
CHEP 2003, La Jolla - San Diego, March 24-28 2003 1

Managing Dynamic User Communities in a Grid of Autonomous
Resources

R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello∗, A. Gianoli, F. Spataro
INFN, Italy
F. Bonnassieux
CNRS, France
P. Broadfoot, G. Lowe
University of Oxford, United Kingdom
L. Cornwall, J. Jensen, D. Kelsey
CCLRC/Rutherford Appleton Laboratory, United Kingdom
Á. Frohner
CERN
D.L. Groep, W. Som de Cerff, M. Steenbakkers, G. Venekamp
NIKHEF, The Netherlands
D. Kouril
CESNET, Czech Republic
A. McNab
University of Manchester, United Kingdom
O. Mulmo
KTH, Sweden
M. Silander, J. Hahkala
HIP, Finland
K. Lőrentey
ELTE, Hungary

One of the fundamental concepts in Grid computing is the creation of Virtual Organizations (VO’s): a set of
resource consumers and providers that join forces to solve a common problem. Typical examples of Virtual
Organizations include collaborations that formed around the LHC experiments. To date, Grid computing
has been applied on a relatively small scale, linking dozens of users to a dozen resources, and management
of these VO’s was a largely manual operation. With the advance of large collaboration, linking more than
10000 users with a 1000 sites in 150 counties, a comprehensive, automated management system is required.
It should be simple enough not to deter users, while at the same time ensuring local site autonomy. The VO
Management Service (VOMS), developed by the EU DataGrid and Datatag projects, is a secured system for
managing authorization for users and resources in virtual organizations. It extends the existing Grid Security
Infrastructure architecture with embedded VO affiliation assertions that can be independently verified by all
VO members and resource providers. Within the EU DataGrid project, Grid services for job submission, file-
and database access are being equipped with fine- grained authorization systems that take VO membership into
account. These also give resource owners the ability to ensure site security and enforce local access policies.
This paper will describe the EU DataGrid security architecture, the VO membership service and the local site
enforcement mechanisms LCAS, LCMAPS and the Java Trust and Authorization Manager.

1. INTRODUCTION

The security infrastructure of European Data-
grid (EDG)[1] is based on Public Key Infrastructure
(PKI)[2]. A certain number (18) of independent en-
tities, the national Certification Authorities, are re-
sponsible for identifying the users of the grid and as-
sign them the authentication credentials (i.e. X.509
certificates).

Following a process of harmonization of Certifi-
cate Policy (CP) and Certificate Practice Statements
(CPS), all these CA’s mutually thrust each other and

∗Corresponding author

are trusted by all resources participating in the EDG
test-bed.

On the other hand, user authorization is a much
more complex mechanism and constitutes one of the
most challenging issues in Grid computing.

Since resources and users are not typically co-
located, it is not feasible to make Authorization de-
cisions for grid users on local (i.e. on the resource)
site basis only. Moreover users have normally direct
administrative deals only with their own local site (or
a few sites) and with the collaborations they work in,
but not, generally, with all the entities forming a grid.

To clarify, it is convenient to introduce the following
concepts:

• Virtual Organization (VO): abstract entity
grouping Users, Institutions and Resources (if

TUBT005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357245677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 CHEP 2003, La Jolla - San Diego, March 24-28 2003

any) in a same administrative domain [3, 4];

• Resource Provider (RP): facility offering re-
sources (e.g. CPU, network, storage) to other
parties (e.g. VO’s), according to specific “Mem-
orandum of Understanding”.

In the LCG[5] framework, the LHC experiments col-
laborations are good examples of VO’s, while the Tiers
are the RP’s.

From the authorization point of view, a grid is es-
tablished by enforcing agreements between RP’s and
VO’s, where, in general, resource access is controlled
by both parties with different roles. More specifically,
the general information regarding the relationship of
the user with his VO (groups he belongs to, roles he is
allowed to cover 1 and capabilities2 he should present
to RP’s for special processing needs) should be man-
aged, in our opinion, by the VO itself. The RP’s eval-
uate locally this information, granted by the VO to
the user, taking into account the local policies and
the agreements with the VO.

As result of the authorization evaluation process,
the RP should eventually grant access to a certain
set of resources (CPU, storage etc.) in a controlled
way (e.g. by some kind of extended Access Control
Lists) and provide mapping from the grid credentials
(i.e. X.509 certificates) onto local ones (e.g. Unix
credentials on computing elements).

