
MDDPro: Model-Driven Dependability Provisioning in Enterprise
Distributed Real-time and Embedded Systems∗

Sumant Tambe, Jaiganesh Balasubramanian, Aniruddha Gokhale
Vanderbilt University, Nashville, TN, USA
{sutambe,jai,gokhale}@dre.vanderbiltl.edu

Thomas Damiano
Independent Consultant

tdamiano@ieee.org

Abstract

Service oriented architecture (SOA) design principles are increasingly being adopted to develop dis-
tributed real-time and embedded (DRE) systems, such as avionics mission computing, due to the avail-
ability of real-time component middleware platforms. Traditional approaches to fault tolerance that rely
on replication and recovery of a single server or a single host do not work in this paradigm since the fault
management schemes must now account for the timely and simultaneous failover of groups of entities
while improving system availability by minimizing the risk of simultaneous failures of replicated enti-
ties. This paper describes MDDPro, a model-driven dependability provisioning tool for DRE systems.
MDDPro provides intuitive modeling abstractions to specify failover requirements of DRE systems at
different granularities. MDDPro enables plugging in different replica placement algorithms to improve
system availability. Finally, its generative capabilities automate the deployment and configuration of the
DRE system on the underlying platforms.

Keywords: Dependability Design Tools, Model-Driven Engineering, Generative programming, Real-
time SOA systems

Category: Regular Paper.

∗This work is supported in part or whole by subcontracts from LMCO ATL and BBN for the DARPA Adaptive and
Reflective Middleware Systems Program

1



1 Introduction

Dependability is a crucial design consideration for mission-critical distributed real-time and embed-

ded (DRE) systems, such as avionics mission computing, and supervisory control and data acquisition

(SCADA) systems. DRE systems development processes are increasingly adopting the service oriented

architecture (SOA) design principles due in large part to the availability of real-time component middle-

ware platforms, such as the Lightweight CORBA Component Model (LwCCM) [8]. The SOA approach

when applied to DRE systems gives rise to what we term enterprise DRE systems, which are a loose

coupling of interacting real-time and embedded services that are composed, assembled, deployed and

configured on the underlying platforms to realize the end-to-end functionality.

With the newer SOA-style design, however, new challenges emerge in the design of dependability man-

agement solutions for enterprise DRE systems, which stem from the following limitations of contemporary

mechanisms:

Limitations of existing dependability mechanisms. A substantial amount of research in de-

pendable distributed computing has predominantly concentrated on providing fault tolerance solutions

to intrinsically homogeneous, two-tier client-server systems with mostly request-response semantics or

cluster-based server systems with transactional semantics. These research artifacts most often assume

single language and single platform systems, which when incorporated in middleware platforms form

point solutions, limit reuse, and are too restrictive for enterprise DRE systems.

Lack of support for mixed-mode dependability semantics. DRE systems of interest to us re-

quire mix mode dependability wherein parts of the system may require ultra high availability calling for

solutions that require active replication schemes while other parts of the systems may demand passive

forms of replication to overcome issues with non-determinism.

Lack of support for variable failover granularity and failure risk management. In enterprise

DRE systems, traditional approaches to fault tolerance that rely on replication and recovery of a single

server process or a single host are not sufficient since the fault management schemes must now account

for the timely and simultaneous failover of groups of entities while also improving the system availability

by minimizing the risk of simultaneous failures of groups of replicated entities.

2



Lack of intuitive and scalable dependability provisioning tools. Standardized middleware so-

lutions to dependability, such as FT-CORBA [6], provide a one-size-fits-all approach, which do not

support the different properties, such as mixed-mode dependability semantics, required by enterprise

DRE systems. Moreover, dependability provisioning in DRE systems tend to use imperative, program-

matic mechanisms which are tedious, inflexible, non reusable and error prone, and cannot scale to large

enterprise DRE systems, where heterogeneity of the underlying platforms is the norm.

