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The hydroturbine generator regulating system can be considered as one system synthetically integrating water, machine, and
electricity. It is a complex and nonlinear system, and its configuration and parameters are time-dependent. A one-step-ahead
predictive control based on on-line trained neural networks (NNs) for hydroturbine governor with variation in gate position
is described in this paper. The proposed control algorithm consists of a one-step-ahead neuropredictor that tracks the dynamic
characteristics of the plant and predicts its output and a neurocontroller to generate the optimal control signal. The weights of two
NNs, initially trained off-line, are updated on-line according to the scalar error. The proposed controller can thus track operating
conditions in real-time and produce the optimal control signal over the wide operating range. Only the inputs and outputs of the
generator are measured and there is no need to determine the other states of the generator. Simulations have been performed with
varying operating conditions and different disturbances to compare the performance of the proposed controller with that of a
conventional PID controller and validate the feasibility of the proposed approach.

1. Introduction

Hydroturbine governor (HTG) provides the basic control
in hydropower stations to ensure the reliability and the
quality of electricity supply. The conventional hydroturbine
governor adopted by most utilities is a proportional, integral,
and derivative (PID) type controller based on linear control
theory. It has simple structure with flexibility and is easy for
implementation, and thus it has made a great contribution in
enhancing the quality of electrical supply [1].

The hydroturbine generator regulating system can be
considered as one system synthetically integrating water,
machine, and electricity. It is a complex andnonlinear system,
and its configuration and parameters are time-dependent
[2]. Nonlinear models are required when speed and power
changes are large during an islanding, load rejection, and
system restoration conditions. A nonlinear model should
include the effect of water compressibility, that is, inclusion of
transmission-line-like reflections which occur in the elastic-
walled pipe carrying compressible fluid [3, 4].

This creates discrepancies between the mathematical
linear model of the hydroturbine generator regulating sys-
tem and the physical nonlinear plant. Therefore, with the
conventional linear control theory based PID controller, it
is difficult to realize the desired control performance over
wide operating conditions of the power plant [5]. To yield
satisfactory control performance, it is desirable to develop a
controller that considers the nonlinear nature of the plant and
has the ability to adjust its parameters on-line according to the
environment in which it is working, that is, track the plant
operating conditions [6].

To meet this requirement, a large amount of research
has been conducted on the hydroturbine generator regulat-
ing system. Numerous methods for PID tuning have been
reported in the literature [7]. For example, to realize the
parameter optimization of PID controller, an orthogonal
test strategy is adopted in [8, 9] for hydroturbine control
application. In this approach, a control performance index
that depends on control parameters KP, Ki, and Kd is defined.
Each of these parameters is considered under various levels as
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a discrete variable. An optimization algorithm is developed
to search for better control parameters in the neighbouring
space of the present one. However, many of these approaches
lack one or more of the three basic and important features
that a controller should have, that is, simplicity of structure,
fast acting (low computation time), and adaptability.

Neural networks (NNs) have been applied very success-
fully in the identification and control of dynamic systems.The
universal approximation capabilities of themultilayer percep-
tronmake it a popular choice formodeling nonlinear systems
and implementing general-purpose nonlinear controllers
[10–13]. The concept of intelligent tuning of PID controller
is presented in [14, 15]. The use of adaptive learning control
schemes is discussed in [14] and the improved dynamic per-
formance of the intelligent PID controller over the conven-
tional PID is presented in [15]. The developed intelligent PID
controller is based on anthropomorphic intelligence. Among
various types of NNs used in the hydroturbine generator reg-
ulating system, the feed-forward multilayer NN is the most
commonly used. This is mainly due to the computational
efficiency of the back propagation algorithm [12] and the ver-
satility of the three-layer feed-forward NN in approximating
an arbitrary static nonlinear function [16]. However, little
work has been reported on the use of NNs for hydroturbine
generator regulating system for real-time control.

