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Abstract. Let M be a smooth connected complete manifold of dimension n, and ! be a smooth
nonholonomic distribution of rank m ≤ n on M . We prove that if there exists a smooth Riemannian
metric on ! for which no nontrivial singular path is minimizing, then there exists a smooth repulsive
stabilizing section of ! on M . Moreover, in dimension three, the assumption of the absence of
singular minimizing horizontal paths can be dropped in the Martinet case. The proofs are based
on the study, using specific results of nonsmooth analysis, of an optimal control problem of Bolza
type, for which we prove that the corresponding value function is semiconcave and is a viscosity
solution of a Hamilton–Jacobi equation, and we establish fine properties of optimal trajectories.

Keywords. Nonholonomic distributions, stabilization, SRS feedback, minimizing singular path,
Martinet case, nonsmooth analysis

1. Introduction

Throughout this paper, M denotes a smooth connected manifold of dimension n.

1.1. Stabilization of nonholonomic distributions

Let ! be a smooth distribution of rank m ≤ n on M , that is, a rank m subbundle of the
tangent bundle T M of M . This means that, for every x ∈ M , there exist a neighbor-
hood Vx of x in M and an m-tuple (f x

1 , . . . , f x
m) of smooth vector fields on Vx , linearly

independent on Vx , such that

!(y) = span{f x
1 (y), . . . , f x

m(y)}, ∀y ∈ Vx.

One says that the m-tuple (f x
1 , . . . , f x

m) locally represents the distribution !. The dis-
tribution ! is said to be nonholonomic (also called totally nonholonomic e.g. in [3]) if,

L. Rifford: Université de Nice-Sophia Antipolis, Labo. J.A. Dieudonné, UMR 6621, Parc Valrose,
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for every x ∈ M , there is an m-tuple (f x
1 , . . . , f x

m) of smooth vector fields on Vx which
locally represents the distribution and

Lie{f x
1 , . . . , f x

m}(y) = TyM, ∀y ∈ Vx,

that is, the Lie algebra spanned by f x
1 , . . . , f x

m is equal to the whole tangent space TyM

at every point y ∈ Vx . This Lie algebra property is often called Hörmander’s condition.
A horizontal path joining x0 to x1 is an absolutely continuous curve γ (·) : [0, 1] →

M such that γ (0) = x0, γ (1) = x1, and γ̇ (t) ∈ !(γ (t)) for almost every t ∈ [0, 1].
According to the classical Chow–Rashevsky Theorem (see [9, 19, 33, 36]), since the
distribution is nonholonomic on M , any two points of M can be joined by a horizontal
path.

Let ! be a nonholonomic distribution and x̄ ∈ M be fixed. We recall that, for a smooth
vector field X on M , the dynamical system ẋ = X(x) is said to be globally asymptotically
stable at the point x̄ if the following two properties are satisfied:

• Lyapunov stability: for every neighborhood V of x̄, there exists a neighborhood W of
x̄ such that, for every x ∈ W , the solution of ẋ(t) = X(x(t)), x(0) = x, satisfies
x(t) ∈ V for every t ≥ 0.

• Attractivity: for every x ∈ M , the solution of ẋ(t) = X(x(t)), x(0) = x, tends to x̄ as
t tends to ∞.

The stabilization problem for nonholonomic distributions consists in finding, if possible,
a smooth stabilizing section X of !, that is, a smooth vector field X on M satisfying
X(x) ∈ !(x) for every x ∈ M , such that the dynamical system ẋ = X(x) is globally
asymptotically stable at x̄.

There exist two main obstructions for a distribution to admit a stabilizing section. The
first one is of global nature: it is well known that, if the manifold M admits such a dynam-
ical system, then it possesses a smooth Lyapunov function, i.e., a Morse function having
only one (possibly degenerate) critical point in M . Consequently, M must be homeomor-
phic to the Euclidean space Rn (we refer the reader to [39] for further details). The second
one is of local nature: due to Brockett’s condition (see [13, Theorem 1(iii)]; see also [23,
44]), the distribution ! cannot admit a smooth stabilizing section whenever m < n.

The absence of smooth stabilizing sections motivates one to define a new kind of
stabilizing section. The first author has recently introduced the notion of smooth repulsive
stabilizing feedback for control systems1 (see [39, 40, 41]), whose definition can be easily
translated in terms of stabilizing section.

Let x̄ ∈ M be fixed. Let S be a closed subset of M and X be a vector field on M . The
dynamical system ẋ = X(x) is said to be smooth repulsive globally asymptotically stable
at x̄ with respect to S (denoted SRSx̄,S for short) if the following properties are satisfied:

(i) The vector field X is locally bounded on M and smooth on M \ S.

1 If one locally represents the distribution ! by an m-tuple (f1, . . . , fm) of smooth vector fields,
then the existence of a local stabilizing section for ! is equivalent to the existence of a stabiliz-
ing feedback for the associated control system ẋ = ∑m

i=1 uifi(x). There is a large literature on
alternative types of stabilizing feedbacks for control systems (see Section 1.4).
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(ii) The dynamical system ẋ = X(x) is globally asymptotically stable at x̄ in the sense
of Carathéodory, that is, for every x ∈ M , there exists a solution of

ẋ(t) = X(x(t)) for almost every t ∈ [0, ∞), x(0) = x, (1)

and, for every x ∈ M , every solution of (1) (called a Carathéodory solution of
ẋ = X(x)) on [0, ∞) tends to x̄ as t tends to ∞. Moreover, for every neighborhood
V of x̄, there exists a neighborhood W of x̄ such that, for x ∈ W , the solutions of
(1) satisfy x(t) ∈ V for every t ≥ 0.

(iii) For every x ∈ M , the solutions of (1) satisfy x(t) /∈ S for every t > 0.
In view of what happens whenever ! = T M , and having in mind the above obstructions
for the stabilization problem, a natural question is whether, given a smooth nonholonomic
distribution !, there exists a section X of ! on M and a closed nonempty subset S of
M such that X is SRSx̄,S . In this paper, we provide a positive answer in a large number
of situations. To state our main results, we need to endow the distribution ! with a Rie-
mannian metric, thus encountering the framework of sub-Riemannian geometry, and we
require the concept of a singular path, recalled next.

1.2. Sub-Riemannian geometry

For x0 ∈ M , let #!(x0) denote the set of horizontal paths γ (·) : [0, 1] → M such
that γ (0) = x0. The set #!(x0), endowed with the W 1,1-topology, has a Banach mani-
fold structure.2 For x0, x1 ∈ M , denote by #!(x0, x1) the set of horizontal paths γ (·) :
[0, 1] → M such that γ (0) = x0 and γ (1) = x1. Note that #!(x0, x1) = E−1

x0
(x1),

where the end-point mapping Ex0 : #!(x0) → M is the smooth mapping defined by
Ex0(γ (·)) := γ (1). A path γ (·) is said to be singular if it is horizontal and if it is a
critical point of the end-point mapping Ex0 .

The set #!(x0, x1) is a Banach submanifold of #!(x0) of codimension n in a neigh-
borhood of a nonsingular path, but may fail to be a manifold in a neighborhood of a
singular path. Singular paths play a crucial role in the calculus of variations with non-
holonomic constraints (see [17] for details and for properties of such curves).

Let T ∗M denote the cotangent bundle of M , π : T ∗M → M the canonical projection,
and ω the canonical symplectic form on T ∗M . Let !⊥ denote the annihilator of ! in T ∗M
minus its zero section. Define ω as the restriction of ω to !⊥. An absolutely continuous
curve ψ(·) : [0, 1] → !⊥ such that ψ̇(t) ∈ ker ω(ψ(t)) for almost every t ∈ [0, 1] is
called an abnormal extremal of !. It is well known that a path γ (·) : [0, 1] → M is
singular if and only if it is the projection of an abnormal extremal ψ(·) of ! (see [29] or
[17]). The curve ψ(·) is said to be an abnormal extremal lift of γ (·).

Let g be a smooth Riemannian metric defined on the distribution !. The triple
(M, !, g) is called a sub-Riemannian manifold. The length of a path γ (·) ∈ #!(x0)
is defined by

lengthg(γ (·)) :=
∫ 1

0

√
gγ (t)(γ̇ (t), γ̇ (t)) dt. (2)

2 This is a straightforward adaptation of results of Bismut [10] (see also [33]).
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The sub-Riemannian distance dSR(x0, x1) between two points x0, x1 of M is the infimum
over the lengths (for the metric g) of the horizontal paths joining x0 and x1. According
to the Chow–Rashevsky Theorem (see [9, 19, 33, 36]), since the distribution is nonholo-
nomic on M , the sub-Riemannian distance is well defined and continuous on M × M .
Moreover, if the manifold M is a complete metric space3 for the sub-Riemannian dis-
tance dSR , then, since M is connected, for every pair (x0, x1) of points of M there exists
a horizontal path γ (·) joining x0 to x1 such that

dSR(x0, x1) = lengthg(γ (·)).
Such a horizontal path is said to be minimizing.

Define the Hamiltonian H : T ∗M → R as follows. For every x ∈ M , the restriction
of H to the fiber T ∗

x M is given by the nonnegative quadratic form

p ,→ 1
2

max
{

p(v)2

gx(v, v)

∣∣∣∣ v ∈ !(x) \ {0}
}
. (3)

Let -H denote the Hamiltonian vector field on T ∗M associated to H , that is, ι -H ω = −dH .
A normal extremal is an integral curve of -H defined on [0, 1], i.e., a curve ψ(·) : [0, 1] →
T ∗M such that ψ̇(t) = -H(ψ(t)) for t ∈ [0, 1]. Note that the projection of a normal
extremal is a horizontal path. The exponential mapping expx0

is defined on T ∗
x0

M by
expx0

(p0) := π(ψ(1)), where ψ(·) is the normal extremal so that ψ(0) = (x0, p0) in
local coordinates. Note that H(ψ(t)) is constant along a normal extremal ψ(·), and the
length of the path π(ψ(·)) is equal to (2H(ψ(0)))1/2.

According to the Pontryagin maximum principle (see [35]), a necessary condition for
a horizontal path to be minimizing is to be the projection either of a normal extremal or
of an abnormal extremal. In particular, singular paths satisfy this condition. However, a
singular path may also be the projection of a normal extremal. A singular path is said to
be strictly abnormal if it is not the projection of a normal extremal.

A point x ∈ expx0
(T ∗

x0
M) is called conjugate to x0 if it is a critical value of the

mapping expx0
. The conjugate locus, denoted by C(x0), is defined as the set of all points

conjugate to x0. Note that the Sard Theorem applied to the mapping expx0
implies that

the conjugate locus C(x0) has Lebesgue measure zero in M .

Remark 1.1. It has been established in [43] that the image of the exponential mapping
expx0

is dense in M , and is of full Lebesgue measure for corank one distributions.