To address the challenges outlined above, design-time tools that can automate the dependability

provisioning problem for enterprise DRE systems are needed. This paper describes MDDPro (Model

Driven Dependability Provisioning), which is a Model-driven Engineering (MDE) [11] tool for design-

time dependability provisioning in enterprise DRE systems. We demonstrate

• how the intuitive modeling capabilities in our tool can model fault tolerance elements in DRE

systems at different granularities,

• how system availability can be enhanced by applying replica placement decision algorithms on the

models, and

• how generative programming capabilities in the tool can be used to rapidly and reliably provision

dependability in DRE systems.

The rest of the paper is organized as follows: Section 2 describes the challenges in designing the

dependability provisioning tool for enterprise DRE systems; Section 3 describes the design and imple-

mentation of our dependability provisioning tool; Section 4 describes related research; and Section 5

provides concluding remarks and directions for future research.

2 Design Considerations for Automated Dependability Provisioning

Several factors must be considered when developing a dependability provisioning tool, such as MD-

DPro, for enterprise DRE systems. In this section we use a sample enterprise DRE system as a guiding

example to outline the requirements of such a design-time tool.

2.1 Enterprise DRE System Case Study

Figure 1 illustrates a sample enterprise DRE system drawn from representative domains, such as

avionics mission computing or shipboard computing, where variables of interest are sensed by the sensor

3



equipment, which are software controlled and fed to a set of planners who determine the appropriate

control action to be taken, and subsequently relay this information to the actuator software components.

Figure 1: A Sample Enterprise DRE System

Enterprise DRE systems are often deployed over heterogenous platforms, which consist of multiple

different networks, hardware and several layers of software. We consider the fact that failures may occur

in any of these entities. For example, node failures, operating system crashes, middleware broker process

failures, and even network link failures are common. In our current discussion we do not consider multiple

cascaded failures.

Quite often the critical functionality of enterprise DRE systems is spread across multiple components.

For example, the planning activity in Figure 1 is spread across two planning components, which could

be deployed in separate application servers on different hosts. Since these distributed set of components

form a unit of critical functionality, for high availability and even for the correct operation of the system,

it may be required that all such components in the critical path be protected against failure.

Moreover, if any of these individual components fail, it may not be sufficient to recover only the failed

component but rather the failover should recover a group of critical components. This is because failure

recovery takes finite amount of time and therefore by the time the failed functionality is recovered, the

system may lose some critical system events. Therefore, it is highly desirable in such situations to failover

to another identical replica of the protected group of components although the failure may occur in only

a single component. Thus, the fault recovery granularity can be much larger than the system elements

affected by the single failure.

Risk management and availability considerations in enterprise DRE systems involve how individual

or groups of critical components are replicated and deployed. Effective deployment of replica (or replica

groups) minimize the risk of simultaneous failures in individual replica groups thereby improving the

4



availability of the system.

2.2 Design Considerations

Using the enterprise DRE system case study illustrated in Figure 1 and the dependability management

requirements outlined above, we now describe the design considerations for an automated dependability

provisioning tool for enterprise DRE systems. In the following we describe the desired characteristics of

such a design tool.

1. Variable granularity of system protection: Enterprise DRE systems are composed of several

independently deployable assemblies of components that communicate together in a workflow fash-

ion to carry out the system’s functionality. Quite often the unit of modularity in the system design

is larger than a single deployed component and results in some critical functionality of the system

being spread across multiple components and/or assemblies. As outlined in the case study, in

terms of the availability perspective, the entire critical functionality which is spread across multiple

components must now be protected from failures. Moreover, failure of any one component in the

workflow now implies the failure of the entire flow. In such a situation, the system must failover to

a redundant workflow as opposed to a single component.

A design-time tool must allow the specification of these requirements of enterprise DRE system.

Section 3.2 describes how MDDPro provides intuitive abstractions to capture these dependability

requirements of enterprise DRE systems.