Since, in our opinion, the present mechanisms (e.g.
grid-mapfile, VO LDAP servers) are not scalable (see
paragraph: 1.2), it is unfeasible to use them in a pro-
duction grid, with a potential very large number of
users (e.g. exceeding thousands of people); hence we
have developed a new set of tools to cope with all
these aspects.

In this paper we briefly describe the authorization
requirements of a grid, focusing on the framework of
the DataGrid and DataTAG (EDT) Projects [1, 7],
and illustrate the architecture of the new services we
have developed, the Virtual Organization Mem-
bership Service (VOMS) to manage authorization
information in VO scope, the Local Centre Autho-
rization Service (LCAS) to handle the actual au-
thorization decision at the local site, the Local Cre-
dential Mapping Service (LCMAPS) to map the
grid credentials to local ones, TrustManager to pro-
vide GSI compatible authentication in Java and the
Authorization Manager for coarse grained access
control in Java services.

1For the definition of group and role, please see [6].
2A capability is intended as a free text string to be inter-

preted by the local site for special processing purposes.

1.1. Authorization Requirements

Given the large potential number of users and re-
sources in a grid, the Authorization infrastructure for
users need to be centralized at VO level to satisfy
the implicit requirement of scalability. In this way, as
stated before, Authorization is based on policies writ-
ten by VO’s and their agreements with RP’s, that, in
turn, enforce local authorization.

In this VO-centric vision, the first condition for a
user to access the grid is to be member of a VO, but in
general a user may be member of any number of VO’s
and, for this reason, his membership should be consid-
ered as a “reserved” information (i.e. its membership
in a VO must not be relevant to other VO’s).

A VO can form a complex, hierarchical structure
with groups and subgroups in order to clearly di-
vide its users according to their tasks: in general, we
can represent the VO structure with a Direct Acyclic
Graph (DAG), where the groups are the vertices of
the graph and the subgroup-group relationships are
the oriented edges.

For scalability reasons, it should be possible to del-
egate the management of each group.

A user can be a member of any number of these
groups and, both at VO and group level, may be
characterized by any number of roles and capabilities;
moreover roles and capabilities may be granted to the
user indefinitely or on a scheduled time basis (e.g. a
certain user of the CMS collaboration is granted ad-
ministrative role only when he is “on shift”) or on a
periodic basis (e.g. normal users have access to re-
sources only during working hours). The membership
in a subgroup implies the membership in all ancestor
groups up to the root (i.e. the VO itself).

The enforcement of these VO-managed policy at-
tributes (group memberships, roles, capabilities) at
local level must reflect the agreements between the
VO and the RP’s. However it should be possible for
RP’s to override the permissions granted by VO’s (e.g.
to ban unwanted users). As a consequence, to permit
traceability at user level (and not only at VO level)
users must present their credential to RP’s along with
their authorization info.

As side requirements, we note that authorization
servers should not be a single point of failure (this
is a particularly critical issue for VO authorization
servers) and that all the Authorization communica-
tions should be trusted, secured and reserved.

1.2. Authorization status in EDG

The Authentication and Authorization methods
adopted by the EDG are based on the Globus Toolkit’s
Grid Security Infrastructure (GSI) [8, 9] and on com-
patible solutions for Java.

In EDG, as originally in Globus, to access the Grid,
the user first creates a proxy certificate (via grid-

TUBT005



CHEP 2003, La Jolla - San Diego, March 24-28 2003 3

proxy-init procedure) that is then sent to the re-
quested resources in order to access them.

Figure 1: VO LDAP authorization mechanism

In EDG Test-bed 1 each VO maintains authoriza-
tion information in a LDAP server. The RP’s, periodi-
cally (e.g. daily) querying the LDAP servers, generate
a list of VO users (in case banning unwanted entries
or allowing non-VO users on their local resources) and
map them to local credentials (the so-called “grid-
mapfil”) granting users the Authorization to access
local resources. A tool, mkgridmap, to generate the
list is also available (see Figure 1).

In the current implementation, authorization is
boolean since neither subgroups nor roles or capabili-
ties are supported; hence a differentiation among users
is only manageable at the local sites and can only re-
flect local policies.

The main missing features of this architecture are
flexibility and scalability. No roles, subgroups mem-
berships and any other user peculiarity are supported.
Moreover, the use of a RP-based database (i.e. the
grid-mapfile), periodically updated, hardly scales in a
production environment with a large number of users,
each, potentially, with his groups, roles and capabil-
ities, whereas in the test-bed the users situation is
almost static, and user policy is very simple.