Remark 1.2. Let x ∈ expx0
(T ∗

x0
M), let p0 ∈ T ∗

x0
M be such that x = expx0

(p0), and
let ψ(·) denote the normal extremal so that ψ(0) = (x0, p0) in local coordinates. If x

is not conjugate to x0, then the path x(·) := π(ψ(·)) admits a unique normal extremal
lift. Indeed, if it had two distinct normal extremal lifts ψ1(·) and ψ2(·), then the extremal
ψ1(·) − ψ2(·) would be an abnormal extremal lift of the path x(·). Hence, the path x(·) is
singular, and not strictly abnormal, and thus, in particular, the point x is conjugate to x0.
This is a contradiction.

3 Note that, since the distribution ! is nonholonomic on M , the topology defined by the sub-
Riemannian distance dSR coincides with the original topology of M (see [9, 33]).
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We also recall the notion of a cut point, required in this article. Let x0 ∈ M; a point
x ∈ M is not a cut point with respect to x0 if there exists a minimizing path joining x0
to x, which is the strict restriction of a minimizing path starting from x0. In other words, a
cut point is a point at which a minimizing path ceases to be optimal. The cut locus of x0,
denoted by L(x0), is defined as the set of all cut points with respect to x0. The following
result comes from [45]. In Section 2.2.3 we provide a new (and self-contained) proof of
this result, using techniques of nonsmooth analysis.

Lemma 1.1. Let M be a smooth closed connected manifold of dimension n, and ! be a
smooth nonholonomic distribution of rank m ≤ n on M . Let g be a metric on ! for which
no nontrivial singular path is minimizing, and let x0 ∈ M . Then

Cmin(x0) ⊂ L(x0),

where Cmin(x0) denotes the set of points x ∈ M \{x0} such that there exists a critical point
p0 ∈ T ∗

x0
M of the mapping expx0

, and such that the projection of the normal extremal
ψ(·), satisfying ψ(0) = (x0, p0) in local coordinates, is minimizing between x0 and x.

In other words, under the assumptions of the lemma, every (nonsingular) minimizing
trajectory ceases to be minimizing beyond its first conjugate point.

1.3. The main results

Theorem 1. Let M be a smooth connected manifold of dimension n, and ! be a smooth
nonholonomic distribution of rank m ≤ n on M . Let x̄ ∈ M . Assume that there exists a
smooth Riemannian metric g on ! for which M is complete and no nontrivial singular
path is minimizing. Then there exist a section X of ! on M , and a closed nonempty subset
S of M , of Hausdorff dimension smaller than or equal to n − 1, such that X is SRSx̄,S .

Remark 1.3. If the manifold M , the distribution !, and the metric g are moreover real-
analytic, then the set S of the theorem can be chosen to be a subanalytic subset of M \{x̄},
of codimension greater than or equal to one (see [27, 28] for the definition of a subanalytic
set). Note that, in this case, since S is subanalytic (in M \ {x̄}), it is a stratified (in the
sense of Whitney) submanifold of M \ {x̄}.
Remark 1.4. If m = n, then obviously there exists no singular path (it is the Riemannian
situation).

Remark 1.5. The distribution ! is called fat (see [33]) at a point x ∈ M if, for every
vector field X on M such that X(x) ∈ !(x) \ {0},

TxM = !(x) + span{[X, fi](x) | 1 ≤ i ≤ m},
where (f1, . . . , fm) is an m-tuple of vector fields locally representing the distribution !.
With the same notations, it is called medium-fat at x (see [4]) if

TxM = !(x)+ span{[fi, fj ](x) | 1 ≤ i, j ≤ m}+ span{[X, [fi, fj ]](x) | 1 ≤ i, j ≤ m}.
If ! is fat at every point of M , then there exists no nontrivial singular path (see [33]).

On the other hand, for a generic smooth Riemannian metric g on M , every nontrivial
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singular path must be strictly abnormal (see [18]); it follows from [4, Theorem 3.8] that,
if ! is medium-fat at every point of M , then, for generic metrics, there exists no nontrivial
minimizing singular path. Note that, if n ≤ m(m − 1) + 1, then the germ of an m-tuple
(f1, . . . , fm) of vector fields is generically (in the Whitney C∞ topology) medium-fat
(see [4]).

Remark 1.6. Let m ≥ 3 be a positive integer, and Gm be the set of pairs (!, g), where
! is a rank m distribution on M and g is a Riemannian metric on !, endowed with the
Whitney C∞ topology. There exists an open dense subset Wm of Gm such that no element
of Wm admits nontrivial minimizing singular paths (see [16, 17]). This means that, for
m ≥ 3, generically, the main assumption of Theorem 1 is satisfied.

In the next result, we are able to remove, in the compact and orientable three-dimen-
sional case, the assumption on the absence of singular minimizing paths. Assume from
now on that M is a smooth closed manifold of dimension 3 which is orientable, and denote
by # an orientation form on M . Any nonvanishing one-form α generates a smooth rank
two distribution ! defined by ! := ker α. Assume that ! is nonholonomic on M . There
exists a unique smooth function f on M such that α ∧ dα = f # on M . Since ! is
nonholonomic, the set {f 0= 0} is open and dense in M . The singular set )! of ! is
defined by

)! := {x ∈ M | f (x) = 0}.
Note that, if M and α are analytic, then the singular set is an analytic subset of M . The
set )! is said to be a Martinet surface if, for every x ∈ )!, df (x) 0= 0, so that )! is a
smooth orientable hypersurface on M . We define a Martinet distribution to be any non-
holonomic distribution ! associated with a nonvanishing one-form as above such that )!

is a Martinet surface. In fact, it follows from the generic classification of rank two distri-
butions on a three-dimensional manifold (see [48], see also [11]) that, for every x in )!,
the distribution ! is, in a neighborhood of x, isomorphic to ker α, where the one-form α

is defined by α := dx3 − x2
2dx1 in local coordinates (x1, x2, x3). In this neighborhood,

the Martinet surface )! coincides with the surface x2 = 0, and the singular paths are the
integral curves of the vector field ∂/∂x1 restricted to x2 = 0. This situation corresponds
to the so-called Martinet case, and these singular paths are minimizing in the context of
sub-Riemannian geometry, for every smooth metric g on ! (see [2, 11, 32]).

Theorem 2. Let M be a smooth connected orientable compact Riemannian manifold of
dimension three, and ! be a Martinet distribution on M . Let x̄ ∈ M . Then there exist
a section X of ! on M , and a closed nonempty subset S of M , of Hausdorff dimension
smaller than or equal to two, such that X is SRSx̄,S .

Remark 1.7. The compactness assumption on the manifold M can actually be dropped
(see Remark 2.5). It is set to avoid technical difficulties in the proof.

1.4. Stabilization of nonholonomic control systems

We begin this section with a remark on the local formulation of Theorem 1. Let U be
an open neighborhood of x̄ in M such that !|U is spanned by an m-tuple (f1, . . . , fm)
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of smooth vector fields on U which are everywhere linearly independent on U . Every
horizontal path x(·) ∈ #(x̄) contained in U satisfies

q̇(t) =
m∑

i=1
ui(t)fi(q(t)) for a.e. t ∈ [0, 1], (4)

where ui ∈ L1([0, 1], R) for i = 1, . . . , m. The function u(·) = (u1(·), . . . , um(·))
is called the control associated to x(·), and the system (4) is a control system. Hence,
Theorem 1, translated in local coordinates, yields a stabilization result for control systems
of the form (4).

There are however slight differences between the geometric formulation adopted in
Theorem 1, and the corresponding result for control systems. Indeed, when considering
control systems of the form (4), the vector fields f1, . . . , fm need not be everywhere lin-
early independent. Moreover, a rank m distribution ! on the manifold M is not necessar-
ily globally represented by an m-tuple of linearly independent vector fields (for example,
consider a rank two distribution on the two-dimensional sphere of R3).

For these reasons, we derive hereafter a stabilization result, similar to Theorem 1,
valid for control systems of the form (4), and of independent interest.

Consider on the manifold M the control system

ẋ(t) =
m∑

i=1
ui(t)fi(x(t)), (5)

where f1, . . . , fm are smooth vector fields on M (not necessarily linearly independent),
and the control u = (u1, . . . , um) takes values in Rm.

The system (5) is said to be (totally) nonholonomic if the m-tuple (f1, . . . , fm) satis-
fies Hörmander’s condition everywhere on M . According to the Chow–Rashevsky Theo-
rem, any two points of M can be joined by a trajectory of (5).

Let x̄ ∈ M be fixed. The stabilization problem consists in finding a feedback control
function k = (k1, . . . , km) : M → Rm such that the closed-loop system

ẋ =
∑

i=1
ki(x)fi(x) (6)

is globally asymptotically stable at x̄. It follows from the discussion above, and in par-
ticular from Brockett’s condition, that smooth or even continuous stabilizing feedbacks
do not exist in general. This fact has generated a wide-ranging research with a view to
deriving adapted notions for stabilization issues, such as discontinuous piecewise analytic
feedbacks (see [46]), discontinuous sampling feedbacks (see [21, 37]), continuous time
varying control laws (see [24]), patchy feedbacks (see [6]), and almost globally asymptot-
ically stabilizing feedbacks (see [38]), enjoying various properties. The notion of smooth
repulsive stabilizing feedback (see [39]–[41]), whose definition is recalled below, is con-
sidered in the present article.

Let x̄ ∈ M be fixed. Let S be a closed subset of M and k = (k1, . . . , km) : M → Rm.
The feedback k is said to be smooth repulsive globally asymptotically stable at x̄ with
respect to S (denoted SRSx̄,S ) if the following properties are satisfied:
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(i) The mapping k is locally bounded on M and smooth on M \ S.
(ii) The dynamical system (6) is globally asymptotically stable at x̄ in the sense of

Carathéodory.
(iii) For every x ∈ M , the Carathéodory solutions of (6) satisfy x(t) /∈ S for every t > 0.

We next associate to the control system (5) an optimal control problem.
For x0 ∈ M and T > 0,4 a control u ∈ L∞([0, T ], Rm) is called admissible if the

solution x(·) of (5) associated to u and starting at x0 is well defined on [0, T ]. On the set
Ux0,T of admissible controls, and with the previous notations, define the end-point map-
ping by Ex0,T (u) := x(T ). It is classical that Ux0,T is an open subset of L∞([0, T ], Rm)

and that Ex0,T : Ux0,T → M is a smooth map.
A control u ∈ Ux0,T is said to be singular if u is a critical point of the end-point

mapping Ex0,T ; in this case the corresponding trajectory x(·) is said to be singular.
Let x0 and x1 be two points of M , and T > 0. Consider the optimal control problem

of determining, among all the trajectories of (5) steering x0 to x1, a trajectory minimizing
the cost

CU(T , u) =
∫ T

0
u(t)T U(x(t))u(t) dt, (7)

where U takes values in the set S+
m of symmetric positive definite m × m matrices.