2. Mixed-mode dependability requirements: Enterprise DRE systems are large-scale and com-

prise several different components each of which accomplishing specific tasks of the entire system

functionality. Some parts of the system may require ultra high reliability mandating active repli-

cation schemes. However, due to the overhead associated with active replication and the non

determinism issues [9, 10] involved in active replication, it may be necessary to restrict the use

of active replication to a small part of the enterprise DRE systems. Other parts of the system

may then use other forms of replication, such as passive replication, or depend on simple restart

mechanisms depending on the criticality of the component and available resources in the system.

The design-time tool must enable enterprise DRE system developers to capture these mixed-mode

dependability semantics of the system. When combined with the granularity of protection units and

5



other performance requirements of the system, this provisioning task becomes complex to perform

manually using ad hoc and programmatic techniques. Section 3.2 describes how MDDPro provides

intuitive abstractions to capture these mixed-mode dependability requirements of enterprise DRE

systems.

3. Effective replica deployment for maximising availability: As alluded to above, enterprise

DRE systems may have a number of different protected units of functionality that are assembled

together to form the system. Moreover, different parts of the system may use different replication

schemes. Considering both these requirements, it is now necessary to introduce redundancy in the

system that accounts for the units of protection used and the replication styles used. Redundancy

in the system improves system availability, however, high levels of reliability are realized only when

replicas are placed in such a way that the risk of simultaneous failures of replicas is minimized.

Effective replica placement also impacts several other performance characteristics of the entire

system. For example, effective replica placement may be necessary to maintain a bounded and fast

state synchronization among the replicas.

A design-time tool can be used to ensure that the system simultaneously satisfies multiple QoS

requirements such as performance, predictability and availability, by incorporating deployment state

space search algorithms that automatically find effective deployments. This feature boils down to

the general problem of constraint satisfaction. Optimality is a harder problem than constraint

satisfaction, however, we do not consider it yet in our design. Section 3.3 describes how we have

designed our MDDPro tool that can plug in different replica placement algorithms that find effective

deployments for enterprise DRE systems.

4. Automated provisioning of dependability: Even though the modeling techniques can help

capture dependability requirements while replica placement algorithms can provide effective de-

ployment decisions, these must ultimately be realized in the context of the underlying hosting

platforms, such as the component middleware. Component middleware often use XML metadata

that describes how components of an enterprise DRE system should be hosted in the middleware

and how they must be connected to each other. For large-scale systems, the amount of metadata

becomes very large and ad hoc techniques, such as handcrafting these descriptors becomes infeasible

and error prone.

6



Dependability provisioning makes this task harder since the metadata must now account for the

protection units and provisioning the multiple replication schemes within the enterprise DRE sys-

tem. This requires substantial degree of middleware configuration by allocating different resources

end-to-end. Replication adds to the number of connections that must be established between the

different protection units and their replicas. The replication style makes this task even harder. For

example, when active replication is used, the middleware must be configured to use a group com-

munication substrate that is used by the communication between replicas. On the other hand, in

passive replication, the secondary replicas must be provisioned on the middleware to accept periodic

state updates from the primary. Section 3.4 describes how generative programming [2] techniques

used within our MDDPro tool automates the metadata generation to provision dependability for

enterprise DRE systems within the middleware platforms.

Solution Approach: Model Driven Engineering (MDE) [11] is a promising approach to provision the

dependability requirements for enterprise DRE systems because it raises the level of the abstraction of

system design to a level higher than third-generation programming languages by providing a scalable

and intuitive abstractions that are closer to the domain. The model-per-concern paradigm within MDE

alleviates system complexity because it abstracts away the irrelevant details from the developer’s current

“view” of the system. Generative tools provided by MDE approaches can seamlessly integrate multiple

views of the system and produce a consistent set of metadata used by underlying hardware/software

platforms for configuration. The MDDPro tool described in this paper is therefore based on the MDE

approach.

3 Dependability Provisioning using Model-driven Engineering

In this section we describe the design and implementation of our MDDPro design-time, automated

dependability provisioning tool, which uses a model-driven engineering (MDE) approach in its design

and satisfies the requirements of such a tool outlined in Section 2.2.