The theory and algorithm of predictive control have
achieved great development in the industrial process control
after thirty years’ application and study. It has been intro-
duced to the optimal control of hydroturbines by lots of
experts. Jones andMansoor [17], for example, applied predic-
tive feed-forward control to the power target signal tracking
in part load condition, and the result shows that predictive
feed-forward control can achieve a substantial improvement
in tracking a power target when a hydroelectric station oper-
ates in part load conditionmode. However, the power station
they used is modeled using linearized transfer function. For
systems with strong nonlinear and frequent turbulence or
wide range of operating point, the predictive control adopting
linear model near operating point can no longer satisfy the
requirements of control quality. Therefore, the nonlinear
modeled predictive control has aroused wide concern.

A predictive control scheme for hydroturbine governor
based on NNs is introduced in this paper. The control
architecture consists of two NNs: an adaptive neuroidentifier
(ANI) to track the plant and predict its output one-step-ahead
and an adaptive neurocontroller (ANC) to produce the con-
trol signal. A scalar error is used in each sampling period to
update the identifier and controller weights continuously in
real-time.With a similar architecture, called indirect adaptive
control [12], the use of a reference model is suggested. That
is avoided in this work owing to the difficulties in choosing
a proper reference model for the complex hydroturbine
generator regulating system.

The effect of different amplitude step disturbances and
trapezoidal shape reference signal (turbine power) are inves-
tigated in this paper. Also, a number of studies are performed
to compare the performance of the proposed controller
with that of the conventional PID controller under different
operating conditions.

2. Basic Plant Equations

A simple layout of a hydropower plant shown in Figure 1
includes a reservoir, a penstock (high pressure), gate, a
hydroturbine, and a generator. The function of the reservoir
is to store water and thus develop a head. To start the tur-
bine generator unit, water released from the reservoir flows
through the penstock and reaches the turbine inlet. Fromhere
it enters into the scroll casing of the turbine that distributes
the water evenly on the runner blades.The electromechanical
power conversion takes place between the turbine runner and
the generator mounted on the common shaft.The water flow
to the turbine is regulated by the operation of wicket gates
that in turn are controlled by the governor. The opening and
closing of the gates are a function of the variable electrical
load connected to the generator and the shaft speed.

Thehydroturbine governing system consisting of the con-
troller and the controlled plant is a complex, nonlinear, time
varying, and non-minimum-phase system with fractional
distributed parameters and uncertainties. The controlled
plant includes a turbine, a penstock, a generator, and a load
(Figure 2). In practice, a linearized (or linear) model is used
to describe the plant for designing the control system. The
dynamic characteristics of the plant are shown in Figure 2
[18].

2.1. Turbine. The characteristic equations of the Francis tur-
bine are [19–21]

𝑀
𝑡
= 𝑀
𝑡
(𝑦, ℎ, 𝑥) ,

𝑄 = 𝑄 (𝑦, ℎ, 𝑥) ,

(1)

where 𝑀
𝑡
is torque of the turbine, 𝑄 is flow rate, 𝑦 is

gate opening, ℎ is head, and 𝑥 is speed. Taking Taylor
series expansion of (1) and omitting the parts containing
second- or higher-order derivatives, the linearized model
can be expressed as follows in the neighborhood of certain
operation:

𝑚
𝑡
= 𝑒
𝑦
𝑦 + 𝑒
𝑥
𝑥 + 𝑒
ℎ
ℎ,

𝑞 = 𝑒
𝑞𝑦
𝑦 + 𝑒
𝑞𝑥
𝑥 + 𝑒
𝑞ℎ
ℎ.

(2)

The six transmission coefficients (as shownbelow) change
as the gate opening changes:

𝑒
𝑦
=
𝜕𝑚
𝑡

𝜕𝑦
, 𝑒

𝑥
=
𝜕𝑚
𝑡

𝜕𝑥
, 𝑒

ℎ
=
𝜕𝑚
𝑡

𝜕ℎ
,

𝑒
𝑞𝑦
=
𝜕𝑞

𝜕𝑦
, 𝑒

𝑞𝑥
=
𝜕𝑞

𝜕𝑥
, 𝑒

𝑞ℎ
=
𝜕𝑞

𝜕ℎ
.

