groups of variables (clusters in a wide sense)
that are significantly correlated to each other, but not
to the other groups. An instructive example for this ap-
proach with graphical presentation of results is given
in the literature [39].

Comparison of the three tumour categories is con-
sistent with the general hypothesis that higher stages of
tumours are correlated with higher numbers of genetic
aberrations and higher grade. This is evident in partic-
ular when the mean Gleason score of group pT2N0 is
compared to group pT3N0 (t-test:p < 0.0001). For
the comparison between T1 to pT2N0, however, this
difference is not significant (t-test:p > 0.6). This re-
sult may follow from the heterogeneity of the inciden-
tal carcinomas, which are defined clinically as a tumor
category by their mode of incidental clinical presenta-
tion, but not as pathological stage. For example, when
a prostatectomy is performed after an incidental car-
cinoma has been found, such a specimen may be free
of tumour, but such a carcinoma may also be widely
invasive resulting in a final stage of pT2 or pT3.
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(a)

Fig. 2. Each figure represents the CGH data of a selected case of incidental prostate carcinoma. The small graphs show the findings on particular chromosomes. Below each graph the
chromosome number and the number of studied metaphases are indicated. Left of the graph the ideogram of the corresponding normal chromosome is shown.The curves are the ratio profiles.
The three vertical lines indicate the normal value of 1 and the upper and lower bounds for normal ratio profiles. Ratio profiles extending beyond the leftborder indicate loss of DNA in a tumour,
whereas an extension beyond the right border indicates a gain of DNA in a tumour. Losses and gains are marked by gray bars. (a) This case shows a loss at 8p,moreover gains were found on
chromosomes 3q and 19p. Most regions showed however no alterations by CGH. (b) In this case more drastic changes of the genome could be observed: a loss and a gain on chromosome 2,
losses on 5q and 6q, extended gains on chromosomes 7 and 8 which practically involve the total DNA of both arms, a loss on 13q and a gain on 19p.
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Finally, we note that in tumour stages pT2N0 and
pT3N0, the clusters rich in losses and the clusters rich
in gains, are not randomly agglomerated but there are
regularities with respect to the most frequent aberra-
tions per cluster. For example, in both groups we have
the chromosome arms 6q, 8p and 13q in the clusters
with predominant losses, and the chromosome arms 9q
and 20q among the clusters with predominant gains.
The results are in accordance with the literature [1,
2,14,15,18,31,32,41]. The coupling of the aforemen-
tioned losses and gains in the same clusters could only
be documented in the manifest cancers with pT2N0
and pT3N0 stage, but not for the T1 carcinomas. This
finding underlines the view that T1 carcinomas are not
just a lower stage than pT2N0 and pT3N0 cases, but
a special, heterogeneous tumour category. This het-
erogeneity was also reflected in the CGH findings,
where 70% of the cases showed normal CGH profiles,
whereas in the remainder of the cases drastic changes
could not infrequently be documented (see Table 1 and
Fig. 2a,b).
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