7



3.1 Overview of Enabling Technologies

Before delving into the details of our design-time dependability provisioning tool, we first provide an

overview of the enabling technologies we have leveraged to develop MDDPro.

MDDPro has been developed in the context of the CoSMIC (Component Synthesis with Model In-

tegrated Computing) [3] MDE toolsuite. CoSMIC is an open source MDE tool suite used to simplify

the development of component-based DRE applications focusing particularly on the assembly, deploy-

ment, configuration, and validation of component-based enterprise DRE systems. CoSMIC comprises a

collection of domain-specific modeling languages (DSMLs), which define the concepts, relationships, and

constraints used to express domain entities [4], and generative programming capabilities that automate

the different development concerns of DRE systems.

The different capabilities in CoSMIC including the MDDPro tool described in this paper have been

developed using the Generic Modeling Environment (GME) [5]. GME is a metaprogrammable modeling

environment that enables domain experts to develop visual modeling languages and generative tools

associated with those languages. The modeling languages in GME are represented as metamodels. A

metamodel in GME depicts a class diagram using UML-like constructs showcasing the elements of the

modeling language and how they are associated with each other.

A key CoSMIC DSML developed in GME is the Platform Independent Component Modeling Language

(PICML) [1], which enables graphical manipulation of modeling elements, such as component ports and

attributes. PICML also performs various types of generative actions, such as synthesizing XML-based

deployment plan descriptors defined in the OMG Deployment and Configuration (D&C) specification [7].

CoSMIC provides the Component QoS Modeling Language (CQML), which is a mappping of the platform-

independent PICML models to models that are specific to the lightweight CORBA Component Model.

Figure 2 illustrates the CQML model for the enterprise DRE system case study from Figure 1. Our

MDDPro tool is an enhancement to the CQML DSML and its generative capabilities.

3.2 Modeling Dependability Requirements in MDDPro

We now describe how the MDDPro tool addresses Requirements (1) and (2) described in Section 2.2.

CQML allows modelers to annotate the elements modeled with platform-specific details and different

quality of service (QoS) requirements as shown in Figure 2. MDDPro is responsible for the dependability

8



Figure 2: CQML Model of the Enterprise DRE System Case Study

QoS attributes in CQML. The artifacts that can be annotated are component instances, component

implementations, connections between component ports, component assemblies, among others.

MDDPro allows an enterprise DRE system deployer to model the dependability requirements in the

QoS view of the DRE system as shown in Figure 3. The QoS view leverages the basic structure of

the DRE system in terms of the component instances in an assembly, component ports and their inter

connections. It allows FT elements to be modeled orthogonally to the system components and therefore

achieves separation of dependability concerns from the primary system composition and functionality

concerns.

The following modeling elements are supported within MDDPro:

• Failover units (FOUs), which enable control over the granularity of protected system compo-

nents, such as software components, component assemblies, or entire component workflows. Failure

9



Figure 3: Availability Requirements Modeling in CQML

of any one element belonging to a FOU is treated equivalent to the failure of all the elements in the

FOU and the system effectively ”fails over” to another replica of the FOU. This modeling abstrac-

tion not only captures the failover granularities of system entities, but also the degree of replication

for each FOU and other systemic requirements, such as the periodicity of liveness monitoring for

FOUs. The degree of replication is represented as a pair of numbers representing minimum and

maximum number of replicas.

Frequently, the liveness of distributed components is monitored using a ”heart beat” protocol.

The frequency of the heartbeat is one configurable parameter in the liveness monitoring, which

can be configured in MDDPro. The heartbeat itself is configurable in two ways: push model or

pull model. Thus, the directionality of the heartbeat can also be configured in MDDPro. In

Section 3.4 we show how modeling of FOUs enable us to automatically synthesize and configure

liveness monitoring components as well as heartbeat producing components. Conceptually, a FOU

is an abstraction to capture the availability requirements at the control plane of the dependability

10



solution.