(3)

2.2. Penstock. The general expression of penstock, taking
rigid water hammer, is described as

ℎ = −𝑇
𝑤

𝑑𝑞

𝑑𝑡
, (4)

where 𝑇
𝑤
is the water inertia time constant.
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Figure 2: Hydroturbine generator regulating system.

2.3. Generator and Load. The characteristic equation of the
generator and the load can be written as

𝑇
𝑎

𝑑𝑥

𝑑𝑡
= 𝑚
𝑡
− 𝑚
𝑔
− 𝑒
𝑔
𝑥, (5)

where 𝑇
𝑎
is the unit inertia time constant, 𝑚

𝑔
is the load

torque, and 𝑒
𝑔
is the load self-regulation factor, regarding the

fluctuation caused by the change of the system frequency.

2.4. Servomechanism. Neglecting small time constants, the
servomechanism can be expressed with a first-order equa-
tion:

𝑇
𝑦

𝑑𝑦

𝑑𝑡
+ 𝑦 = 𝑢, (6)

where𝑇
𝑦
is the servomotor response time and 𝑢 is the control

signal.

3. Controller Structure

The structure of the controller is shown in Figure 3. It consists
of two subnetworks. The first subnetwork is an adaptive one-
step-ahead neuroidentifier that tracks the dynamic behaviour
of the plant and identifies the plant in terms of its internal
weights and the second one is an adaptive neurocontroller
to provide the necessary control action in order to minimize
certain cost function.

3.1. Adaptive Neuroidentifier. Amultilayer perceptron neural
network (MLPNN) structure is developed to model the
nonlinear dynamic relationship between the gate position
and the turbine mechanical power. Considering it is difficult
to measure the turbine mechanical power, generator output

power is measured instead to obtain the turbine mechanical
power by

𝑃
𝑒
=

𝑃
𝑔

𝜂
, (7)

where 𝑃
𝑒
is turbine mechanical power, 𝑃

𝑔
is generator output

power, and 𝜂 is generator efficiency.
The network transforms 𝑛 inputs to 𝑚 outputs through a

nonlinear function 𝑓 : 𝑅𝑛 → 𝑅
𝑚. It is shown in [15] that an

MLPNN with single hidden layer activated with sigmoid or
hyperbolic tangent function can approximate any continuous
function. Considering the nature of the dependence of the
plant output on a finite number of past inputs, 𝑢(𝑡), and
outputs, 𝑦(𝑡), the nonlinear relationship between the gate
position and the turbine power can be represented in the form
of predictor/identifier as

𝑦
(𝑘+1)

= 𝑓 [𝑦
(𝑘)
, 𝑦
(𝑘−1)

, . . . , 𝑦
(𝑘−𝑛+1)

, 𝑢
(𝑘)
, 𝑢
(𝑘−1)

, . . . , 𝑢
(𝑘−𝑚+1)

] .

(8)

In this case a popular MLPNN with single hidden layer
activated with sigmoid function and back propagation learn-
ing has been used to develop the predictor of nonlinear
relationship model (8). The input vector to the ANI is

[𝑝
(𝑘)
, 𝑝
(𝑘−1)

, . . . , 𝑝
(𝑘−𝑛+1)

,

𝑢
(𝑘)
, 𝑢
(𝑘−1)

, . . . , 𝑢
(𝑘−𝑚+1)

] ,

(9)

where 𝑝(𝑘) is the turbine mechanical power and 𝑢(𝑘) is
the gate position at the time step 𝑘. The output is the
predicted turbinemechanical power𝑝

(𝑘+1)
, at time step (𝑘+1).

For a finite number of past inputs, 𝑢(𝑡), and outputs, 𝑝(𝑡),
the nonlinear relationship between the control output (gate
position) and turbine power can be represented in the form
of an identifier as shown in Figure 4.