The solution is to let users present the authoriza-
tion data as they try to access the local resources (i.e.
shifting from pull to push model); on the other hand
we suspect that LDAP protocol is not the best choice
to sustain the burden of a potentially high number of
complex queries.

2. The VOMS system

VOMS has been developed in the framework of
EDG and EDT collaborations to solve the current
LDAP VO servers limitations (see paragraph 1.2). In

fact, the purpose of VOMS is to grant authorization
data to users at VO level.

VOMS provides support for group membership,
forced groups (i.e. for negative permissions), roles
(e.g. admin, student, etc.) and capabilities (free form
string).

The server is essentially a front-end to an RDBMS
(in the present implementation, the database used is
mysql[10]), where all the information about users is
kept (see Figure 2).

Figure 2: The VOMS database structure

The VOMS System is composed by the following parts
(see figure 3):

• User Server: receives requests from a client
and returns information about the user.

• User Client: contacts the server presenting a
user’s certificate and obtains a list of groups,
roles and capabilities of the user. All client-
server communications are secured and authen-
ticated.

• Administration Client: used by the VO ad-
ministrators (adding users, creating new groups,
changing roles, etc.)

• Administration Server: accepts the requests
from the clients and updates the Database.

2.1. Operations

2.1.1. User part

For continuity reasons with the present situa-
tion, we have added a command (voms-proxy-init)

TUBT005



4 CHEP 2003, La Jolla - San Diego, March 24-28 2003

Figure 3: The VOMS system

to replace grid-proxy-init. This new com-
mand produces a user’s proxy certificate – like
grid-proxy-init – but with the difference that it
contains the user authorization info from the VOMS
server(s). This info is returned in a structure contain-
ing also the credentials both of the user and of the
VOMS server and the time validity. All these data
are signed by the VOMS server itself. We call this
structure a “Pseudo-Certificate” (a new release with
Attribute Certificates [6, 11] replacing the “Pseudo-
Certificate” is in progress).
In more detail (see figure 4):

1. The user and the VOMS server mutually au-
thenticate using their certificates (via standard
Globus API)

2. The user sends signed request to VOMS Server

3. The VOMS Server checks correctness of user’s
request

4. The VOMS Server sends back to the user the
required info (signed by itself) in a structured
form (Pseudo-Certificate)

5. The user checks the validity of the info received

6. The user eventually repeats process for other
VOMSs

7. The user creates the proxy certificates contain-
ing all the info received from the VOMS Server
into a (non critical) extension

8. The user may add user-supplied authentication
info (kerberos tickets, etc)

In order to process this authorization informa-
tion, the Gatekeeper, in addition to normal certifi-
cate checking, has to extract the additional informa-
tion embedded in the proxy (the Pseudo-Certificate).

Figure 4: VOMS Operations

This can be easily done with an appropriate LCAS
plug-in [12]. However, as the VOMS info are included
in a non critical extension of the certificate, this can
be used even by “VOMS-unaware” Gatekeepers, thus
maintaining compatibility with previous releases.

For the transition phase, we have also developed an
enhanced version of mkgridmap (mkgridmap++) to
allow RP’s, with the old Gatekeeper installation, to
query the VOMS server instead of the LDAP server.
We control the access to VOMS allowing only authen-
ticated users via https.

The Java counterpart of LCAS/LCMAPS, the Au-
thorization Manager [13] is also capable of parsing and
checking the VOMS Pseudo-Certificate and utilise its
attributes in the authorization process. To ease the
transition it is backward compatible and it is also able
to use a grid-mapfile.

2.1.2. Administration

The Administration server supports the SOAP pro-
tocol for connections, so that it can be easily con-
verted into an OGSA service. It consists of five sets
of routines, grouped into services: the Core, which
provides the basic functionality for the clients; the
Admin, which provides the methods to administrate
the VOMS database; the History, which provides
the logging and auditing functionality (the database
scheme provides full audit records for every changes);
Request, which provides an integrated request han-
dling mechanism for new users and for other changes;
Compatibility, which provides a simple access to the
user list for the mkgridmap utility.

Two administrative interfaces (web and command
line) are available.

2.2. Security Considerations

The VOMS server does not add any security issues
at user operation level since it performs the usual GSI
security controls on the user’s certificate before grant-

TUBT005



CHEP 2003, La Jolla - San Diego, March 24-28 2003 5

ing rights: it must be signed by a “trusted” CA, be
valid and not revoked.