• Replication groups (RGs), which allows capturing the replication requirements of software

components within a FOU. These models specify replication strategies, such as active, passive or

other variants, and the state synchronization policies for components. A replication group captures

the configuration parameters related to the data plane of the deployment solution. Multiple replicas

of the system components synchronize their state with each other as per the configuration of the

data plane. For example, data synchronization frequency of the replicas is configurable. Moreover,

the topology of state synchronization among replicas is also a data plane level configuration issue

handled in MDDPro.

• Shared Risk Groups (SRGs), which defines groupings of the resources in the target network of

the applicationon that share the risk of simultaneous failure. Application components share the risk

of simultaneous failure by virtue of failure of resources they share, such as processes, nodes, racks or

even data centers on which they are hosted. Risk factors are determined by assigning metrics, such

as co-failure probabilities to the hierarchy network resources in a risk group that impact availability

of the system. The computation of the co-failure probabilities themselves is beyound the scope of

this paper and is assumed to be done apriori using realiability engineering methodologies.

The primary purpose behind modeling the shared risk groups and their respective co-failure

probabilities is to facilitate automated deployment decisions of the components in the system such

that the probability of failure of entire system is minimized thereby increasing the availability. In

Section 3.3 we show how the shared risk group model is used by the MDDPro model interpreter

to determine a suitable and effective deployment that satisfies the availability requirements and

minimizes risks of simultaneous failures.

3.3 Improving Availability via Effective Replica Placement

Requirement (3) in Section 2.2 states that the dependability solution for enterprise DRE systems

must minimize the risk of simultaneous failures of replicated functionality. This requires effective replica

placement algorithms, where replication is provided for protection units that are modeled as failover

units described in Section 3.2.

MDDPro uses GME’s plugin capabilities to add model interpreters. One such model interpreter

11



addresses the replica placement problem. The placement model interpreter provides a strategizable

framework that can use different constraint-based algorithms to determine an effective replica placement

plan to minimize the co-failure probability of the system as a whole.

Formulation of replica placement problem instance in MDDPro. In one instantiation of the

formulation of the replica placement problem within our strategizable model interpreter, we use math-

ematical vectors to represent the distance of the replicas from the primary component. If the primary

component has N replicas, then we form N orthogonal vectors of N dimensions, where each vector

represents the distance from the primary component node in terms of hops captured in the shared risk

group hierarchy. The magnitude of the resultant vector of the N orthogonal vectors is used to compare

different deployment configurations and to find the one that satisfies the constraints.

In this formulation of the placement problem algorithm, we have taken care to avoid generation of

some obviously undesirable deployment configurations of the system. For example, it does not allow

deployment configuration where all the replicas of a component are located in the same host. This is

obviously undesirable in dependable enterprise DRE systems because placing multiple replicas in the

same host increases the risk of simultaneous failure of replicas.

Prototype heuristic algorithm using distance metric. The prototype placement algorithm we

have developed maximizes the distance of the replicas from the primary replica but the pair-wise dis-

tance between replicas themselves can be as small as just a single hop. Such a deployment configuration

is skewed and undesirable. To alleviate the problem we apply a penalty function to the resultant mag-

nitude of the vector. The penalty function gives precedence to uniform deployment more than highly

skewed deployment. The penalty function that we have used is a simple standard deviation of the dis-

tances of individial replicas from the primary component. We can generate better configurations by

penalizing highly skewed deployment configurations heavily compared to the more uniform deployment

configurations.

For example, consider two resultant vectors v1{4, 4, 4} and v2{1, 1, 8} having 3 dimensions. Although

the magnitude of v2 is much greater than v1, the deployment configuration captured in v1 is more

resilient to failures than v2 because the replicas are spread more uniformly around the primary unlike

v2. The heuristic algorithm for the prototype implementation of the deployment algorithm is illustrated

12



in Listing 1.