The input vector to the ANI is scaled in the range
of [−1, +1] before being applied to the network. The cost
function used for the ANI is

𝐽
𝑖
(𝑘) =

1

2
𝑒
𝑖
(𝑘)
2
=
1

2
[𝑝 (𝑘) − 𝑝(̂𝑘)]

2

. (10)

The weights are updated as

𝑤
𝑖
(𝑘) = 𝑤

𝑖
(𝑘 − 1) − 𝜂

𝑖

𝜕𝐽
𝑖
(𝑘)

𝜕𝑤
𝑖
(𝑘)
, (11)

where 𝑤
𝑖
is the matrix of identifier weights at time step 𝑘

and 𝜂
𝑖
is the learning rate for the ANI. This cost function

is minimized by back propagating the scalar error. In each
sampling period, the input and the output of the plant are
sampled and the input vector to the identifier is formed as in
(9). Then the error between the actual and predicted outputs
of the plant, a scalar value, is back propagated through the
identifier to update the weights of the network (𝑤

𝑖
(𝑘)). This

process is repeated every sampling period that in turn results
in an adaptive approach to predict one-step-ahead of the
output of the plant. The use of just one error value for back
propagation simplifies the training algorithm by reducing
computation time.
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Figure 4: Neuroidentifier.

3.2. Adaptive Neurocontroller. Taking advantage of the recog-
nized universal approximation properties of NN, a nonlinear
plant in the MLPNN form is obtained as discussed before.
Based on the neural model, a predictive control strategy
is implemented by an adaptive neurocontroller. The input
vector to the ANC is

[𝑝
(𝑘)
, 𝑝
(𝑘−1)

, . . . , 𝑝
(𝑘−𝑝+1)

,

𝑟
(𝑘)
, 𝑟
(𝑘−1)

, . . . , 𝑟
(𝑘−𝑞+1)

] ,

(12)

where 𝑟(𝑘) is the reference input signal at time step 𝑘. The
output of the ANC is the control action 𝑢(𝑘) at time step 𝑘.
The inputs to the ANC are also scaled in the range of [−𝑙, +𝑙].
The cost function for the ANC is considered as

𝐽
𝑐
(𝑘) =

1

2
[𝑒
𝑐
(𝑘)
2
+ ℎ𝑢 (𝑘)]

2

=
1

2
[𝑟 (𝑘) − 𝑝(̂𝑘)]

2

+
ℎ

2
𝑢 (𝑘)
2
,

(13)

where 𝑟(𝑘) is the reference input signal at time step 𝑘 and
ℎ is a tuning parameter that is used to improve the plant
output dynamic characteristics. By taking ℎ larger than zero,
a penalty factor is applied to the control operation that helps
the tuning of the dynamic trajectory and optimizing the
overshoot and the settling time of the response curve. The
weights of the controller 𝑤

𝑐
(𝑘) are updated as

𝑤
𝑐
(𝑘) = 𝑤

𝑐
(𝑘 − 1) − 𝜂

𝑐

𝜕𝐽
𝑐
(𝑘)

𝜕𝑤
𝑐
(𝑘)
. (14)

Using (13) and (14) 𝐽
𝑐
(𝑘) is minimized in each sampling

period. As depicted in (9) and (12), the states of the plant are
not required for the implementation of the ANI and ANC,
and only input-output data are needed.This greatly simplifies
the implementation of the control process.

4. Training Process

The success implementation of the control algorithm pre-
sented in Section 3 highly depends on the accuracy of the
identifier in tracking dynamic plant. For this reason, the
ANI is initially trained off-line before being used in the final
configuration.The training is performed over a wide range of
operating conditions for the generating unit. After the off-line
training stage, the ANI is employed in the system. Further
updating of the weights of ANI and ANC is performed in
each sampling period by employing the on-line version of
the back propagation method. This enables the controller to
track the plant variations as they occur to yield the optimum
performance. The main steps of the adaptive predictive
control algorithm are listed as follows, and the algorithm
flowchart is shown in Figure 5.

(1) At time step 𝑘, 𝑝(𝑘) is sampled.
(2) Compute 𝑝

(𝑘)
using ANI and its input vector (9).

(3) Calculate the error between 𝑝(𝑘) and 𝑝
(𝑘)
; then

update the weights of the ANI to minimize 𝐽
𝑖
(𝑘) uti-

lizing the back propagation method and the gradient
descent algorithm.

(4) The output of the controller 𝑢(𝑘) is computed.
(5) Using input vector (9), the predicted 𝑝

(𝑘+1)
is com-

puted by the ANI with weights updated in step (3).
(6) Based on 𝑝

(𝑘+1)
and reference signal, weights of the

ANC are updated, minimizing 𝐽
𝑐
(𝑘) by utilizing the

back propagation method and the gradient descent
algorithm.

In step (3) above, the training is straightforward since
the error at the output of the ANI is obtained. However, in
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Figure 5:Theflowchart of the adaptive predictive control algorithm.

step (6) the training is difficult since the error at the output
of the ANC is not provided. In this case, first, the weights
of the ANI are frozen and the error between the desired and
predicted plant output is back propagated through the ANI.
Then, the back propagated signal at the input of the ANI
is further propagated through the ANC, making necessary
changes to the controllerweights. In otherwords, for adapting
weights of the controller, the identifier acts as a channel to
convey the error from the output of the identifier to the output
of the controller.This evaluates the need to have the identifier.
The error is used to train the ANI and the ANC.

5. Simulation Results

The plant model is simulated using the mathematical model
given in Section 2. The values of plant parameters used are

𝑇
𝑎
= 9.06 s, 𝑇

𝑤
= 1.27 s, 𝑇

𝑟
= 0.15 s,

𝜉 = 0.2, 𝑇
1
= 0.02 s, 𝑇 = 0.04 s,

𝑠
1
= 0.00167, 𝑖

𝑥
= 0.04%,

(15)

where 𝑇
𝑟
is penstock reflection time, 𝜉 is damping constant-

infinite bus tie, 𝑇
1
is servomotor response time, 𝑇 is the

sampling period, 𝑠
1
is speed limit on control in a governor,

and 𝑖
𝑥
is dead band. The transmission coefficients (except

𝑒
𝑞𝑥

which is usually equal to 0) have different values for the
different gate openings. A set of transmission coefficients
corresponding to the gate opening for a turbine located in
Ouyanghai hydropower plant in China is given in Table 1.The
design water head of Ouyanghai hydropower station is 37.6
meters, and design flow is 38.4m3/s. Turbinemodel is chosen
asHL123-LJ-225, and rated capacity and voltage of the turbine
are 1200 kw and 10.5 kv, respectively.

Table 1: Transmission coefficients as a function of gate opening.

Operating
point
number

Gate
opening % 𝑒

𝑦
𝑒
ℎ

𝑒
𝑥

𝑒
𝑞𝑦

𝑒
𝑞ℎ

1 43.74 2.867 0.526 −0.353 1.674 0.232
2 47.52 2.562 0.679 −0.455 1.541 0.262
3 51.26 2.278 0.814 −0.545 1.416 0.290
4 55 2.016 0.934 −0.626 1.300 0.315
5 58.74 1.766 1.039 −0.696 1.191 0.338
6 62.52 1.654 1.132 −0.759 1.090 0.360
7 66.26 1.333 1.212 −0.813 0.997 0.380
8 70 1.146 1.281 −0.859 0.913 0.397
9 73.74 0.974 1.340 −0.898 0.837 0.414
10 77.52 0.822 1.391 −0.932 0.768 0.429
11 81.26 0.691 1.433 −0.961 0.708 0.443
12 85 0.578 1.468 −0.984 0.655 0.455
13 88.74 0.484 1.498 −1.000 0.611 0.467
14 92.52 0.409 1.523 −1.020 0.574 0.478
15 96.26 0.353 1.544 −1.030 0.546 0.489
16 100 0.317 1.563 −1.047 0.526 0.499

The Simulation Toolbox SIMULINK of MATLAB is uti-
lized to develop plant model and generate data. The absolute
value of pseudorandombinary signal is applied to the input to
represent the variation of gate position, and the correspond-
ing turbine mechanical power is obtained. The data collected
(input and output) are divided into two sets: one set is for
training the NN and the other set is for validation.