Even compromising the VOMS server itself would
be not enough to grant illegal, indiscriminate access
to resources since the authorization data must be in-
serted in a user proxy certificate (i.e. countersigned
by the user himself). Hence the only possible large
scale vulnerabilities are denial of service attacks (e.g.
to prevent VO users to get their authorization creden-
tials).

The main security issue about proxy certificates[14]
is the lack of a revocation mechanism; on the other
hand these certificates have short lifetimes (12 hours,
typically).

2.3. Related Works

In this paragraph, we will briefly compare the
VOMS system with some analogous systems, namely
the “Privilege and Role Management Infrastructure
Standards Validation” (PERMIS), Akenti and the
“Community Authorization Server” (CAS).

2.3.1. VOMS vs. PERMIS

PERMIS[15], implementing an RBAC (Role Based
Access Control) mechanism, has been considered as
an alternative to VOMS.

PERMIS has two modes of operation, push and
pull. With push, the user sends his attribute certifi-
cates to PERMIS; with pull, PERMIS can be config-
ured with any number of LDAP repositories, and it
will search all of them for attributes of the user.

This second approach is clearly neither VOMS-
oriented nor scalable.

Moreover VOMS, distributing the AC’s to the users
themselves, allows a much greater flexibility. For ex-
ample, with VOMS a user who is a member of sev-
eral groups and holds several roles can actually choose
how much information about himself he may want to
present to a site. It is also possible to obtain and
present at the same time information on more VO’s, a
useful characteristic in case of collaborations between
VO’s.

The second major difference is the policy engine,
where Permis is really powerful, because it can take
a properly formatted policy file and make decisions
based on the content of the file and the AC’s it re-
ceives. On the contrary, VOMS does not focus on this
problem, and it leave the interpretation of the AC’s
to other components (i.e. to local sites, namely to
LCAS).

In conclusion VOMS and Permis are complemen-
tary: VOMS as a AC issuer, and Permis (slightly
modified in its AC gathering) as an policy engine.

2.3.2. VOMS vs. CAS

CAS[16] has been developed by the Globus team to
solve the same problem tackled by VOMS in EDG.

There are, indeed, two major differences between
CAS and VOMS.

The first is that CAS does not issue AC’s, but whole
new proxy certificates with the CAS server Distin-
guish Name as the subject; the authorization infor-
mation is included in an extension.

As a consequence, when a service receives this cer-
tificate, it cannot effectively decide who the owner is
without inspecting the extension. This means that ex-
isting services, in Globus-based grids, would need to
be modified to use a CAS certificate; on the contrary
using VOMS, since it adds the AC’s in a non-critical
extension of a standard proxy certificate, does not re-
quire this kind of modification to the services.

The second major difference is in the fact that CAS
does not record groups or roles, but only permissions.
This means that the ultimate decision about what
happens in a farm is removed from the farm adminis-
trator and put in the hands of the CAS administrator,
thus breaking one of the fundamental rules of the grid:
the farm administrator has total control about what
happens on his machines.

2.3.3. VOMS vs. Akenti

Akenti[17] is an AC-based authorization system.
There are three major differences between Akenti

and VOMS.
The first is that Akenti does not use true AC’s since

their definition and description do not conform the
standard (at present nor VOMS uses standard AC’s,
but this will be changed in the next production re-
lease).

The second is that Akenti is targeted on authorizing
accesses on web resources, and particularly web-sites.
This means that it is completely unfeasible to use it
for other needs, for example in a VO.

The third is that Akenti does not link identities with
groups or roles, but with permissions. This is done
on the resource side, not removing the control from
the resource itself, like CAS does; on the other hand,
not having an intermediary like VOMS (or even CAS)
will surely lead to fragmentation and inconsistencies
between the permissions.

3. Local Authorization Services

At the resource level, two new services have been
introduced to process the authorization data provided
by VOMS:

1. For native execution environments, like UNIX,
the Local Centre Authorization Service (LCAS)
and the Local Credential Mapping Service

TUBT005



6 CHEP 2003, La Jolla - San Diego, March 24-28 2003

Gatekeeper
LCAS

allowed

timeslot

banned 

policy

C=IT/O=INFN 
/L=CNAF
/CN=Pinco Palla
/CN=proxy

VOMS
pseudo-

cert

Job Manager
fork+exec args, submit script

LCMAPS open, learn,
&run:

… and return legacy uid

LCAS authZ call out

GSI AuthN

accept

Figure 5: The (EDG modified) gatekeeper

(LCMAPS) replace the existing grid-mapfile
mechanism, since the traditional system as
shipped with the Globus “gatekeeper” allowed
credential mapping based only on user identity.
The gatekeeper has been modified to support
these new systems (see figure 5).

2. The new Java based web services (e.g. Replica
Manager, Spitfire) are based on the GSI com-
patible authenticaten and coarse grained autho-
rization routines.

3.1. LCAS

The LCAS system provides a pluggable framework
for (possibly centralized) site authorization. LCAS
is called from within the gatekeeper. Based on iden-
tity, authorization data, and the complete job speci-
fication, access to can be granted or denied. Several
plug-in modules are shipped by default with the sys-
tem, amongst them modules to support site-specific
blacklisting of users and wall-clock time constraints
on job submission. RP’s can develop and subsequently
include locally developed modules.

A plug-in for VOMS (to process Authorization
data) has been developed.

3.2. LCMAPS

Traditional native execution environments like
UNIX, have no ready means to enforce the specific set

of rights represented in the Authorization data used in
the Grid environment. For such environments, those
rights have to be mapped to credential mechanisms
supported by these native environments, like user ids
and group ids. The mapping created should result in
the rights and limitation as expressed on the Grid be
enforced when running jobs on a particular system.
The mapping is thus based on user identity, VO affili-
ation and, necessarily, site-local policies. LCMAPS is,
like LCAS, a pluggable framework system. It supports
both standard UNIX (uid,gid)-pair accounts, either
predefined for individual users, or allocated on-the-
fly from a pool of generic “leased” accounts via the
Gridmapdir mechanisms[18]. These mappings can be
enforced both in the local process as well as in cen-
tral user directories based on LDAP. Further plug-ins
support the acquisition of local Kerberos5 credentials
and AFS tokens.

3.3. Java Security

The TrustManager is certificate validator, authen-
tication subsystem for Java services: it supports the
X.509 certificates (and CRL’s) and GSI style proxy
certificates, making possible to (mutually) authenti-
cate the client-server connections.

In the EDG Java security package the authorization
is implemented as role based authorization. Currently
the authorization is done in the server end and the
server authorizes the user, but there are plans to do
mutual authorization where also the client end checks

TUBT005



CHEP 2003, La Jolla - San Diego, March 24-28 2003 7

that the server end is authorized to perform the service
or to save the data.

4. Future Developments

Future developments will include use of Attribute
Certificates for all the Authorization process, replica
mechanisms for the RDBMS containing the Autho-
rization data, and more sophisticate time validity for
the VOMS certificates.

Acknowledgments

The authors wish to thank the EU and our national
funding agencies for their support.

References

[1] The DataGrid Project: http://www.edg.org/
[2] http://www.ietf.org/html.charters/pkix-

charter.html
[3] Foster, I. and C. Kesselman (eds.), The Grid:

Blueprint for a New Computing Infrastructure.
Morgan Kaufmann (1999)

[4] I. Foster, C. Kesselman and S. Tuecke, The
Anatomy of the Grid, International Journal of
High performance Computing Applications, 15,
3 (2001)

[5] The LCG project:http://lcg.web.cern.ch/LCG/

[6] S. Farrel and R. Housley, An Internet Attribute
Certificate Profile for Authorization, RFC3281
(2002)

[7] The DataTAG Project: http://www.datatag.org
[8] The Globus Project: http://www.globus.org/
[9] Grid Security Infrastructure:

http://www.globus.org/security/
[10] http://www.mysql.com/
[11] R. Housley, T. Polk, W. Ford and D. Solo, Inter-

net X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,
RFC3280 (2002)

[12] Architectural design and evaluation criteria:
WP4 Fabric Management, DataGrid-04-D4.2-
0119-2-1 (2001)

[13] European DataGrid, Security Coordination
Group: Security Design, DataGrid-07-D7.6-0112
(2003)

[14] S. Tuecke, D. Engert, I. Foster, V. Welch, M.
Thompson, L. Pearlman and C. Kesselman, Inter-
net X.509 Public Key Infrastructure Proxy Cer-
tificate Profile, draft-ggf-gsi-proxy-04 (2002)

[15] Privilege and Role Management Infrastructure
Standards Validation: http://www.permis.org/

[16] L. Pearlman, V. Welch, I. Foster, K. Kesselman
and S. Tuecke, A Community Authorization Ser-
vice for Group Collaboration, IEEE Workshop
on Policies for Distributed Systems and Networks
(2002)

[17] http://www-itg.lbl.gov/Akenti/
[18] The gridmapdir patch for Globus:

http://www.gridpp.ac.uk/gridmapdir/

TUBT005