1. Compute the distance from each of the replicas to the primary for a placement.

2. Record each distance as a vector, where all vectors are orthogonal.

3. Add the vectors to obtain a resultant.

4. Compute the magnitude of the resultant.

5. Use the resultant in all comparisons (either among placements or against a threshold)

6. Apply a penalty function to the composite distance (e.g. pairwise replica distance or uniformity)

Listing 1: Replica Placement Heuristics

3.4 Automated Dependability Provisioning via Generative Programming

The model interpreters and generative tools in MDDPro use the dependability requirements captured

in the models for synthesizing metadata used to provision the dependability for enterprise DRE systems.

In order to realize such an automation in the provisioning process several artifacts of dependability must

be addressed: (a) the designer of the dependable system has to annotate the desired degree of replication

of the protected components in the model, (b) the generative tools have to process the replication

requirements and produce deployment metadata that reflects the number of physical software components

that will actually be deplooyed but not necessarily be represented in the model, (c) derive the complex

connection topology interconnecting these generated components, which is dictated by the degree and

style of replication of the primary component as well as replication requirements of the components it

interacts with, and (d) generating the physical infrastructure components of the dependability solution

that monitor liveness of the replicated components.

3.4.1 Deployment metadata generation framework

As noted in Section 3.1, the real-time component middleware platforms used to host the enterprise DRE

systems use standardized XML-based metadata descriptors to describe the deployment plans of the entire

system which the runtime system uses to actually deploy the different components of the system. Our

challenge involved enhancing these metadata descriptors to include dependability provisioning decisions.

For this goal to be realized, MDDPro’s generative capabilities had to be integrated with the existing

13



generators available in CQML without obtrusive changes to existing capabilities. This approach ensures

that generators for QoS issues beyond dependability, such as security, can seamlessly be integrated with

CQML.

To address these concerns, we have developed an extensible framework called The Deployment Plan

Framework that allows augmentation of metadata generation “on-the-fly” as it is being generated. The

framework exposes a fixed set of hooks to be filled in by the developer of the existing and any new CQML

model interpreters including the MDDPro model interpreters. The deployment framework continues to

generate the standardized metadata describing the components, their implementations, and other infor-

mation. Additionally, it invokes each hook method corresponding to the different QoS model interpreters

of CQML that callback into the extension model interpreters, one of which is the MDDPro interpreter,

to ”inject” QoS specific metadata on-the-fly into the other standardized metadata.

This architecture allows large scale reuse of earlier codebase that deals with the basic structure and

composition capabilities of PICML/CQML. The developer producing QoS enhancements to the existing

modeling capabilities of CQML need not be concerned with the other complexity of the framework and

the format of the standardized descriptors, but simply add/modify the metadata for the QoS dimension

they are addressing. Our MDDPro model interpreter exploits these capabilities of the Deployment Plan

Framework to ”inject” three different kinds of metadata.

1. Replica component instances of the primary protected component depending upon replication

degree annotated in the model. For example, if replication degree of an FOU is 3, then two replicas

of the primary FOU are created. Thus, two replicas of each component in the FOU are effectly

added by the interpreter.

2. Component connection metadata is injected based on the replication style and degree of replica-

tion. In case of active replication of the protected unit, the higher-level facet-receptacle connections

(which are provided and required port connections of the component middleware) is annotated to

be of an Inter Operable Group Reference (IOGR) type. IOGRs are group object references defined

in the CORBA standard.

3. Deployment metadata is the assignment of components to resources of the system. This meta-

data includes information for all the protected components, their replicas and the dependability

infrastructure components.

14



3.4.2 Handling complex connections

As shown in Figure 4, part (a) shows an example connection between two critical components (A and

B) of an enteprise DRE system. Connection A represents a facet-receptacle connection while Connection

B is a publisher-consumer connection where compoent A is the publisher and the component B is the

consumer. Imagine the system designer decides to protect each component in its own protected FOU.

Both of the components must be replicated as per the replication requirements of each and the connection

metadata has to be changed to reflect it. Part (b) shows the complex connection structure required when

both the components are actively replicated.