Theorem 3. Assume that there exists a smooth function U : M → S+
m such that no

nontrivial singular trajectory of the control system (5) minimizes the cost (7) between its
extremities. Then there exist a mapping k : M → Rm, and a closed nonempty subset S
of M , of Hausdorff dimension smaller than or equal to n − 1, such that k is an SRSx̄,S
feedback.

Remark 1.8. The same remarks as those following Theorem 1 are valid. In particular, it
is proved in [18] that, for a fixed smooth function U : M → S+

m , if m ≥ 3, then there
exists an open and dense subset Om of the set of m-tuples of smooth vector fields on M

such that the optimal control problem (5)–(7) defined with an m-tuple of Om does not
admit nontrivial minimizing singular trajectories.

2. Proof of the main results

This section is organized as follows. In Section 2.1, we recall some tools of nonsmooth
analysis that are required to prove our main results. Section 2.2 is devoted to the proof of
Theorem 1. We first define a Bolza problem, equivalent to the sub-Riemannian problem,
for which we derive some fine properties of the value function and of optimal trajectories.
In particular, we prove that the value function is smooth outside a singular set which is
defined using a specific notion of subdifferential. Theorem 1 is then derived in Section
2.2.4. Theorem 2 is proved in Section 2.3. The proof of Theorem 3 is similar to the one
of Theorem 1 and therefore skipped.

4 Note that, in what follows, the value of T is not important. It can be assumed for instance that
T = 1.
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2.1. Preliminaries: some tools of nonsmooth analysis

Let M be a smooth manifold of dimension n.

2.1.1. Viscosity subsolutions, supersolutions and solutions. For an introduction to vis-
cosity solutions of Hamilton–Jacobi equations, we refer the reader to [7, 8, 25, 31]. As-
sume that F : T ∗M × R → R is a continuous function on M . A function u : U → R,
continuous on the open set U ⊂ M , is a viscosity subsolution (resp., supersolution) on U

of

F(x, du(x), u(x)) = 0, (8)

if, for every C1 function φ : U → R (resp., ψ : U → R) satisfying φ ≥ u (resp.,
ψ ≤ u), and every point x0 ∈ U satisfying φ(x0) = u(x0) (resp., ψ(x0) = u(x0)),
we have F(x0, dφ(x0), u(x0)) ≤ 0 (resp. F(x0, dψ(x0), u(x0)) ≤ 0). A function is a
viscosity solution of (8) if it is both a viscosity subsolution and a viscosity supersolution
of (8).

2.1.2. Generalized differentials. Let u : U → R be a continuous function on an open
set U ⊂ M . The viscosity subdifferential of u at x ∈ U is the subset of T ∗

x M defined by

D−u(x) := {dψ(x) | ψ ∈ C1(U) and f − ψ attains a global minimum at x}.
Similarly, the viscosity superdifferential of u at x is the subset of T ∗

x M defined by

D+u(x) := {dφ(x) | φ ∈ C1(U) and f − φ attains a global maximum at x}.
Notice that u is a viscosity subsolution (resp., supersolution) of (8) if and only if, for
every x ∈ U and every ζ ∈ D+u(x) (resp., ζ ∈ D−u(x)), one has F(x, ζ, u(x)) ≤ 0
(resp., F(x, ζ, u(x)) ≥ 0).

The limiting subdifferential of u at x ∈ U is the subset of T ∗
x M defined by

∂Lu(x) := { lim
k→∞

ζk | ζk ∈ D−u(xk), xk → x}.

By construction, the graph of the limiting subdifferential is closed in T ∗M . Moreover, the
function u is locally Lipschitzian on its domain if and only if the limiting subdifferential
of u at any point is nonempty and its graph is locally bounded (see [22, 42]).

Let u : U → R be a locally Lipschitzian function. The Clarke’s generalized gradient
of u at the point x ∈ U is the subset of T ∗

x M defined by

∂u(x) := co(∂Lu(x)),

that is, the convex hull of the limiting differential of u at x. Notice that, for every x ∈ U ,

D−u(x) ⊂ ∂Lu(x) ⊂ ∂u(x) and D+u(x) ⊂ ∂u(x).

2.1.3. Locally semiconcave functions. For an introduction to semiconcavity, we refer
the reader to [15]. A function u : U → R, defined on the open set U ⊂ M , is locally
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semiconcave on U if for every x ∈ U , there exist a neighborhood Ux of x and a smooth
diffeomorphism ϕx : Ux → ϕx(Ux) ⊂ Rn such that f ◦ ϕ−1

x is locally semiconcave
on the open subset Ũx = ϕx(Ux) ⊂ Rn. For completeness, we recall that the function
u : U → R, defined on the open set U ⊂ Rn, is locally semiconcave on U if for every
x̄ ∈ U there exist C, δ > 0 such that

µu(y) + (1 − µ)u(x) − u(µx + (1 − µ)y) ≤ µ(1 − µ)C|x − y|2 (9)

for all x, y ∈ x̄ + δB (where B denotes the open unit ball in Rn) and every µ ∈ [0, 1].
This is equivalent to saying that u can be written locally as

u(x) = (u(x) − C|x|2) + C|x|2, ∀x ∈ x̄ + δB,

that is, as the sum of a concave function and a smooth function. Note that every semicon-
cave function is locally Lipschitzian on its domain, and thus, by Rademacher’s Theorem,
is differentiable almost everywhere on its domain. The following result will be useful in
the proof of our theorems.

Lemma 2.1. Let u : U → R be a function defined on an open set U ⊂ Rn. If, for every
x̄ ∈ U , there exist a neighborhood V of x̄ and a positive real number σ such that, for
every x ∈ V , there exists px ∈ Rn such that

u(y) ≤ u(x) + 〈px, y − x〉 + σ |y − x|2 (10)

for every y ∈ V , then the function u is locally semiconcave on U .

Proof. Without loss of generality, assume that V is an open ball B. Let x, y ∈ B and
µ ∈ [0, 1]. The point x̄ := µx + (1 − µ)y belongs to B by convexity. By assumption,
there exists p̄ ∈ Rn such that

u(z) ≤ u(x̄) + 〈p̄, z − x̄〉 + σ |z − x̄|2, ∀z ∈ B.

Hence,

µu(y) + (1 − µ)u(x) ≤ u(x̄) + µσ |x − x̄|2 + (1 − µ)σ |y − x̄|2
≤ u(x̄) + (µ(1 − µ)2σ + (1 − µ)µ2σ )|x − y|2
≤ u(x̄) + 2µ(1 − µ)σ |x − y|2,

and the conclusion follows. 45
The converse result can be stated as follows.

Proposition 4. Let U be an open and convex subset of Rn and u : U → R be a function
which is C-semiconcave on U , that is,

µu(y) + (1 − µ)u(x) − u(µx + (1 − µ)y) ≤ µ(1 − µ)C|x − y|2 (11)

for all x, y ∈ U . Then, for every x ∈ U and every p ∈ D+u(x), we have

u(y) ≤ u(x) + 〈p, y − x〉 + C

2
|y − x|2, ∀y ∈ #, (12)

In particular, D+u(x) = ∂u(x) for every x ∈ U .
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Remark 2.1. As a consequence (see [15, 42]), if u : U → R is locally semiconcave on
an open set U ⊂ M , then, for every x ∈ U ,

∂Lu(x) = { lim
k→∞

du(xk) | xk ∈ Du, xk → x},

where Du denotes the set of points of U at which u is differentiable.

The following result is useful in obtaining several characterizations of the singular set
of a given locally semiconcave function. We refer the reader to [15, 42] for its proof.

Proposition 5. Let U be an open subset of M and u : U → R be a function which is
locally semiconcave on U . Then, for every x ∈ U , u is differentiable at x if and only if
∂u(x) is a singleton.

The next result will turn out to be useful (see [15, Corollary 3.3.8]).

Proposition 6. Let u : U → R be a function defined on an open set U ⊂ M . If both u

and −u are locally semiconcave on U , then u is of class C1,1
loc on U .

2.1.4. Singular sets of semiconcave functions. Let u : U → R be a function which
is locally semiconcave on the open set U ⊂ M . We recall that since such a function
is locally Lipschitzian on U , its limiting subdifferential is always nonempty on U . We
define the singular set of u as

)(u) := {x ∈ U | ∂Lu(x) is not a singleton}.

Alberti, Ambrosio and Cannarsa [5] proved the following result.5

Theorem 7. Let U be an open subset of M . The singular set of a locally semiconcave
function u : U → R is of Hausdorff dimension smaller than or equal to n − 1.

The following lemma, proved in the Appendix (Section 3.1), will be useful for the
proof of Theorems 1 and 2.

Lemma 2.2. Let u : U → R be a locally semiconcave function on an open subset
U ⊂ M and γ : [a, b] → U be a locally Lipschitzian curve. Then, for every measurable
map p : [a, b] → T ∗M satisfying

p(t) ∈ D+u(γ (t)) for a.e. t ∈ [a, b],

we have

d

dt
(u(γ (t))) = p(t)(γ̇ (t)) for a.e. t ∈ [a, b].

5 In fact, this result has been strengthened later as follows: the singular set of a locally semi-
concave function is countably n − 1-rectifiable, i.e., contained in a countable union of locally Lip-
schitzian hypersurfaces of M (see [15, 42]).



234 L. Rifford, E. Trélat

2.2. Proof of Theorem 1

From now on, assume that the assumptions of Theorem 1 hold. In particular, assume that
there exists no nontrivial singular minimizing path for the metric g.

2.2.1. An equivalent optimal control problem. Define the running cost Lg by

Lg(x, v) := gx(v, v)

for x ∈ M and v ∈ !(x), and define the functional Jg : #!(x̄) → R+ by

Jg(γ ) :=
∫ 1

0
Lg(γ (t), γ̇ (t)) dt.

The Bolza optimization problem under consideration, denoted by (BP)g,!, consists in
minimizing the functional Jg , called energy, over all horizontal paths γ joining x̄ to
x ∈ M . Since M is connected and complete, and since the running cost Lg is coercive in
every fiber, for every x ∈ M there exists a horizontal path γ ∈ #!(x̄, x) minimizing the
energy Jg . The value function associated to the Bolza problem (BP)g,! is defined by

Vg,!(x) := inf{Jg(γ ) | γ ∈ #!(x̄, x)}

for every x ∈ M .
Note that the length of a horizontal path γ , defined by (2), does not depend on its

parametrization. Hence, up to reparametrizing, one can assume that the horizontal paths
are parametrized by arc-length, i.e., gγ (t)(γ̇ (t), γ̇ (t)) = 1. In this case, the length min-
imizing problem is equivalent to the minimal time problem. Moreover, if all paths are
defined on the same interval, then length and energy minimization problems are equiva-
lent, and the value function Vg,! satisfies

Vg,!(x) = dSR(x̄, x)2. (13)

In other terms, the problem of minimizing the length between two points x̄ and x, for the
sub-Riemannian manifold (M, !, g), is equivalent to the Bolza problem (BP)g,!.