An input-output identifier model and control strategy is
established and its parameters are set as follows. The number
of time delays used for the input of ANI and ANC is set to 3;
that is,𝑚, 𝑛, 𝑝, and 𝑞 in (8), (9), and (12) are all set to 3. This
means that both the ANI and the ANC have 6 inputs. There
is one hidden layer of 8 neurons with sigmoid nonlinearity
and an output layer with one linear neuron, for both the ANI
and the ANC. Initial weights of the ANC lie in [−0.1, +0.1],
chosen randomly at the beginning of the process. The initial
weights of the ANI are set to those obtained from off-line
training stage of the ANI as discussed before. The learning
rate for the ANI and the ANC is 0.01 and 0.03, respectively.
The value of the penalty factor ℎ is set between 0.1 and 2.0.

The quadratic programming problem in (13) is solved by
using the quadprog function in the Optimization Toolbox of
MATLAB. The MLP network algorithm is realized by using
the functions of Train, Init, and Sim in the Neural Network
Toolbox of MATLAB.

As the control parameters have been determined as
discussed before, the performance of the proposed adaptive
neural predictive control is simulated on a large amplitude
step and trapezoidal wave-shape reference signals. These
reference signals may represent the nature of load changes.
The turbine gate opening and power output are shown in
Figures 6–9 on different reference signals and various values
of penalty factor ℎ.
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Figure 6: Response to large amplitude step in turbine power reference, ℎ = 2.0.
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Figure 7: Response to large amplitude step in turbine power reference, ℎ = 0.18.

The response shows a non-minimum-phase characteris-
tic. The turbine power response on the large amplitude step
signal follows more or less closely. It is evident that despite
a large change in the operating conditions the controller
still provides good results because of the adaptation process.
However, the gate position is observed to exhibit large
fluctuation on step change with ℎ = 0.18. This would
cause undue actuator wear. The optimization seems to be
insensitive to variations in control penalty factor. In the case

of trapezoidal wave signal, the controlled variable reaches
its steady-state value extremely fast with a little offset (i.e.,
output power overlaps the reference signal) and gate position
variation within limits is demonstrated.

A number of studies have been performed to compare the
quality of the proposed adaptive predictive controller with
those of the conventional PID controller.

Generally, the conventional governors adopt a PI or PID
control law. Figure 10 is the illustration of the conventional
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Figure 8: Response to trapezoidal wave reference, ℎ = 2.0.
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Figure 9: Response to trapezoidal wave reference, ℎ = 0.18.
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load changing process, where bp is permanent speed droop.
It plays an important role in adjusting the load of the unit and
the load distribution among all units in the power system.

Regarding the adjustments of PID parameters, the follow-
ing formulas are often used by experienced engineers.

For PI controller,

𝑇
𝑛
= 0, 𝑏

𝑡
=
2.6𝑇
𝑤

𝑇
𝑎

, 𝑇
𝑑
= 6𝑇
𝑤
; (16)

for PID controller,

𝑇
𝑛
= 0.5𝑇

𝑤
, 𝑏

𝑡
=
1.5𝑇
𝑤

𝑇
𝑎

, 𝑇
𝑑
= 3𝑇
𝑤
, (17)

where 𝑇
𝑛
is the derivative time constant, 𝑏

𝑡
is the transient

speed droop, and 𝑇
𝑑
is the damping time constant. Their

relation with proportional, integral, and differential gain
coefficients of a continuous PID controller is

𝑘
𝑝
=
𝑇
𝑑
+ 𝑇
𝑛

𝑏
𝑡
𝑇
𝑑

, 𝑘
𝑖
=

1

𝑏
𝑡
𝑇
𝑑

, 𝑘
𝑑
=
𝑇
𝑛

𝑏
𝑡

. (18)

According to these empirical formulae, the parameters of
the conventional PID controller are chosen as below:

𝑘
𝑝
= 5.56, 𝑘

𝑖
= 1.25, 𝑘

𝑑
= 3.03, 𝑏

𝑝
= 0.

(19)

The proposed adaptive neuropredictive controller adopts
the parameters determined as discussed above and the value
of the penalty factor ℎ is set to 2.0.

Step increases of 10% and 80% in power reference are
introduced and the system responses with the conventional
PID controller (CPID) and the proposed adaptive neuropre-
dictive controller (PAPC) are shown in Figures 11–14. The
dashed curves represent the response of CPID, and the solid
lines represent the response of PAPC.

It is observed from Figure 11 that, with the conventional
PID controller, the settling time, defined as themomentwhen
the system error is less than 5% of the input reference signal,
is 8.9 s and the overshoot is 18.3%, but, with the adaptive
predictive controller, the setting time is 7.2 s and overshoot is
13.1%. It can be seen from Figure 12 that the settling time with
the conventional PID controller is 28.3 s and the overshoot is
37.4%, but, with the adaptive predictive controller, the setting
time is 7.4 s and overshoot is 13.5%.

From the responses for 10% and 80% step changes
in power reference, it can be seen that the conventional
PID controller only provides acceptable performance for a
small disturbance rather than the large disturbance. Even
for a small disturbance, the proposed adaptive predictive
controller is better than the conventional one regarding the
speed and the overshoot of response of the process.

This is logically correct because of the existence of
nonlinearities in a hydroturbine governing system. These
nonlinearities can be divided into two parts. The first comes
from the turbine’s nonlinear characteristics that depend on
the operating point. It can be clearly seen from (2) of
the turbine that the six transmission coefficients change

CPID
PAPC

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (s)

Tu
rb

in
e p

ow
er

 (p
u)

Figure 11: Turbine power output response to a 10% step in reference.
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Figure 12: Turbine power output response to an 80% step in refer-
ence.

as the gate opening changes. The second part is due to
the nonlinear factors such as magnitude limit on control,
dead band, and speed limit on control. Therefore, in the
conventional PID controller, the regulation parameters that
give good performance for small disturbance are no longer
optimal for the large disturbance. In the case of a small
disturbance, the effect of nonlinearity is negligible and the
conventional controller is designed based on the linear
control theory, but, in the case of a large disturbance, the
effect of nonlinearity cannot be neglected. The plant has
changed; however the control parameters of the conventional
PID controller have not changed. Therefore, it is unable to
maintain adequate performance levels. In contrast, it can be
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Figure 13: Gate opening response to a 10% step in reference.
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Figure 14: Gate opening response to an 80% step in reference.

seen that the proposed adaptive predictive controller has a
good response for both small and large disturbances, because
it considers the nonlinear nature of the plant and has the
ability to adjust its own parameters on-line according to
the working environment. Even for the small disturbance,
the proposed adaptive predictive controller considers the
plant nonlinearity as well, while it is usually ignored in
the conventional PID controller. Therefore, the proposed
adaptive predictive controller has better control performance
than the conventional one in regard to the speed and the
overshoot of the process response.

6. Conclusions

An adaptive neuropredictive control for hydroturbine gov-
ernor is presented in this paper. The back propagation net-
work with on-line learning is used in the proposed method.
The controller introduced in this work inherits the general
advantages of neural networks such as high speed, general-
ization capability, and fault tolerance as well as adaptation
(learning) property. This method features the simple struc-
ture and the nonrequirement for a large number of neurons
in the implementation. The learning algorithm is simplified
by employing a single element error vector. The controller
weights are updated directly in an on-line mode from the
inputs and the outputs of the generator, and the states
of the system are not necessarily determined. Simulation
results for the large amplitude step and trapezoidal wave-
shape reference signals show that the proposed adaptive
predictive controller can adaptively improve the dynamic
performance of the system. By comparing the performance
of the proposed adaptive predictive controller with that of
the conventional PID controller, it is found that the proposed
adaptive predictive controller is not only simple but also
robust, and it features strong adaptivity as well.
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