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Abstract 
 

In this paper I will describe models for whole numbers and their divisors using an adaptation of Hasse diagrams.  

The model gives us a unique visual representation for each whole number, because they are constructed based on 

the prime factorization of the numbers.  Since every number has a unique prime factorization, the model for each 

number will be unique.  The models are easy to make in the classroom and yield beautiful constructions.  But most 

importantly, since they are a visual representation of important relations between a number and its factors, many 

theorems can be “rediscovered” by students when they investigate their constructions. 

 

 

Rationale 
 

Mathematical concepts can be represented in a variety of forms, including words, algebraic notation, 

diagrams, figures, graphs, or manipulative models.  Studies in the area of language and semiosis, which 

have recently been applied to mathematics education, argue that learning of a concept does not take place 

unless the learner is able to coordinate different representations of that concept – that is, use different 

representations and translate a concept from one representation to another [1].  It is so important that 

teachers understand the role that the representations of a concept plays in students’ learning that one of 

the National Council of Teachers of Mathematics’ standards for school mathematics [2] deals specifically 

with the use of representations.  As stated in that document:  “Representations can help students organize 

their thinking. Students' use of representations can help make mathematical ideas more concrete and 

available for reflection” (p. 67). 

 

Each representation highlights specific features of a concept.  To fully grasp a concept, if that is ever 

attainable, one should explore as many different representations of that concept as possible.  By 

examining and using different representations we can always gain more knowledge about a mathematical 

object or idea. 

 

We use many representations of whole numbers in schools.  Some of them include number words, 

numerals, base-ten blocks, Cuisinaire rods, as well as discrete models, such as counters.  Each of these 

models emphasizes or conveys a particular set of properties or characteristics of whole numbers, as well 

as relations between them:  One representation may make the place-value concept used in our number 

system particularly evident; another may emphasize additive relationships between different numbers (for 

example, ten-frames make visible pairs of numbers that add up to ten); yet another may develop the 

notion of whole number as the cardinality of a set, or the use of whole numbers for counting (for example, 

when representing the number four by a set of four counters).  The prime-factored form of a number is 

another representation for whole numbers – one that emphasizes the multiplicative relationships within 

them [3]. 
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According to the NCTM’s Principles and Standards for School Mathematics, students in grades 3-5 

should recognize equivalent representations for the same number and generate them by decomposing and 

composing numbers.  In the middle school grades, students should use factors, multiples, and prime 

factorization to solve problems [2]. 

 

However, for many students the prime-factored representation of a number is not meaningful.  They often 

feel more comfortable by changing the number into base-ten form to be able to solve problems.  In an 

interesting remark, Brown reports that a student justified this strategy by saying: “I need to see the actual 

numbers” [3], p. 134.  While this is a valid approach, by doing this students lose valuable information that 

is carried by the prime-factored representation, as Brown herself pointed out. 

 

While a variety of manipulative models are available which can help students build understanding of 

additive properties of numbers, we have been apparently lacking a good physical model that would 

highlight one of the most important properties of whole numbers: the fact that each of them can be written 

as a unique product of prime factors.  In this paper I will describe such model – by no means original, but 

maybe unknown or under-used outside my home country, Brazil.  This model can fill the gap we find 

when we look for multiplicative models among the available resources. 

 

 

The lattice model 
 

The model explored here as a representation for whole numbers and its factors is basically an application 

of the concept of Hasse diagrams.  It was popularized in Brazil by Grossi as a classroom concrete material 

[4], but the concept itself can be found in any introduction to Hasse diagrams. 

 

To build the models you will need Styrofoam balls and wooden sticks painted in different colors.  

Chenille-covered wire pieces are a good substitute for the wooden sticks, since they are quite firm and 

come in different colors. 

 

In a nutshell, these are the principles used to construct a lattice model: 

 

a) For each prime, we use sticks of different colors. 

b) Each time we use a different prime (thus, a different color), we change the direction in which we 

place the sticks. 

c) Each stick will tell us an operation to perform.  The result will be written in foam balls.  For 

example, if the prime 2 is represented by the color red, each time we go through a red stick we 

have to perform the operation “times 2” (or “divided by 2” if we go backwards). 

d) We start with number 1 in a corner.  The number represented by that lattice will end up in the 

opposite corner. 

 

For example, the representation of number eight (2 × 2 × 2) requires three sticks to represent the operation 

“times 2”.  And it will show the four factors of number eight (Figure 1). 

 

 
 

Figure 1: The lattice model for the number 8. 
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Once we introduce another prime in the picture, for example, if our task is to represent the number 24, 

which is 2 × 2 × 2 × 3, we will need to place sticks of a different color, and in a different direction. 

(Figure 2) 

 
 

Figure 2: The lattice model for the number 24. 

 

If the number we want to represent has 3 different primes in its composition, we will need a third color of 

stick to represent that third prime, and we will place it in a different direction.  For example, the 

representation for number 60 = 2 × 2 × 3 × 5, will require the use of thee dimensions (Figure 3). 

 

 
 

Figure 3: The lattice model for the number 60. 

 

One interesting aspect that the construction of these models bring about is the multiplicative 

nature of the structure.  For example, in the model for the number 60, one might initially think 

that we would need only one stick for the prime 3, since this number appears only once in the 

prime factorization of 60.  But this is when the peculiarity of the multiplicative structure of 

whole numbers comes into play.  Unlike additive structures, multiplicative structures repeatedly 

add self-similar smaller structures.  This feature needs to be represented in any model of 

multiplicative structures and I believe it is evident in this model.  The construction is also a good 

way to explore the fundamental theorem of arithmetic, which states that every positive integer 

different than 1 can be written as a unique product of prime numbers.  Since every whole number 

has a unique prime factorization, the model for each number will be unique. 
 

Even though each model will be unique, we can also notice that different numbers may have models that 

have the same basic structure.  For example, any number with prime factorization p1
2
 × p2 × p3, where p1, 

p2, and p3, are distinct primes, will have a structure similar to the one in figure 3.  The only thing that will 

make it unique is the colors of the sticks (different primes will have different colors) and the value of the 

factors labeled in the spheres.  Similarly, any number of the form p
3
, where p is a prime, will have the 

same configuration as that shown in figure 1.  These generalizations help students formulate conjectures, 

such as “any number with an odd number of factors will be a perfect square”. 
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Finally, I want to point out that we can have models of numbers that have more than three prime in their 

sturcutre.  The diagram may look too complicated to be helpful (see figure 4), but the physical models are 

not complicated and are fun to build. 

 

 
 

Figure 4: Model of a number with four distinct primes in its structure. 

 

We typically do a great deal of work with elementary school students to help them develop 

number sense based on additive relations between numbers.  For example, we encourage 

students to think of the number 10 as 6+4 or 7+3, or yet as one less than 11 or one more than 9.  

If we broaden our perspective and look at the multiplicative structure of this number, we will be 

able to think of 10 as 25 and a multiple of 1, 2, 5, and 10. 

 

In the lattice models we can see the primes as the “building blocks”, or rather, the “building 

sticks” for the number in the modeled.  This is an important metaphor to complement the way 

students think of whole numbers.  They have an inherent and unique structure, where primes are 

the building blocks.  An intuition for that structure, or, in other words, a “number sense” of the 

multiplicative structure of a number requires construction by the students and is often neglected.  

The lattice model is a great way to help students build this kind of number sense. 
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