We next provide another equivalent formulation of this optimization problem, in terms
of optimal control theory, which will be useful in the proofs of Theorems 1 and 2. Let
x ∈ M , and let γ be a minimizing horizontal path joining x̄ to x. Since γ is necessarily
non-self-intersecting, there exists a tubular neighborhood V of the path γ in M , and m

smooth vector fields f1, . . . , fm on V , such that

!(x) = span{fi(x) | i = 1, . . . , m}

for every x ∈ V . Then every horizontal path x(·) contained in V is a solution of the control
system

ẋ(t) =
m∑

i=1
ui(t)fi(x(t)),
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where u(·) = (u1(·), . . . , um(·)) ∈ L∞([0, 1], Rm) is called the control. Without loss of
generality, we assume that the m-tuple (f1, . . . , fm) of vector fields is orthonormal for
the metric g. In these conditions, the energy of the path x(·) is

Jg(x(·)) =
∫ 1

0

m∑

i=1
ui(t)

2 dt.

Since the optimal control problem does not admit any nontrivial singular minimizing path,
it follows from the Pontryagin maximum principle (see [35]) that every minimizing path
γ is the projection of a normal extremal ψ(·) = (γ (·), p(·)), associated with the control
u(·) = (u1(·), . . . , um(·)), where

ui(t) = 〈p(t), fi(γ (t))〉, i = 1, . . . , m. (14)

2.2.2. Properties of the value function Vg,!. Consider the Hamiltonian function Hg,! :
T ∗M → R defined by

Hg,!(x, p) := max
v∈!(x)

(
p(v) − 1

2
gx(v, v)

)
.

Note that this Hamiltonian coincides with the Hamiltonian H defined by (3) (as can be
seen in local coordinates).

Proposition 8. If the distribution ! is nonholonomic on M , then the value function
Vg,! : M → R is continuous on M and is a viscosity solution of the Hamilton–Jacobi
equation

−1
2
Vg,!(x) + Hg,!

(
x,

1
2
dVg,!(x)

)
= 0, ∀x ∈ M \ {x̄}. (15)

Note that this proposition still holds if there exist some minimizing singular paths.

Proof. The continuity of Vg,! follows from the continuity of the sub-Riemannian dis-
tance, associated to the metric g, on M × M . Notice that, since the running cost Lg is
coercive in the fibers, and since M is connected, for every x ∈ M \ {x̄} there exists a
horizontal path γ (·) ∈ #!(x̄, x) such that

Vg,!(x) = Jg(γ (·)) =
∫ 1

0
Lg(γ (s), γ̇ (s)) ds.

Let us prove that Vg,! is a viscosity solution of (15) on M \ {x̄}. Let x ∈ M \ {x̄}, and
let γ : [0, 1] → M be a horizontal path joining x̄ to x. For t ∈ (0, 1), there exists
γ̃ ∈ #!(x̄, γ (t)) such that

Vg,!(γ (t)) =
∫ 1

0
Lg(γ̃ (s), ˙̃γ (s)) ds = 1

t

∫ t

0
Lg

(
γ̃

(
s

t

)
, ˙̃γ

(
s

t

))
ds.
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Define γ1 ∈ #!(x̄, x) by

γ1(s) :=
{
γ̃ (s/t) if s ∈ [0, t],
γ (s) if s ∈ [t, 1].

Then

Vg,!(x) ≤
∫ 1

0
Lg(γ1(s), γ̇1(s)) ds ≤

∫ t

0
Lg

(
γ̃

(
s

t

)
,

1
t

˙̃γ
(

s

t

))
ds +

∫ 1

t
Lg(γ (s), γ̇ (s)) ds

≤ 1
t
Vg,!(γ (t)) +

∫ 1

t
Lg(γ (s), γ̇ (s)) ds.

If φ : M → R is a C1 function satisfying φ ≥ Vg,! and φ(x) = Vg,!(x), then

φ(x) = Vg,!(x) ≤ 1
t
Vg,!(γ (t)) +

∫ 1

t
Lg(γ (s), γ̇ (s)) ds

≤ 1
t
φ(γ (t)) +

∫ 1

t
Lg(γ (s), γ̇ (s)) ds.

Letting t tend to 1, and considering all C1 horizontal paths joining x̄ to x, we infer that,
for every v ∈ !(x),

dφ(x)(v) ≤ φ(x) + Lg(x, v).

On the other hand, consider some path γ ∈ #!(x̄, x) satisfying Vg,!(x) = Jg(γ ). For
every t ∈ (0, 1), up to a change of variable, this path is necessary minimizing between x̄

and γ (t). Therefore, for every t ∈ (0, 1),

Vg,!(x) = 1
t
Vg,!(γ (t)) +

∫ 1

t
Lg(γ (s), γ̇ (s)) ds.

If ψ : U → R is a C1 function satisfying ψ ≤ Vg,! and φ(x) = Vg,!(x), then

ψ(x) ≥ 1
t
ψ(γ (t)) +

∫ 1

t
Lg(γ (s), γ̇ (s)) ds.

As previously, passing to the limit yields the existence of v ∈ !(x) such that

dψ(x)(v) ≥ ψ(x) + Lg(x, v).

The conclusion follows. 45

Remark 2.2. Notice that, since Vg,! is a viscosity solution of (15) on M \ {x̄}, we have,
for every horizontal path γ : [a, b] → M \ {x̄} (with a < b),

Vg,!(γ (b)) − Vg,!(γ (a)) ≤
∫ b

a
Vg,!(γ (s)) ds +

∫ b

a
Lg(γ (s), γ̇ (s)) ds.
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Remark 2.3. We also notice that, since Vg,! is a viscosity solution of (15) on M \ {x̄},
we have

− 1
2Vg,!(x) + Hg,!(x, 1

2ζ ) = 0, ∀x ∈ M \ {x̄}, ∀ζ ∈ ∂LVg,!(x). (16)

Finally, we have the following result.

Proposition 9. If the distribution ! is nonholonomic on M , then the value function Vg,!

is continuous on M , and locally semiconcave on M \ {x̄}.
We just sketch the proof of Proposition 9; we refer the reader to [14, 42] for further

details.

Proof. Recall that since M is connected and complete, for every x ∈ M \ {x̄} there exists
a horizontal path γ ∈ #!(x̄, x) such that

Vg,!(x) = Jg(γ ) =
∫ 1

0
Lg(γ (s), γ̇ (s)) ds.

By assumption, this minimizing path γ is necessarily nonsingular, and thus it is the pro-
jection of a normal extremal. It is well known (see [1, 47]) that, for every x ∈ M \ {x̄},
there exists a neighborhood V of x in M \ {x̄} such that the set of cotangent vectors
p0 ∈ T ∗

x̄ M for which expx̄ (p0) ∈ V and the projection of the corresponding normal ex-
tremal minimizes the length between x̄ and expx̄ (p0), is compact in T ∗

x̄ M . On the other
hand, we know from [43, Proposition 4, p. 153] that if ζ ∈ ∂LVg,!(x), then there exists
a normal extremal ψ : [0, 1] → T ∗M whose projection is minimizing between x̄ and x

and such that ψ(1) = (x, 1
2ζ ). This proves that the function Vg,! is locally Lipschitzian

on M \ {x̄}.
Let x ∈ M \{x̄}, and let γ̄ be a minimizing horizontal path joining x̄ to x. By assump-

tion, this path is nonsingular, and thus it is not a critical point of the end-point mapping
Ex̄ . Hence, there exists a submanifold N of #!(x̄), of dimension n, such that the mapping

E : N → M, γ (·) ,→ Ex̄(γ (·)) = γ (1),

is a local diffeomorphism from a neighborhood of γ̄ (·) in N into a neighborhood W of
x = γ̄ (1). We infer that, for every y ∈ W ,

Vg,!(y) ≤ Jg(E−1(y)).

Since Jg is smooth on the submanifold N , up to diffeomorphism, one can put a parabola
over the graph of Jg on N , and thus over the graph of the function Vg,! at every x ∈
M \ {x̄}. The second-order term of this parabola depends on the minimizing controls
which are associated to the points x. Using the compactness of the minimizers that we
recalled above, we deduce that the function Vg,! is locally semiconcave on M \ {x̄}. 45
In the following, the singular set of Vg,!, denoted )(Vg,!), is

)(Vg,!) := {x ∈ M \ {x̄} | ∂LVg,!(x) is not a singleton}.
Recall that since the function Vg,! is locally semiconcave on M \ {x̄}, its limiting sub-
differential is nonempty at any point of M \ {x̄} (see [15]).



238 L. Rifford, E. Trélat

2.2.3. Properties of optimal trajectories of (BP)g,!. We stress that, due to the assump-
tion of the absence of singular minimizing paths, every minimizing curve of the Bolza
problem (BP)g,! is the projection of a normal extremal, i.e., an integral curve of the
Hamiltonian vector field -H defined by (3), associated with H . In particular, every mini-
mizing curve of (BP)g,! is smooth on [0, 1].

Lemma 2.3. For every x ∈ M \ {x̄} and every ζ ∈ ∂LVg,!(x), there exists a unique
normal extremal ψ(·) : [0, 1] → T ∗M whose projection γ (·) : [0, 1] → M is minimizing
between x̄ and x, and such that ψ(1) = (x, 1

2ζ ) in local coordinates. In addition, ψ(·) is
the unique (up to a scalar factor) normal extremal lift of γ (·).

Proof. The first part of the statement is a consequence of [43, Proposition 4, p. 153].
Uniqueness follows from the Cauchy–Lipschitz Theorem. Uniqueness (up to a scalar
factor) of the normal extremal lift of γ (·) is a consequence of the absence of singular
minimizing paths (see [43, Remark 8, p. 149]). 45

Lemma 2.4. Let x ∈ M \ {x̄} and γ (·) : [0, 1] → M be a minimizing curve of (BP)g,!

such that γ (1) = x. Then, for every t ∈ (0, 1), the curve γ̃ t (·) : [0, 1] → M defined
by γ̃ t (s) := γ (st) for s ∈ [0, 1] is the unique minimizing curve of (BP)g,! steering x̄

to γ (t). Moreover, γ̃ t (·) is the projection of the normal extremal (γ̃ t (·), p̃t (·)) in local
coordinates, by p̃t (s) = tp(st) for every s ∈ [0, 1].

Proof. We argue by contradiction. If there is another horizontal curve γ2(·) : [0, 1] → M

which minimizes the sub-Riemannian distance between x̄ and γ (t), then there exists a
nontrivial minimizing path x(·) joining the points γ (t) and γ (1) = x, and having two
distinct normal extremal lifts ψ1(·) and ψ2(·). Then the extremal ψ1(·) − ψ2(·) is an
abnormal extremal lift of the path x(·). Hence, the path x(·) is singular and minimizing,
and this contradicts our assumption.

We next prove that the adjoint vector associated to γ̃ t (·) is given by p̃t (s) = tp(st)

for s ∈ [0, 1]. In local coordinates, by the expression (14) of normal controls, γ (·) is a
solution of the system

γ̇ (t) =
n∑

i=1
〈p(t), fi(γ (t))〉fi(γ (t)) for a.e. t ∈ [0, 1].

Hence, γ̃ t (·) is a solution of

d

ds
γ̃ t (s) = t

n∑

i=1
〈p(st), fi(γ̃

t (t))〉fi(γ̃
t (t)) for a.e. s ∈ [0, 1].

The conclusion follows. 45

Lemma 2.5. Any normal extremal ψ(·) : [0, 1] → T ∗M whose projection is minimizing
between x̄ and x ∈ M \ {x̄} satisfies ζ ∈ ∂LVg,!(x), where ψ(1) = (x, 1

2ζ ) in local
coordinates.
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Proof. Let ψ(·) : [0, 1] → T ∗M be a normal extremal whose projection γ (·) is minimiz-
ing between x̄ and x ∈ M \{x̄}. Since Vg,! is locally semiconcave on M \{x̄}, its limiting
subdifferential is always nonempty on M \ {x̄}. We infer from Lemmas 2.3 and 2.4 that,
for every t ∈ (0, 1), we have ∂LVg,!(γ (t)) = {ζ(t)}, where ψ(t) = (x(t), 1

2t ζ(t)) in
local coordinates. Consider a sequence (tk) of real numbers converging to 1. Then, on the
one hand, the sequence (ψ(tk)) converges to ψ(1), and on the other hand, by construction
of the limiting subdifferential, ζ = ζ(1) ∈ ∂LVg,!(x). 45

Lemma 2.6. The following inclusion holds:

)(Vg,!) \ )(Vg,!) ⊂ Cmin(x̄) ∪ {x̄}.

In particular, the set )(Vg,!) is of Hausdorff dimension smaller than or equal to n − 1.

Proof. Let x ∈ )(Vg,!) \ )(Vg,!) be such that x 0= x̄. By definition, the set ∂LVg,!(x)

is a singleton. Hence by Lemmas 2.3 and 2.5, there is a unique minimizing path γ (·) ∈
#!(x̄, x) and a unique normal extremal ψ(·) : [0, 1] → T ∗M such that γ (·) = π(ψ(·));
moreover, ∂LVg,!(x) = {ζ }, where ψ(1) = (x, 1

2ζ ) in local coordinates. We argue
by contradiction; if x /∈ Cmin(x̄), then the exponential mapping expx̄ is not singular
at p0, where ψ(0) = (x̄, p0) in local coordinates. Furthermore, since x ∈ )(Vg,!),
there is a sequence (xk) of points in )(Vg,!) which converges to x. For every k, the set
∂LVg,!(xk) admits at least two elements. Hence for every k, there are two distinct normal
extremals ψ1

k (·), ψ2
k (·) : [0, 1] → T ∗M whose projections γ 1

k (·), γ 2
k (·) are minimizing

between x̄ and xk . Since the limiting subdifferential of Vg,! is a singleton, the sequences
(ψ1

k (1)), (ψ2
k (1)) necessarily converge to ψ(1). Moreover, by regularity of the Hamilto-

nian flow, the sequences (ψ1
k (0)), (ψ2

k (0)) converge to ψ(0). But the exponential mapping
expx̄ must be a local diffeomorphism from a neighborhood of p0 into a neighborhood of
π(ψ(1)). This is a contradiction.

The second part of the lemma follows from the fact that the singular set )(Vg,!) is of
Hausdorff dimension ≤ n − 1 (see Theorem 7), and of the fact that Cmin(x̄) is contained
in C(x̄) which is of Hausdorff dimension ≤ n − 1 (by [26, Theorem 3.4.3]). 45

Lemma 2.7. The function Vg,! is of class C1 on the open set M \ ()(Vg,!) ∪ {x̄}).

Proof. The set ∂LVg,!(x) is a singleton for every x in the set M \ ()(Vg,!)∪ {x̄}) which
is open in M . From Remark 2.1 and the fact that u is differentiable at some x ∈ M \ {x̄}
if and only if x /∈ )(u), we infer that Vg,! is of class C1 on M \ ()(Vg,!) ∪ {x̄}). 45

Lemma 2.8. Let x ∈ M \ {x̄} and γ̄ (·) : [0, 1] → M be a minimizing curve of (BP)g,!

such that γ̄ (1) = x. Let Ux be an open neighborhood of x and ϕx : Ux → ϕx(Ux) ⊂ Rn

be a smooth diffeomorphism such that V := Vg,!◦ϕ−1
x is locally semiconcave on the open

subset U := ϕx(Ux) ⊂ Rn. Let t ∈ (0, 1) be such that γ̄ (s) ∈ Ux for every s ∈ [t, 1].
Then there exist a neighborhood Wt of γ̄ (t) and σ (t) > 0 such that

V (y) ≥ V (ϕx(γ̄ (t))) + dV (ϕx(γ̄ (t)))(y − ϕx(γ̄ (t)))

− σ (t)|y − ϕx(γ̄ (t))|2, ∀y ∈ Wt . (17)
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Proof. Without loss of generality, we assume that M = Rn, that ϕx is the identity, and
that the closure of Ux is a compact subset of M \ {x̄}. Set xs := γ̄ (s) for every s ∈ [t, 1].
Since V = Vg,! is locally semiconcave on M \ {x̄}, there exists σ ∈ R such that

V (y) ≤ V (xs) + dV (xs)(y − xs) + σ |y − xs |2, ∀y ∈ U, ∀s ∈ [t, 1]. (18)

The horizontal path γ̃ (·) : [0, 1 − t] → M , defined by

γ̃ (s) := γ (1 − s), ∀s ∈ [0, 1 − t],

is minimizing between x and γ (t). Hence, by assumption, it is nonsingular, and thus it is
not a critical point of the end-point mapping

Et : #!(x) → M, γ (·) ,→ γ (1 − t).

Therefore, there exists a submanifold N of #!(x) of dimension n such that the mapping

Et : N → M, γ (·) ,→ E(γ (·)),
is a local diffeomorphism from a neighborhood of γ̃ (·) in N into a neighborhood Wt of
γ̃ (1 − t) = xt . From Remark 2.2, we infer that, for every y ∈ Wt ,

V (y) ≥ V (x) −
∫ 1

t
V (γy(s)) ds −

∫ 1

t
Lg(γy(s), γ̇y(s)) ds, (19)

where γy(·) : [t, 1] → M is defined by

γy(s) := E−1
t (y)(1 − s), ∀s ∈ [t, 1].

By (18), we have

−
∫ 1

t
V (γy(s)) ds ≥ −

∫ 1

t
(V (xs) + dV (xs)(γy(s) − xs) + σ |γy(s) − xs |2) ds. (20)

Moreover, since γ̄ (·) is minimizing between x̄ and x,

V (x) = V (xt ) +
∫ 1

t
V (xs) ds +

∫ 1

t
Lg(xs, ˙̄γ (s)) ds.

Hence, from (18)–(20), we deduce that, for every y ∈ Wt ,

V (y) ≥ V (xt ) + 0(y),

where

0(y) :=
∫ 1

t
(Lg(xs, ˙̄γ (s)) − Lg(γy(s), γ̇y(s))) ds

−
∫ 1

t
(dV (xs)(γy(s) − xs) + σ |γy(s) − xs |2) ds.

Since the mapping 0t : W → R is smooth and since 0t (xt ) = 0, a parabola can be put
under the graph of V at xt . This proves (17). 45
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Lemma 2.9. The following inclusion holds:

Cmin(x̄) ⊂ )(Vg,!).

Proof. Let x ∈ Cmin(x̄); note that, by definition of Cmin(x̄), one has x 0= x̄. We argue
by contradiction. If x does not belong to )(Vg,!), then Vg,! is C1 in a neighborhood
of x. This means that there exist a neighborhood V of x and t ∈ (0, 1) such that for every
y ∈ V , there is a minimizing curve of (BP)g,! such that γ̄ (t) = y. From the previous
lemma and by compactness of the minimizers, we deduce that the function −Vg,! is
locally semiconcave on V . Hence by Proposition 6, Vg,! is C1,1

loc in V . Define

1 : V → T ∗
x̄ M, y ,→ ψ(0),

where ψ(·) : [0, 1] → T M is the normal extremal satisfying ψ(1) = (y, 1
2dVg,!(y)).

This mapping is locally Lipschitz on V . Moreover, by construction, 1 is the inverse of the
exponential mapping. This proves that p0 := 1(x) is not a conjugate point. We obtain a
contradiction. 45

Lemma 2.10. Let p0 ∈ T ∗
x̄ M be such that H(x̄, p0) 0= 0. There exist a neighborhoodW

of p0 in T ∗
x̄ M and ε > 0 such that every normal extremal with ψ(0) = (x̄, p) (in local

coordinates) belonging to W is minimizing on the interval [0, ε].

The proof of Lemma 2.10 is postponed to the Appendix (Section 3.2).
We are now ready to provide a proof for Lemma 1.1.

Proof of Lemma 1.1. For the sake of simplicity, we assume that M = Rn, endowed with
the Euclidean metric. We have to prove that Cmin(x̄) ⊂ L(x̄). Let y ∈ Cmin(x̄). We argue
by contradiction. Suppose that y does not belong to L(x̄). This means that there exists a
minimizing curve γ (·) of (BP)g,! and ty ∈ (0, 1) such that γ (ty) = y. Set x := γ (1),
and let t̄ be the minimum of times t ∈ (0, 1) such that γ (t) /∈ )(Vg,!). We claim that
t̄ ∈ (0, ty]. As a matter of fact, we know by Lemma 2.9 that γ (ty) = y ∈ )(Vg,!).
Moreover, from Lemma 2.10 and the absence of (nontrivial) singular minimizing paths,
the mapping

W → M, p ,→ π(ψ(ε)),

where ψ(0) = (x̄, p), is injective. Hence from the Invariance of Domain Theorem,6 this
mapping is open. This means that V = Vg,! is necessarily of class C1 on a neighborhood
of each γ (s) with s ∈ (0, ε]. We conclude that t̄ ∈ (0, ty].

Set x̄ := γ (t̄) and xs := γ (s) for every s ∈ [0, 1]. By local semiconcavity of V (see
Proposition 9), there exist a neighborhood V of x̄ in M \ {x̄} and σ ∈ R such that

V (z′) ≤ V (z) + 〈dV (z), z′ − z〉 + σ |z′ − z|2, ∀z, z′ ∈ V. (21)

6 The Invariance of Domain Theorem states that, for a topological manifold N , if f : N → N
is continuous and injective, then it is open. We refer the reader to the book [12] for a proof of that
result.
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Let p̄ ∈ T ∗
x̄ M be such that x̄ = expx̄ (p̄). Since V is of class C1 in a neighborhood of the

curve s ∈ (0, t̄) ,→ γ (s), there exists a neighborhood W ′ of p̄ in T ∗
x̄ M such that

∀p ∈ W ′, H(x̄, p) = H(x̄, p̄) ⇒ V (expx̄ (p)) = V (x̄).

Thus, by (21), for every p ∈ W ′ satisfying H(x̄, p) = H(x̄, p̄) we have

〈dV (x̄), expx̄ (p) − x̄〉 ≥ −σ |expx̄ (p) − x̄|2. (22)

Furthermore, from Lemma 2.5, there exist a neighborhood V ′ of x̄ and σ ′ > 0 such that

V (z) ≥ V (x̄) + 〈dV (x̄), z − x̄〉 − σ ′|z − x̄|2, ∀z ∈ V ′. (23)

Without loss of generality, assume that V ′ = V and σ ′ = σ . For every p ∈ W ′,
set x(p) := expx̄ (p). By (22) and (23), we deduce that for every p ∈ W ′ satisfying
H(x̄, p) = H(x̄, p̄) and for every z ∈ V , we have

V (z) ≥ V (x̄) + 〈dV (x̄), z − x(p)〉 +〈 dV (x̄), x(p) − x̄〉 − σ |z − x̄|2
≥ V (x̄) + 〈dV (x̄), z − x(p)〉 − σ |x(p) − x̄|2 − σ |z − x̄|2.

In conclusion, by (21), for every p ∈ W ′ satisfying H(x̄, p) = H(x̄, p̄) and every z ∈ V ,
we have

〈dV (x̄), z − x(p)〉 − σ |x(p) − x̄|2 − σ |z − x̄|2 ≤ 〈dV (x(p)), z − x(p)〉 + σ |z − x(p)|2.
Hence, for every p ∈ W ′ satisfying H(x̄, p) = H(x̄, p̄) and every z ∈ V ,

2σ |z − x(p)|2 + 〈dV (x(p)) − dV (x̄), z − x(p)〉
+ 2σ 〈x(p) − x̄, z − x(p)〉 + 2σ |x(p) − x̄|2 ≥ 0. (24)

Now, since x̄ = γ (t̄) belongs to )(V ), we know from Lemma 2.6 that the exponential
mapping is singular at p̄. Define the mapping 0 : Rn × Rn → Rn × Rn by

∀(z, p) ∈ Rn × Rn, 0(x, p) := ψ(x(1), p(1)),

where (x(·), p(·)) : [0, 1] → T ∗M is the normal extremal satisfying (x(0), p(0)) =
(x, p). Since 0 is a flow, its differential is always invertible. Hence there exist P ∈ Rn

and Q ∈ Rn \ {0} such that

D0(x̄, p̄) · (0, P ) = (0, Q).

This means that there exist two continuous functions ε1, ε2 : R → Rn and a mapping
λ ,→ p(λ) ∈ W ′ such that, for every λ sufficiently small, the following properties are
satisfied:

(i) H(x̄, p(λ)) = H(x̄, p̄);
(ii) V (xλ) = V (x̄) where xλ := x(p(λ));

(iii) xλ = x̄ + λ2ε1(λ);
(iv) dV (xλ) = dV (x̄) + λQ + λ2ε2(λ).
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From (24), we deduce that, for every z ∈ V ,

2σ |z−xλ|2 +λ〈Q, z−xλ〉+λ2〈ε2(λ), z−xλ〉+2σλ2〈ε1(λ), z−xλ〉+2σλ4|ε1(λ)|2 ≥ 0.

We can apply this inequality for every α sufficiently small with z = xλ −αQ. This yields

2σα2|Q|2 − λα|Q|2 + λ2α〈ε2(λ), −Q〉 + 2σλ2α〈ε1(λ), −Q〉 + 2σλ4|ε1(λ)|2 ≥ 0

for all λ, α sufficiently small. Taking α := λ
√

λ, we find a contradiction. !

Lemma 2.11. We have
)(Vg,!) = L(x̄) ∪ {x̄}.

In particular, the cut locus is closed in M \ {x̄}, and is of Hausdorff dimension smaller
than or equal to n − 1.

Proof. From Lemma 2.3, any point of )(Vg,!) is joined to x̄ by several minimizing
curves. Hence, from Lemma 2.4, any such point belongs to the cut locus L(x̄). From
Lemmas 2.6 and 1.1, we deduce that

)(Vg,!) ⊂ L(x̄) ∪ {x̄}.

If x ∈ M \ {x̄} does not belong to )(Vg,!), then, from Lemma 2.7, the function Vg,! is
of class C1 in a neighborhood U of x. Then the continuous mapping

F : U → T ∗M, x ,→ F(x) = − -H(x, 1
2dVg,!(x)),

is such that F(x) = (x̄, p0) with expx̄ (p0) = x. This means that the exponential mapping
expx̄ is a homeomorphism from F(U) into U , with inverse mapping F . In particular, it
follows that x /∈ L(x̄). The fact that x̄ ∈ )(Vg,!) results from [1, Theorem 1]. 45

Remark 2.4. Lemma 2.11 asserts that the cut locus L(x̄) has Hausdorff dimension n−1.
Recently, proving a Lipschitz regularity property of the distance function to the cut locus,
Li and Nirenberg showed in [30] that the (n−1)-dimensional Hausdorff measure of the cut
locus in the Riemannian framework is finite. It would be interesting to study the regularity
of the distance function to the cut locus to obtain such a result in the sub-Riemannian case.

Lemma 2.12. The function Vg,! is of class C∞ on the open set M \)(Vg,!). Moreover,
if γ : [0, 1] → M is a minimizing curve for (BP)g,!, then γ (t) /∈ )(Vg,!) for every
t ∈ (0, 1).

Proof. Let γ : [0, 1] → M be a minimizing curve for (BP)g,!. It follows from Lemmas
1.1 and 2.11 that γ (t) /∈ )(Vg,!) for every t ∈ (0, 1).

Let x ∈ M \ )(Vg,!), and let γ (·) be a minimizing horizontal path joining x̄ to x.
By assumption, γ (·) is necessarily nonsingular, and admits a unique normal extremal
lift ψ(·) : [0, 1] → T ∗M . From Lemmas 1.1 and 2.11, the point x is not conjugate
to x̄, and hence the exponential mapping expx̄ is a (smooth) local diffeomorphism from
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a neighborhood of p0 into a neighborhood of x, where ψ(0) = (x̄, p0) in local coordi-
nates. As recalled in the first section, the length of the path γ (·) = π(ψ(·)) is equal to
(2H(ψ(0)))1/2. Since γ (·) is minimizing, it is also equal to dSR(x̄, x). Then, using local
coordinates, and from (13),

Vg,!(x) = 2H(x̄, (expx̄ )
−1(x))

in a neighborhood of x (see also [43, Corollary 1, p. 157]). It follows that Vg,! is of class
C∞ at the point x. 45

2.2.4. Conclusion: proof of Theorem 1. Define S := )(Vg,!). From Lemma 2.11, we
have S = L(x̄) ∪ {x̄}. We next define a section X of ! that is smooth outside S. To this
end, it is convenient to consider local coordinates, and to express the problem in terms of
optimal control. Let x ∈ M \ S. In a neighborhood U of x, one has, in local coordinates,

! = span{f1, . . . , fm},
where (f1, . . . , fm) is an m-tuple of smooth vector fields which is orthonormal for the
metric g. We proceed as in [37].

Fix x ∈ M \ x̄ (of course, we set X(x) := 0 if x = x̄), and pick some ζ ∈ ∂LVg,!(x).
Note that, since Vg,! is smooth outside the set S, one has ζ = dVg,!(x) whenever
x ∈ M \ S. Define the control ũ(x) = (ũ1(x), . . . , ũm(x)) by

ũi (x) := 1
2ζ(fi(x)), ∀i = 1, . . . , m. (25)

For x ∈ M\S, ũi (x) = 1
2 〈dVg,!(x), fi(x)〉 is the closed-loop form of the optimal control

(14). For x ∈ S, the expression of ũi (x) depends on the choice of ζ ∈ ∂LVg,!(x). Define

X(x) := −
m∑

i=1
ũi (x)fi(x). (26)

Geometrically, X(x) coincides with the projection of − 1
2ζ onto !(x). At the point x̄, we

set X(x̄) = 0. This defines a vector field X on M which is smooth on M \ S, but may be
totally discontinuous on S.

We next prove that X is SRSx̄,S . Property (i) is obviously satisfied, but properties (ii)
and (iii) are not so direct to derive.

We first prove that every minimizing trajectory yields a Carathéodory solution of ẋ =
X(x). Let x ∈ M \ x̄ be fixed and γ (·) : [0, 1] → M be a minimizing curve of the Bolza
problem (BP)g,! between x̄ and x. It follows from the Pontryagin maximum principle
that γ is the projection of a normal extremal expressed in local coordinates by ψ(·) =
(γ (·), p(·)). Let t ∈ (0, 1); from Lemma 2.4, the curve γ̃ t (·) : [0, 1] → M defined by
γ̃ t (s) := γ (st) for s ∈ [0, 1] is the unique minimizing curve of (BP)g,! steering x̄ to
γ (t). Moreover, from Lemma 2.4, it is the projection of the normal extremal ψ̃ t (·) =
(γ̃ t (·), p̃t (·)), where p̃t (·) is defined by p̃t (s) = tp(st) for every s ∈ [0, 1]. It then
follows from Lemmas 2.5 and 2.12 that, along the curve γ (·),

dVg,!(γ (t)) = 2tp(t), ∀t ∈ (0, 1).
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Therefore, γ (·) is a solution of

γ̇ (t) = 1
2t

m∑

i=1

(
dVg,!(γ (t))(fi(γ (t)))

)
fi(γ (t)), a.e. on (0, 1),

in local coordinates along γ (·). This implies that the curve x(·) : [0, ∞) → M defined
by

x(t) := γ (e−t ), ∀t ∈ (0, ∞),

is a Carathéodory solution of ẋ = X(x) such that x(0) = γ (1) = x.
We next prove that any Carathéodory solution of ẋ = X(x), x(0) = x, tends to x̄ as

t tends to +∞. Having in mind the minimizing properties (by construction) of the vector
field X, it suffices actually to prove the following lemma.