Figure 4: Complexity of connection generation

Note that the diagram only indicates the necessary number of connections the middleware has to

establish when components are deployed. These connection may or may not actually be used to send

requests across because it really depends upon where request/reply suppression is in place. Nevertheless,

the component container has to prepare for any unforeseen failures and has to establish connections a

priori in order to avoid the latency of connection establishment later when failures occur. The model

15



interpreter that we have developed completely hides away the complexity of modeling the component

instances and the connections between their replicas.

3.4.3 Automatic generation of liveness monitoring infrastructure

The model interpreter also generates the infrastructure components necessary for liveness monitoring of

the protected components. It uses the availability requirements in the models to generate supporting

run-time components to realize ready-to-deploy, robust, and fault-tolerant enterprise DRE systems. This

includes generating, configuring, and deploying the status monitoring and fault recovery components

without the need for the application developer having to model these explicitly.

container/component servercontainer/component server

FPCFPC

“client”

periodic FPC heartbeat

prim
ary IO

R

Primary FOUPrimary FOU

A

HBHB

container/component servercontainer/component server

B

container/component servercontainer/component server

C

container/component servercontainer/component server

Replica FOUReplica FOU

A’

container/component servercontainer/component server

B’

container/component servercontainer/component server

C’

secondary
IO

R

IO
G

R

FPCFPC

HBHB HBHB

intra-FOU

heartbeat

HBHB
HBHB HBHB

Primary
Component

Replica
Component

Collocated

heartbeat

component

Connection
Injection

Figure 5: Generated Deployment of Dependability Infrastructure Elements

The generated architecture shown in Figure 5 has two important components: the heartbeat (HB)

component and the Fault Protection Center component (FPC). The purpose of the HB components is

to send a periodic heartbeat beacon to the FPC or respond to the periodic liveness poll request received

from the FPC. The FPC is the central controlling component that ensures the liveness of the protected

components using either pull or push model of the heartbeat beacon. The HB components are collocated

with the protected components. The underlying assumption is that the HB component and the protected

16



component would fail simultaneously. The central FPC component is also replicated to avoid single points

of failure. Multiple copies of the FPC components send heartbeat beacons among themselves to ensure

that FPC themselves are alive and are doing continuous liveness monitoring of the system.

As shown in Figure 5, every protected component has its own collocated HB component and there is

one FPC for every FOU. All the HB components in belonging to one FOU send heartbeat to its corre-

sponding FPC. Multiple simultaneously active FOUs have equal number of FPCs, which communicate

with themselves to prevent single point of failure.

The heartbeat frequency at which the liveness indications are sent between HBs and FPCs is config-

urable in the model. The advantage of this architecture is that the infrastructure components for liveness

monitoring can be autogenerated using generative technologies. The necessary deployment metadata re-

quired to collocate the HB components with their respective protected components and to establish the

connections between HB components and the FPC components is autogenerated by the model interpreter

from the requirements. Moreover, the metadata that captures the configuration of HB components such

as push/pull model and heartbeat frequency is autogenerated for every HB component.

4 Related Work

5 Conclusions

This paper describes how model driven engineering (MDE) can be used to simplify and automate

dependability provisioning in enterprise distributed real-time and embedded (DRE) systems. We describe

the capabilities of the MDDPro (Model Driven Dependability Provisioning) MDE tool which we have

built as part of the CoSMIC tool suite. Our work is suitable for component-oriented systems that have

multiple different quality of service requirements and which are deployed and configured via declarative

mechanisms. Both these traits are common to systems that use the service oriented architecture. In the

remainder of this section we describe the lessons we learned in this effort and our future work in this

realm.

17



Lessons Learned and Future Work

Capturing availability requirements interms of degree of replication, replication style at the modeling

time and generating component infrastructure components increases productivity to a great extenet but

many unresolved challenges still remain.

