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The role of strain in the response of rapidly growing 
young male rat bones to parathyroid hormone 
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Abstract

Human parathyroid hormone (hPTH 1-34) stimulates an anabolic response in human and animal skeletons; however, it is
unclear if the effect is strain dependent. To determine if the anabolic response to hPTH (1-34) was dependent upon strain in
rats we used 2 outbred strains (Sprague Dawley, Wistar), 2 inbred strains (Fischer 344, Wistar spontaneously
hypertensive:SHR), and 2 mutant strains (Zucker obese, Zucker lean) of  rats. Male rats, 5 weeks of age, from each strain were
treated subcutaneously with 80ug/kg body weight hPTH (1-34) or vehicle for 12 days. The response to PTH was similar in all
strains whereby PTH exerted an anabolic effect on femoral bone mass and cancellous bone histology that was independent of
strain differences. Histomorphometric indices of bone volume, mineralized surface and bone formation in lumbar vertebrae
increased in all PTH-treated rats. Additionally, femur bone mineral content and bone mineral density measured by dual
energy X-ray absorptiometry (DEXA), and ash weight increased in all PTH-treated rats. These increases occurred regardless
of strain. In summary, PTH exerted comparable anabolic effects on bone mass, bone mineral density and bone formation in
all rat models tested  demonstrating that the skeletal responsiveness to PTH was not dependent upon strain.
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Introduction

Genetics play a significant role in the attainment of peak
bone mass, bone size, and the regulation of bone turnover in
humans1,2 and mice3-5. While mice provide the model of
choice for mammalian genetic studies3, mouse strains vary
tremendously in their response to hormones6 and as such,
caution is advised when using mice as a model for human
skeletal studies.  In contrast, rats are the model of choice for
studies of human skeletal disorders and have traditionally
been used to test safety and efficacy in drug development.
Unlike mice, however, genetic, or strain, differences in
response to various hormones and conditions have not been
adequately addressed in rats. As the genetic component of
osteoporosis is rapidly being defined, it would be very
important to know and understand the influence of genetic
differences and the effect on responses to hormones in

different strains of rats. 
While human parathyroid hormone (hPTH) 1-34

administered intermittently to humans7-9, mice10, rats11-16,
rabbits17, dogs18, and monkeys19 of various ages stimulates
formation of normal bone, and increases bone mass and
strength, the effect of strain (genotype) on the response has
not been formally addressed. In order to further our
understanding of the effects of PTH on the skeleton, strain
dependencies need to be more clearly defined. 

To determine if genotype (strain) significantly modified
the response of rat bone to PTH we evaluated inbred strains,
in which the genetic characteristics are fixed, outbred strains,
in which the phenotype is variable, and mutant rat strains.
We chose a young, growing rat model as that is the model we
developed11, and others have validated, in which 12 days of
PTH treatment allowed a predictable increase in bone mass,
our major outcome measure. This model has reliably
predicted the increase in cancellous bone in older intact and
ovariectomized rats, intact rabbits, ovariectomized monkeys
and osteoporotic humans. Young, immature rats were used
in this study in an attempt to understand factors that affect
attainment of peak bone mass during growth as well as to
minimize confounding variables due to aging and
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environmental factors. Additionally, as many patients with
osteoporosis may have co-existing diseases, we determined if
mutant rat strains known to be genetically at risk for obesity
might also vary in the skeletal responsiveness to PTH. This
study was not designed to address the mechanism of the
anabolic effect of PTH on bone; rather, our objective was to
determine if genetic differences between rat strains would
influence the skeletal response to PTH.

Materials and methods

Hormones and drugs

Synthetic human parathyroid hormone (hPTH) 1-34,
(Bachem, Inc., Torrance, CA), at a dose of 80 ug/kg body
weight (bw), was prepared in a vehicle (V) of acidified saline
containing 2% heat-inactivated rat serum, and given once
daily by subcutaneous (SC) injection. To compensate for
rapid weight gain, the dose was adjusted for 50g increments
in mean group bw every 4 days. To label mineralized
surfaces subcutaneous injections of calcein (Sigma, St.
Louis, MO), 20mg/kg were administered three and one days
before euthanasia.

Animals 

Young male rats, 5 weeks of age, representing two
outbred strains (Sprague Dawley and Wistar), two inbred
strains (Fischer 344, and Wistar spontaneously
hypertensive:SHR), and two mutant strains (Zucker obese
and Zucker lean)20 were purchased from Harlan Sprague
Dawley (Indianapolis, IN). The rats were weighed and
selectively distributed into groups so that the mean initial
group body weight was comparable. Animals were housed in
a facility maintained at 22oC with a 12 hour light/dark cycle
and were fed chow (TD89222, Harlan Teklad, Madison, WI)
containing 0.5% calcium and 0.4% phosphorus. Rats were
labeled in a random number sequence to eliminate
experimentor bias and this sequence was utilized for all
procedures and analyses. These studies were approved by
the Lilly Animal Care Assurance Committee and conducted
under the guidance of a veterinarian.

A total of 72 male rats (N=6 rats/group) from each of the
six strains was treated with either vehicle (V) or PTH by SC
injection for 12 days. Approximately 3 hours after the last
injection on day 12, rats were euthanized with CO2, lumbar
vertebrae (L4-6) were excised for histology and left femurs
were excised and stored in 70% ethanol.

Femur bone mass

Left femurs were measured for maximal length, weighed
to determine wet bone weight and then dehydrated in ether
for 2 days. Femurs were air-dried in a fume hood for 24
hours, dry weight was recorded and bones were ashed in a

muffle furnace at 850oC for approximately 16 hours and ash
weights recorded. Cross-sectional bone area (BA: cm2),
bone mineral content (BMC: g), and bone mineral density
(BMD: g/cm2) were determined on the right femur by dual
energy X-ray absorptiometry (DEXA) using a Hologic
QDR-4500A (Waltham, MA) equipped with Small Animal
Regional High Resolution software.

Cancellous bone histology

Lumbar vertebrae (L4-6) were fixed immediately in 70%
ethanol, dehydrated in ascending concentrations of ethanol,
and then embedded undecalcified in methyl methacrylate21.
For cancellous bone histology, longitudinal sections were cut
at 5 and 10-um with a Reichert-Jung Polycut S microtome
(Leica Corp., Deerfield, IL). The 5-um sections were stained
with von Kossa and mounted with Permount, while the 10-um
sections were mounted unstained for fluorescent
microscopy. Histologic parameters of bone structure and
formation were measured on 2-4 sections per bone using
semi-automatic image analysis software (KS400, Kontron
Elektronik, Carl Zeiss, Thornwood, NY). Measurements
were performed in the central vertebral body to exclude
primary spongiosa and the growth plates. Structural
parameters were measured at a magnification of 156x on the
stained sections and indices were calculated as follows:
cancellous bone volume (BV/TV: percent of tissue area) and
trabecular thickness (Tb.Th).  Dynamic parameters were
measured on the unstained sections at a magnification of
625x and indices calculated as follows: mineralized surface
(MS/BS: percent of bone surface with double calcein labels
plus half single labels), mineral apposition rate (MAR)
determined by dividing the interlabel distance by the interval
labeling time, and bone formation rate referenced to bone
surface (BFR/BS: MAR X MS/BS). Nomenclature and
calculations of histomorphometric indices follow standards
established by the American Society for Bone and Mineral
Research22.

Statistical analyses

In order to compare the effects of strain on the PTH-
induced changes in bone, statistical significance was assessed
by a two-way analysis of variance (ANOVA: JMP ver 3.0,
SAS, Cary, NC)23 with 1 interaction term and 2 main effect
levels. The interaction term (Treatment X Strain) tests
whether the changes in bone mass or histomorphometry
induced by PTH were dependent upon strain. If the
interaction term, which compared differences between all
groups, was not significant by ANOVA, then main effect
differences of Treatment or Strain were determined. The
significance of difference between all groups was determined
by the Tukey-Kramer Honest Significant Difference (HSD)
multiple comparison test or when only 2 groups compared,
the t-test was utilized23. Data are expressed as mean ±
standard error of the mean (SEM).
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Results

Femoral bone mass

PTH exerted an anabolic effect on femoral bone mass
measures of ash weight, BMC and BMD in which all PTH-
treated rats had significantly greater bone mass values than
all vehicle-treated rats (Table 1). A significant Treatment
effect by ANOVA showed that ash weight, BMC and BMD
increased 14%, 24%, and 14%, respectively, after PTH
treatment. Within each individual strain, BMD was
significantly greater in PTH-treated rats than in the
respective vehicle-treated rats. Ash weight was significantly
greater in PTH-treated rats than in vehicle-treated rats for
every strain except the Zucker lean strain. The differences
for the Zucker lean strain ash weights did not achieve
statistical significance. Strain differences were also noted

with Fischer rats having the lowest and Wistar rats having
the greatest values for all femoral bone mass measures with
the exception of the Zucker lean strain.

Cancellous bone histomorphometry

All rats treated with PTH had significantly elevated
measures of cancellous bone histomorphometry when
compared to all rats treated with vehicle as shown by a
significant Treatment effect by ANOVA (Table 2).  Bone
volume (BV/TV), trabecular thickness (Tb.Th), mineralized
surface (MS/BS) and bone formation rate (BFR/BS)
significantly increased 19%, 17%, 23%, and 30% in all
PTH-treated rats when compared to all vehicle-treated rats.
When evaluated by strain, mineralized surface and bone
formation rates were highest in Fischer rats and lowest in
spontaneously hypertensive rats (SHR).

Strain Treatment Ash Wt a, b, c BMC a, b BMD a, b,c

(mg) (mg) (mg/cm2)

Sprague Dawley Vehicle 122 (3) 74 (4) 105 (2)
Sprague Dawley PTH 137 (2) 96 (2) 119 (2)
% Change from Vehicle 11 23 12

Fischer Vehicle 102 (2) 56 (2) 102 (1)
Fischer PTH 122 (1) 82 (4) 120 (2)
% Change from Vehicle 16 32 15

Wistar Vehicle 132 (3) 89 (4) 110 (2)
Wistar PTH 158 (5) 123 (6) 136 (3)
% Change from Vehicle 16 28 19

Zucker obese Vehicle 127 (3) 81 (4) 114 (2)
Zucker obese PTH 149 (6) 110 (7) 132 (4)
% Change from Vehicle 15 26 14

Zucker lean Vehicle 120 (2) 79 (2) 109 (1)
Zucker lean PTH 127 (4) 89 (1) 119 (2)
% Change from Vehicle 5 11 8

SHR Vehicle 114 (2) 78 (5) 109 (2)
SHR PTH 139 (3) 104 (3) 125 (2)
% Change from Vehicle 18 25 13

Data are expressed as mean (SEM). PTH = hPTH(1-34) 80Ìg/kg as a once daily subcutaneous injection for 12 days. N=6/grp,
N=5/Zucker obese. BMC=bone mineral content, BMD=bone mineral density.
a Significant Strain effect, P< 0.001.  b Significant Treatment effect, P<0.001.  c Significant Interaction Effect (Strain X Treatment), P< 0.05.

Table 1. Femoral bone mass in different strains of rats treated with vehicle or PTH for 12 days.
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Discussion

In this study, we show that the response of bone to PTH
in rats is not dependent upon strain, and, moreover, the
skeletal responsiveness to PTH is not modified in mutant
strains of rats. When given once daily for 12 days, PTH
increased bone volume, bone formation, and bone mass in
lumbar vertebrae and femurs of young male rats of different
strains. This indicates that the PTH stimulated changes in
bone mass, volume, and formation were not dependent
upon strain and therefore, males rats of any strain evaluated
in this study could be utilized in further studies to evaluate
the mechanism of the PTH anabolic effect.

The results of the present study extend our earlier studies
in young and aged Sprague Dawley, Brown Norway and
Brown Norway/Fischer344 rats24 by demonstrating an
anabolic effect of PTH in young outbred (Sprague Dawley,
Wistar), inbred (Fischer, spontaneously hypertensive) and
mutant  (Zucker obese, Zucker lean) rat strains. There have

been no systematic, published studies to determine if the
anabolic effect of PTH on bones may have a genetic
component, although the various properties of bones and
the skeleton are known to have significant genetic
determinants25. The toxicology literature cites many
examples of tests where the treatment responsiveness and
outcome were governed by the strain or gender of the
animal used26. Additionally, type of cage conditions, diet
and strain are important factors in space flight studies27. The
published literature on the skeletal responsiveness to PTH
has reported data for primarily Sprague Dawley males,
ovariectomized females, and Fischer and Wistar
ovariectomized females, but the possibility of confounding
variables due to strain have not been adequately considered.
Our results show that the anabolic effect of PTH on the
skeleton is independent of strain.

There are inherent, genetic differences in skeletal
morphology, bone mass, bone structure, and bone
histomorphometry between the different strains but these

Strain Treatment BV/TVb Tb.Thb MS/BSa,b BFR/BSa,b

(%) um (%) (u3/u2/d)

Sprague Dawley Vehicle 20.4 (1.4) 56.9 (3.1) 46.1 (1.5) 178.6 (13.6)
Sprague Dawley PTH 27.8 (2.1) 74.3 (6.9) 56.8 (3.5) 268.3 (33.6)
% Change from Vehicle 27 23 19 33

Fischer Vehicle 21.2 (1.7) 65.2 (3.2) 52.9 (2.5) 247.9 (24.3)
Fischer PTH 26.8 (2.9) 72.2 (5.3) 62.0 (0.8) 293.7 (16.6)
% Change from Vehicle 21 10 15 16

Wistar Vehicle 21.4 (3.1) 54.1 (5.4) 45.9 (2.2) 194.6 (16.9)
Wistar PTH 24.9 (2.5) 66.9 (5.5) 60.9 (1.7) 291.9 (7.7)
% Change from Vehicle 14 19 25 33

Zucker obese Vehicle 25.4 (2.4) 66.5 (4.5) 48.8 (2.3) 190.8 (15.2)
Zucker obese PTH 25.1 (1.5) 72.2 (2.1) 56.5 (4.5) 233.8 (27.8)
% Change from Vehicle -1 8 14 18

Zucker lean Vehicle 21.8 (3.1) 60.8 (5.1) 48.2 (1) 212.5 (15.8)
Zucker lean PTH 30.2 (2.3) 77.2 (2.3) 63.9 (1) 319.2 (10.4)
% Change from Vehicle 28 21 24 33

SHR Vehicle 22.9 (2.7) 61.7 (3.9) 31.2 (2.4) 135 (14)
SHR PTH 28.8 (2.3) 76.7 (3.6) 56.3 (2.6) 261.5 (16.7)
% Change from Vehicle 20 20 44 48

Data are expressed as mean (SEM) . PTH = hPTH(1-34) 80mg/kg as a once daily subcutaneous injection for 12 days. N=6/grp.
aSignificant Strain effect, P<0.001.  bSignificant Treatment effect, P<0.001.

Table 2. Cancellous histomorphometry of lumbar vertebrae in different strains of rats treated with vehicle or PTH for 12 days.
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differences are independent of the PTH anabolic effect.
Our data from males of 2 outbred, 2 inbred, and 2 mutant
strains showed significant independent effects of strain. For
example, Wistar rats exhibited the greatest values for bone
mass while Fischer rats had the lowest values. Bone
formation rate was also highest in Fischer rats and lowest in
SHR rats but these differences were independent of the
PTH effect. Despite these effects of strain alone, all rats
responded to intermittently administered PTH with
increased bone mass. Other studies of aged virgin and
multiparous female rats have also shown no significant
differences in the skeletal response to PTH in Brown-
Norway, Brown-Norway/F344 and Sprague Dawley rats11, 28. 

As there is comorbidity of other common diseases with
osteoporosis, we wanted to determine if mutant strains at
high risk for spontaneous hypertension might differ in the
response of their bones to PTH. Previous studies have
shown that while cancellous bone volume is decreased in
male29, and increased in female30 spontaneously hypertensive
rats, the response to estrogen is similar in ovariectomized
spontaneously hypertensive rats31. Zucker obese male rats
have been shown to have shorter femurs but equivalent
distal femoral cancellous bone volume32. In our study PTH
elicited an anabolic response in the skeletons of mutant
strains of rats: the bone mass of all mutant strains increased
in response to intermittent administration of PTH,
irrespective of their disease risk background. 

In conclusion, PTH elicited an anabolic response in the
skeletons of young, male and female rats of Sprague
Dawley, Fischer 344, Wistar, and Zucker strains, and
mutants based on these backgrounds that was independent
of strain. The anabolic effect of PTH on the skeleton was
not altered in strains at risk for hypertension. In summary,
PTH exerted anabolic effects on bone mass, bone mineral
density and bone formation in all rat models tested,
demonstrating that the skeletal responsiveness to PTH was
not dependent upon strain.
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