Lemma 2.13. Let x(·) be any Carathéodory solution of ẋ = X(x). Then there does not
exist a nontrivial interval [a, b] such that x(t) ∈ S for every t ∈ [a, b].

Proof. The proof goes by contradiction. Suppose that there exist ε > 0 and a curve
x(·) : [0, ε] → M such that

ẋ(t) = X(x(t)) for almost every t ∈ [0, ε],

and
x(t) ∈ S, ∀t ∈ [0, ε].

In local coordinates in a neighborhood of x(0) = x, one has

ẋ(t) = X(x(t)) = −1
2

m∑

i=1
ζt (fi(x(t)))fi(x(t)) for almost every t ∈ [0, ε],

where ζt ∈ ∂LVg,!(x(t)) for almost every t ∈ [0, ε]. At this stage, we need to use
Lemma 2.2, whose proof is provided in the Appendix (Section 3.1). According to this
lemma, using (25) and the Hamilton–Jacobi equation (16) satisfied by Vg,! (see Remark
2.3), we deduce that, for almost every t ∈ [0, ε],

d

dt
(Vg,!(x(t))) = ζt (ẋ(t)) = −1

2

m∑

i=1

(
ζt (fi(x(t)))

)2

= −Hg,!(x(t), ζt ) = −2Vg,!(x(t)), (27)

since the Hamiltonian function Hg,!(x, p) is quadratic in p. Therefore,

Vg,!(x(t)) = Vg,!(x)e−2t , ∀t ∈ [0, ε]. (28)

Let γ (·) : [0, 1] → M be a minimizing curve of the Bolza problem (BP)g,! between x̄

and x(ε). Define the horizontal path γ̃ (·) : [0, 1] → M by

γ̃ (t) =
{

x(− ln t) if e−ε ≤ t ≤ 1,

γ (eε t) if 0 ≤ t ≤ e−ε .
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The cost of γ̃ (·) is

Jg(γ̃ (·)) =
∫ e−ε

0
Lg(γ̃ (t), ˙̃γ (t)) dt +

∫ 1

e−ε
Lg(γ̃ (t), ˙̃γ (t)) dt

=
∫ e−ε

0
Lg(γ (eε t), eε γ̇ (eε t)) dt +

∫ 1

e−ε
Lg(γ̃ (t), ˙̃γ (t)) dt

= eεVg,!(x(ε)) +
∫ 1

e−ε

1
t2

m∑

i=1
ũi (x(− ln t))2 dt

= eεVg,!(x(ε)) +
∫ ε

0
es

m∑

i=1
ũi (x(s))2 ds.

Using (25), (27), and (28), one has, for almost every s ∈ [0, ε],

m∑

i=1
ũi (x(s))2 =

m∑

i=1

1
4
(
ζs(fi(x(s)))

)2 = Vg,!(x(s)) = Vg,!(x)e−2s ,

and, since Vg,!(x(ε) = Vg,!(x)e−2ε , it follows that

Jg(γ̃ (·)) = Vg,!(x).

Hence, γ̃ is a minimizing curve of the Bolza problem (BP)g,! between x̄ and x. From
Lemma 2.12, it cannot stay on S for positive times. This yields a contradiction. 45

It follows from this lemma, and from the construction of X using optimal controls, that
any Carathéodory trajectory of ẋ = X(x), x(0) = x, tends to x̄ as t tends to +∞. The
property of Lyapunov stability is obvious to verify. Finally, the fact that the set S has
Hausdorff dimension ≤ n − 1 is a consequence of Lemma 2.6.

2.3. Proof of Theorem 2

Let g be a Riemannian metric on M , and x̄ be fixed. Since ! is a smooth distribution of
rank two on M , for every x ∈ M there exists a neighborhood Vx of x and two smooth
vector fields f x

1 , f x
2 which represent ! in Vx , that is,

!(y) = span{f x
1 (y), f x

2 (y)}, ∀y ∈ Vx.

Moreover, as recalled in the introduction, since ! is a Martinet distribution, for every
x ∈ )!, the two vector fields f x

1 , f x
2 can be chosen as

f x
1 = ∂

∂x1
+ x2

2
∂

∂x3
and f x

2 = ∂

∂x2
(29)

in local coordinates. Recall that, in the neighborhood Vx , the Martinet surface )! coin-
cides with the surface x2 = 0, and the singular paths are the integral curves of the vector
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field ∂/∂x1 restricted to x2 = 0. For convenience, assume that the vector fields f x
1 , f x

2
are defined as well outside the neigborhood Vx . Thus, without loss of generality, for every
x ∈ M , we assume that the vector fields f x

1 , f x
2 are well defined, smooth on M and satisfy

f x
1 (y) = f x

2 (y) = 0, ∀y ∈ M \Wx,

with Vx ⊂ Wx , and

span{f x
1 (y), f x

2 (y)} ⊂ !(y), ∀y ∈ M.

By compactness of )!, there is a finite collection (xi)i∈I of points of )! such that

)! ⊂
⋃

i∈I

Vxi .

Let β : M → [0, ∞) be a smooth function such that

∀x ∈ M, β(x) = 0 ⇒ x ∈ )!.

For every i ∈ I , define the smooth vector field gi , in local coordinates, by

gi(y) := β(y)f
xi
1 (y), ∀y ∈ M.

By compactness of M , there is a finite collection (yj )j∈J of points of M such that

M ⊂
(⋃

i∈I

Vxi

)
∪

(⋃

j∈J

Vyj

)
,

and
)! ∩

(⋃

j∈J

Wyj

)
= ∅.

By construction, we have

span{gi(y), f
xi
2 (y), f

yj

1 (y), f
yj

2 (y) | i ∈ I, j ∈ J } = !(y), ∀y ∈ M \ )!, (30)

and

span{gi(y), f
xi
2 (y), f

yj

1 (y), f
yj

2 (y) | i ∈ I, j ∈ J } ∩ Ty)! = {0}, ∀y ∈ )!. (31)

Indeed, for every y ∈ )!,

span{gi(y), f
xi
2 (y), f

yj

1 (y), f
yj

2 (y) | i ∈ I, j ∈ J } = span{f xi
2 (y) | i ∈ I }. (32)

It follows from (30) and (31) that any trajectory solving the control system

ẋ(t) =
∑

i∈I

(
u1

i (t)gi(x(t)) + u2
i (t)f

xi
2 (x(t))

)

+
∑

j∈J

(
v1
j (t)f

yj

1 (x(t)) + v2
j (t)f

yj

2 (x(t))
)
, (33)
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where u(·) = (u1
1(·), u2

1(·), . . . , u1
|I |(·), u2

|I |(·), v1
1(·), v2

1(·), · · · , v1
|J |(·), v2

|J |(·)) belongs
to the control set U defined by

U := L∞([0, 1], R2|I |+2|J |),

is a horizontal path of !. Note that, for every u(·) ∈ U , there exists a unique absolutely
continuous curve γu(·) : [0, 1] → M such that γu(·)(0) = x̄ and

γ̇u(·)(t) =
∑

i∈I

(
u1

i (t)gi(γu(·)(t)) + u2
i (t)f

xi
2 (γu(·)(t))

)

+
∑

j∈J

(
v1
j (t)f

yj

1 (γu(·)(t)) + v2
j (t)f

yj

2 (γu(·)(t))
)

for almost every t ∈ [0, 1]. Moreover, it is clear by construction of the control system
under consideration that, for every x ∈ M , there exists a control u(·) ∈ U such that
γu(·)(1) = x. For every u(·) ∈ U , set

J (u(·)) :=
∫ 1

0

(∑

i∈I

(u1
i (t)

2 + u2
i (t)

2) +
∑

j∈J

(v1
j (t)2 + v2

j (t)2)
)

dt.

Define the value function W : M → R by

W(x) := inf{J (u(·)) | u(·) ∈ U, γu(·)(0) = x̄, γu(·)(1) = x}
for every x ∈ M . By coercivity of the cost function, it is easy to prove that, for every
x ∈ M \ {x̄}, there exists a control u(·) ∈ U such that γu(·)(1) = x and W(x) = J (u(·))
(i.e., a minimizing control). Moreover, by construction of the control system, more pre-
cisely, from (32), the trajectory γu(·)(·) cannot stay on the Martinet surface on a non-
trivial subinterval of [0, 1]. As a consequence, since any singular trajectory is contained
in the Martinet surface, any nontrivial minimizing control is nonsingular. Using similar
arguments to those in the proof of Theorem 1, it follows that the value function W is
a viscosity solution of a certain Hamilton–Jacobi equation, is continuous on M , and is
locally semiconcave in M \ {x̄} (see [14]). Moreover, the optimal trajectories of the opti-
mal control problem under consideration share the same properties as those of the Bolza
problem (BP)g,!. The construction of a stabilizing feedback then follows the same lines
as in Theorem 1.

Remark 2.5. For a noncompact manifold M , the above proof needs to be adapted by
replacing a finite set of controls (ui)i∈I and (vj )j∈J with a locally finite set of controls.

3. Appendix

3.1. Proof of Lemma 2.2

Without loss of generality, we assume that M = Rn. Given k ∈ {1, . . . , n} and ρ > 0,
denote by )k

ρ(u) the set of all x ∈ U such that D+u(x) contains a k-dimensional sphere
of radius ρ, and define

)k(u) := {x ∈ U | dim(D+u(x)) = k}.
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By well known properties of convex sets, one has )k(u) ⊂ ⋃
ρ>0 )k

ρ(u). Note that a point
x ∈ )k

ρ(u) does not necessarily belong to )k(u), since D+u(x) may be of dimension
greater than k. The following result is fundamental for the proof of Lemma 2.2 (we refer
the reader to [15] for its proof).

Lemma 3.1. For every k ∈ {1, . . . , n} and every ρ > 0, the set )k
ρ(u) is closed and

satisfies
Tan(x, )k

ρ(u)) ⊂ [D+u(x)]⊥, ∀x ∈ )k
ρ(u) ∩ )k(u).7

We return to the proof of Lemma 2.2. First, note that the map t ∈ [a, b] ,→ u(γ (t)) is
Lipschitzian. Hence, by Rademacher’s Theorem, it is differentiable almost everywhere
on [a, b]. Moreover, by the chain rule for Clarke’s generalized gradients (see [22]), for
every t ∈ [a, b] where γ is differentiable, there exists p ∈ ∂u(γ (t)) such that

d

dt
u(γ (t)) = 〈p, γ̇ (t)〉. (34)

For every k ∈ {1, . . . , n} and any positive integer l, set

Ik,l := {t ∈ [a, b] | γ (t) ∈ ()k
1/l(u) ∩ )k(u)) \ )k

1/(l+1)(u)}
and

J := [a, b] \
⋃

k,l

Ik,l .

Notice that, since u is locally semiconcave and γ is locally Lipschitzian, u is differentiable
at almost every γ (t) with t ∈ J . Thus, for every such t , we have necessarily p(t) =
∇u(γ (t)) and

d

dt
u(γ (t)) = 〈p(t), γ̇ (t)〉.

It remains to prove that this equality holds for almost every t in [a, b] \ J . From the
Lebesgue density theorem, there exists a sequence {I ′

k,l} of measurables sets such that all
sets Ik,l \ I ′

k,l have Lebesgue measure zero and each point in any I ′
k,l is a density point in

that set. It is sufficient to prove the required equality on each I ′
k,l . Fix k, l and t ∈ I ′

k,l ,
and set x := γ (t). Since x is a density point in I ′

k,l , there exists a sequence {ti} in I ′
k,l

converging to t . Thus, the vector γ̇ (t) belongs to Tan(x, )k
ρ(u)). Then, from Lemma 3.1,

γ̇ (t) belongs to [D+u(x)]⊥. By (34), we obtain the desired equality. This concludes the
proof of Lemma 2.2.

7 Here, Tan(x, )k
ρ(u)) denotes the tangent set to )k

ρ(u) at x. Recall that, given a closed set
S ⊂ Rn and x ∈ S, the tangent set to S at x, denoted by Tan(x, S), is defined as the vector space
spaned by the set

T (x, S) :=
{

lim
i→∞

xi − x

ti

∣∣∣ xi ∈ S, xi → x, ti ∈ R+, ti ↓ 0
}
.

Recall also that if A ⊂ Rn, then A⊥ is the set of vectors v ∈ Rn such that 〈v, p〉 =〈 v, p′〉 for any
p, p′ ∈ A.
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3.2. Proof of Lemma 2.10

The proof that we present here is taken from [42] (cf. [32, 34]). For simplicity, assume that
M = Rn, endowed with the Euclidean metric. Since the property to be proved is local,
we assume that there are m smooth vector fields f1, . . . , fm, orthonormal with respect to
the Euclidean metric, such that

!(x) = span{fi(x) | i = 1, . . . , m}

in a neighborhood V of x̄. With these notations, the associated Hamiltonian H : Rn × Rn

→ R is

H(x, p) := max
u∈Rm

{〈
p,

m∑

i=1
uifi(x)

〉
− 1

2

m∑

i=1
u2

i

}
= 1

2

m∑

i=1
〈p, fi(x)〉2

for every (x, p) ∈ Rn × Rn.
Our aim is now to prove the following result: for every p0 ∈ Rn such that H(x̄, p0)

0= 0, there exist a neighborhood W of p0 in Rn and ε > 0 such that every solution
(x(·), p(·)) : [0, ε] → Rn × Rn of the Hamiltonian system






ẋ(t) = ∂H

∂p
(x(t), p(t)) =

m∑

i=1
〈p(t), fi(x(t))〉fi(x(t)),

ṗ(t) = −∂H

∂x
(x(t), p(t)) = −

m∑

i=1
〈p(t), fi(x(t))〉dfi(x(t))∗p(t),

(35)

with x(0) = x̄ and p(0) ∈ W , satisfies
∫ ε

0

m∑

i=1
〈p(t), fi(x(t))〉2 dt ≤

∫ ε

0

m∑

i=1
ui(t)

2 dt (36)

for every control u(·) ∈ L∞([0, ε], Rm) such that the solution of

ẏ(t) =
m∑

i=1
ui(t)fi(y(t)), y(0) = x̄, (37)

satisfies y(ε) = x(ε). Fix p0 ∈ Rn \ {0}. We need the following lemma.

Lemma 3.2. There exist a neighborhoodW of p0 and ρ > 0 such that, for every p ∈ W ,
there exists a function S : B(x̄, ρ) → R of class C1 which satisfies

H(x, ∇S(x)) = H(x̄, p), ∀x ∈ B(x̄, ρ), (38)

and such that if (xp(·), pp(·)) denotes the solution of (35) satisfying xp(0) = x̄ and
pp(0) = p, then

∇S(xp(t)) = pp(t), ∀t ∈ (−ρ, ρ). (39)
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Proof. We apply the method of characteristics. Let 6 be the linear hyperplane such that
〈p0, v〉 = 0 for every v ∈ 6. We first show how to construct S locally as the solution of
the Hamilton–Jacobi equation (38) which vanishes on x̄ + 6 and satisfies ∇S(x̄) = p0.
Up to diminishing V , we assume that H(x, p0) 0= 0 for every x ∈ V . For every x ∈
(x̄ + 6) ∪ V , set

p̄(x) :=
√

H(x̄, p0)

H(x, p0)
p0.

Then H(x, p̄(x)) = H(x̄, p0) and p̄(x) ⊥ 6, for every x ∈ V . There exists µ > 0 such
that, for every x ∈ (x̄ + 6) ∪ V , the solution (xx(·), px(·)) of (35) satisfying xx(0) = x

and px(0) = x̄ is defined on the interval (−µ, µ). For every x ∈ (x̄ + 6) ∪ V and every
t ∈ (−µ, µ), set θ(t, x) := xx(t). The mapping (t, x) ,→ θ(t, x) is smooth. Moreover,
θ(0, x) = x for every x ∈ (x̄ + 6) ∪ V , and θ̇(0, x̄) = ∑m

i=1〈p̄(x), fi(x̄)〉fi(x̄) does
not belong to 6. Hence there exists ρ ∈ (0, µ) with B(x̄, ρ) ⊂ V such that θ is a
smooth diffeomorphism from (−ρ, ρ) × ((x̄ + 6) ∪ B(x̄, ρ)) into a neighborhood V ′

of x̄. Denote by ϕ = (τ, π) the inverse function of θ , that is, the function such that
(θ ◦ϕ)(x) = (τ (x), π(x)) = x for every x ∈ V ′. Define the two vector fields X and P by

X(x) := θ̇(τ (x), π(x)) and P(x) := pπ(x)(τ (x)), ∀x ∈ V ′.

Then

X(θ(t, x)) = θ̇(t, x) = ẋx(t) =
m∑

i=1
〈px(t), fi(xx(t))〉fi(xx(t))

=
m∑

i=1
〈P(θ(t, x)), fi(θ(t, x))〉fi(θ(t, x))

and
m∑

i=1
〈P(θ(t, x)), fi(xx(t))〉2 =

m∑

i=1
〈px(t), fi(xx(t))〉2 = 2H(x, p̄(x)) = 2H(x̄, p0)

for every t ∈ (−ρ, ρ) and every x ∈ (x̄ + 6) ∪ B(x̄, ρ). For every x ∈ V ′, set αi (x) :=
〈P(x), fi(x)〉. Hence,

X(x) =
m∑

i=1
αi (x)fi(x) and

m∑

i=1
αi (x)2 = H(x̄, p0)

for every x ∈ V ′. Define the function S : V ′ → R by

S(x) := 2H(x̄, p0)τ (x), ∀x ∈ V ′.

We next prove that ∇S(x) = P(x) for every x ∈ V ′. For every t ∈ (−ρ, ρ), define
Wt := {y ∈ V ′ | τ (y) = t}. In fact, Wt coincides with the set of y ∈ V ′ such that
S(y) = 2H(x̄, p0)t . It is a smooth hypersurface which satisfies ∇S(y) ⊥ TyWt for every
y ∈ Wt . Fix y ∈ Wt . There exists x ∈ (x̄ + 6) ∪ B(x̄, ρ) such that y = θ(t, x) = xx(t).
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Let us first prove that P(y) = px(t) is orthogonal to TyWt . To this end, without loss
of generality we assume that t > 0. Let w ∈ TyWt . There exists v ∈ 6 such that
w = dxθt (x)v. For every s ∈ [0, t], set z(s) := dxθ(s, x)v. We have

ż(s) = d

ds
dxθ(s, x)v = d

dx
θ̇(t, x)v = d

dx
X(θ(t, x))v = dX(θ(t, x))z(s).

Hence,

d

ds
〈z(s), px(s)〉 = 〈ż(s), px(s)〉 +〈 z(s), ṗx(s)〉

= 〈dX(θ(s, x))z(s), px(s)〉

−
〈
z(s),

m∑

i=1
〈px(s), fi(xx(s))〉dfi(xx(s))

∗px(s)
〉
.

Since X(x) = ∑m
i=1 αi (x)fi(x) and

∑m
i=1 αi (x)2 = H(x̄, p0) for every x ∈ V ′,

dX(xx(s))
∗px(s) =

m∑

i=1
αi (xx(s))dfi(xx(s))

∗px(s) +
m∑

i=1
〈fi(xx(s)), px(s)〉∇αi (xx(s))

=
m∑

i=1
αi (xx(s))dfi(xx(s))

∗px(s) +
m∑

i=1
αi (xx(s))∇αi (xx(s))

=
m∑

i=1
αi (xx(s))dfi(xx(s))

∗px(s).

We deduce that d
ds 〈z(s), px(s)〉 = 0 for every s ∈ [0, t]. Hence,

〈w, P (y)〉 =〈 w, px(t)〉 = 〈z(t), px(t)〉 =〈 z(0), p̄(x)〉 = 0.

This proves that P(y) is orthogonal to TyWt , which implies that P(y) and ∇S(y) are
collinear. Furthermore, since S(xx(s)) = 2H(x̄, p0)s for every s ∈ [0, t], one gets

〈∇S(xx(t)), ẋx(t)〉 = 2H(x̄, p0) = 〈px(t), ẋx(t)〉.

Since ẋx(t) = X(y) does not belong to TyWt , we deduce that ∇S(xx(t)) = px(t). Con-
sequently, we proved that ∇S(x) = P(x) for every x ∈ V ′. 45

Let us now conclude the proof of Lemma 2.10. Clearly, there exists ε > 0 such that every
solution (x(·), p(·)) : [0, ε] → Rn × Rn of (35) with x(0) = x̄ and p(0) ∈ W satisfies

x(t) ∈ B(x̄, ρ), ∀t ∈ [0, ε].

Moreover, we have
S(x(ε)) − S(x̄) = 2εH(x̄, p).
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Let u(·) ∈ L∞([0, ε]; Rm) be a control such that the solution y(·) : [0, ε] → W of (37)
starting at x̄ satisfies y(ε) = x(ε). We have

S(x(ε)) − S(x̄) = S(y(ε)) − S(y(0)) =
∫ ε

0

d

dt
(S(y(t))) dt =

∫ ε

0
〈∇S(y(t)), ẏ(t)〉 dt

≤
∫ ε

0
H(y(t), dS(y(t))) + 1

2

m∑

i=1
ui(t)

2 dt = εH(x̄, p) +
∫ ε

0

m∑

i=1
ui(t)

2dt.

The conclusion follows.
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(1997) Zbl 0890.49011 MR 1484411

[9] Bellaı̈che, A.: The tangent space in sub-Riemannian geometry. In: Sub-Riemannian Geometry,
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