• Availability model analysis: to determine the effect of the availability requirements on other

aspects of the system would greatly amplify the usefulness of our modeling techniques Our ap-

proach to provision fault-tolerance is simplistic in the sense that it neglects the effects on resource

consumption because of the number of the replicated components. Increasing the degree of replica-

tion of protected components in the system may result in excessive resoruce consumption and may

adversely affect other QoS gurantees of the system such as timeliness and CPU consumption. An

analysis technique needs to be in place that would help the system designers take correct decisions

about the availability requirements without adverly affecting the resource availabilty and other QoS

characteristics of the system.

• Run-time adaptation: of the fault-tolerance infrastructure as well as the replicated aplication

components is highly desirable in eDRE systems because these systems usually exxhibit modal

behavior and system functionality as well QoS priorities may change as the mode of operation of

the system changes. (example would be great) Our approach to the availability modeling is static

in nature and depends on the availability of the target domain information and their associations

with each other in terms of co-failure probability. Although, the placement model interpreter does

take deployment decisions at design time using a strategizable constraint-solver framework, it does

not make the system adaptive at run-time. Runtime-monitoring subsystems such as RACE can be

used to implement a general purpose recourse constraint-solver framework at run-time, not unlike

the one we have in our design-time placement model interpreter. Such a framework would take

intelligent (re)deployment decisions based on changing environment (failures, resource cosumption)

and modes of the eDRE systems.

• Ensuring state consistency: across replicas of components or FOUs in a general is a challenge.

Our Availability model abstracts away the details of fault-monitoring part of the FT subsystem

and generates component based infrastructure automatically for precisely doing that. However,

18



state synchronization and ensuring state consistency across replicated components of the system

is a hard problem. Main challenges in this space are (1) Capturing and provisioning a variety of

state synchronization mechanisms because different component developers may implement different

mechanisms as they see fit. Several different ways ensuring state synchronization are used, for

example, central repository/database based approach, transmission of periodic state updates using

point-to-point commication or multicast communicatoin etc. Modeling the topology transmission

of state update messages is also important in case of non-repository based techniques because the

run-time failover critically depends on the order inwhich replica compoents receive state updates.

All artifacts described in this paper are available in open source from the CoSMIC web site (www.dre.

vanderbilt.edu/cosmic).

References

[1] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and D. C. Schmidt. A Platform-
Independent Component Modeling Language for Distributed Real-time and Embedded Systems. Elsevier
Journal of Computer and System Sciences, 2006. To Appear.

[2] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and Applications. Addison-
Wesley, Reading, Massachusetts, 2000.

[3] A. Gokhale, D. C. Schmidt, B. Natarajan, J. Gray, and N. Wang. Model Driven Middleware. In Q. Mahmoud,
editor, Middleware for Communications, pages 163–187. Wiley and Sons, New York, 2004.

[4] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-Integrated Development of Embedded Software.
Proceedings of the IEEE, 91(1):145–164, Jan. 2003.

[5] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle, and G. Karsai. Composing Domain-
Specific Design Environments. IEEE Computer, pages 44–51, November 2001.

[6] Object Management Group. Fault Tolerant CORBA Specification, OMG Document orbos/99-12-08 edition,
Dec. 1999.

[7] Object Management Group. Deployment and Configuration Adopted Submission, OMG Document mars/03-
05-08 edition, July 2003.

[8] Object Management Group. Lightweight CCM FTF Convenience Document, ptc/04-06-10 edition, June 2004.
[9] Pascal Felber and Priya Narasimhan. Experiences, Approaches and Challenges in building Fault-tolerant

CORBA Systems. Transactions of Computers, 54(5):497–511, May 2004.
[10] Priya Narasimhan and Tudor Dumitras and Aaron M. Paulos and Soila M. Pertet and Charlie F. Reverte

and Joseph G. Slember and Deepti Srivastava. MEAD: support for Real-Time Fault-Tolerant CORBA.
Concurrency - Practice and Experience, 17(12):1527–1545, 2005.

[11] D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):41–47, 2006.

19

www.dre.vanderbilt.edu/cosmic�
www.dre.vanderbilt.edu/cosmic�

