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Abstract

The analyticity property of the one-dimensional complex Hamiltonian systemH(x,p) = H1(x1, x2,p1,p2) +
iH2(x1, x2,p1,p2) with p = p1+ ix2, x = x1+ ip2 is exploited to obtain a new class of the corresponding two-dimensional
integrable Hamiltonian systems whereH1 acts as a new Hamiltonian andH2 is a second integral of motion. Also a possible
connection betweenH1 andH2 is sought in terms of an auto-Bäcklund transformation. 2000 Elsevier Science B.V. All rights
reserved.
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With a view to having a better theoretical under-
standing of several newly discovered [1,2] phenom-
ena there has been [2–10] considerable interest in re-
cent years in the study of complex Hamiltonian sys-
tems in one space dimension described by the Hamil-
tonianH(x,p). For this purpose, several methods of
complexification are used. One type of complexifica-
tion which has been known [9] for a long time in the
literature and now discussed in several textbooks on
quantum mechanics is in the formz = p + iωx, z∗ =
p− iωx, which is in particular well suited for the oscil-
lator problem, as well as its generalized version [3,4]
by introducing two complex variablesu= x/b+ ip/c
andv = x/b− ip/c, whereb andc are complex num-
bers. Note that in all these cases the complexity arises
mainly through the parameter space.
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Recently, following the work of C.M. Bender and
his coworkers [5,6] one-dimensional complex Hamil-
tonian systems have been studied rigorously through
the combined parity (P : x→−x, p→−p) and time
reversal (T : x → x, p → −p, i→ −i) operations.
The corresponding quantum Hamiltonian, which now
becomes non-hermitian, is found to yield real eigen-
values for a certain parametric domain if the Hamil-
tonian isPT -symmetric. Here, the complex Hamil-
tonian is typically introduced from the beginning,
i.e., H(x,p) is complex even for real values ofx
andp. Boundary conditions are formulated in com-
plex x-space and hence the extension to a complex
classical phase space appears naturally.

In most cases, however, the system under study is
originally a real valued classical HamiltonianH(x,p)
function, defined for realx andp or, quantum me-
chanically, a hermitian operator. An extension to com-
plex (phase) space is sometimes required for particu-
lar purposes. In a semiclassical analysis such a treat-
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ment can account for classically forbidden processes
[11]. In other situations a complexification can be used
to describe resonances as complex energy eigenvalues
and eigenstates of the Hamiltonian both quantum me-
chanically [2] by so-called complex scaling methods
and semiclassically [12] by Hamiltonian dynamics at
complex energies.

In any case, an understanding of the classical
dynamics in the complexified phase space is essential
also for the quantum dynamics. Here we will confine
ourselves to the classical system. Following [3,4] we
definex andp as

(1)x = x1+ ip2, p = p1+ ix2 .

Here the real phase plane(x,p) is replaced by a com-
plex space(x1, x2,p1,p2) with two additional degrees
of freedom, namelyx2 andp2. ThePT -symmetry op-
erations are

P : (x1, x2,p1,p2)−→ (−x1,−x2,−p1,−p2),

T : (x1, x2,p1,p2)−→ (x1, x2,−p1,−p2),

(2)i→−i.

Clearly, the HamiltonianH(x,p), after using (1), can
be expressed as

H(x,p)=H1(x1, x2,p1,p2)

(3)+ iH2(x1, x2,p1,p2).

Note that for a time independent HamiltonianH(x,p)
is a constant of motion and so are its real and
imaginary partsH1 andH2 separately.

If H is an analytic function of the two complex
variablesx andp, thenH1 andH2 satisfy the two sets
of Cauchy–Riemann equations:

∂H2

∂p2
= ∂H1

∂x1
,

∂H2

∂x1
=−∂H1

∂p2
,

(4)
∂H2

∂x2
= ∂H1

∂p1
,

∂H2

∂p1
=−∂H1

∂x2
,

which imply a vanishing Poisson brackets

[H1,H2] = ∂H1

∂x1

∂H2

∂p1
− ∂H1

∂p1

∂H2

∂x1

(5)+ ∂H1

∂x2

∂H2

∂p2
− ∂H1

∂x2

∂H2

∂p2
= 0,

i.e. these constants of motion are in involution.

It is interesting to note here that this result can be
derived in a different way: the complex equations of
motion

(6)ẋ = ∂H
∂p
, ṗ =−∂H

∂x

are transformed into [3]

ẋ1= ∂H1

∂p1
, ṗ1=−∂H1

∂x1
,

(7)ẋ2= ∂H1

∂p2
, ṗ2=−∂H1

∂x2

i.e., the Hamiltonian equations for a Hamiltonian
H1(x1, x2,p1,p2)with two degrees of freedomxj and
canonical momentapj . This motivates the notations
p2, x2 as introduced in Eq. (1) for the imaginary parts.
The equations of motion (7) can be written in the
compact form

(8)ẏ = J∇yH1(y)

with y = (x1, x2,p1,p2) and the symplectic unit
matrix J = ( 0 I

−I 0

)
(I is the two-dimensional unit

matrix).
The two-dimensional system with HamiltonianH1

is integrable [13], i.e. there exist two independent
integrals of motion, which are in involution, namely
H1 andH2. First, we see from the Cauchy–Riemann
equations (4) thatḢ2 = [H1,H2] = 0. Moreover,H1
andH2 are independent, i.e. the two vector fields

(9)vj = J∇yHj (y), j = 1,2,

are linearly independent.
Other conditions whichH1 andH2 have to satisfy

— as a by-product of Eq. (4) — are [14]:

∂2Hj

∂x2
1

+ ∂
2Hj

∂p2
2

= 0,
∂2Hj

∂x1∂p1
+ ∂2Hj

∂x2∂p2
= 0,

(10)
∂2Hj

∂x2
2

+ ∂
2Hj

∂p2
1

= 0,
∂2Hj

∂x1∂x2
− ∂2Hj

∂p1∂p2
= 0

for j = 1,2, i.e.H1 andH2 are biharmonic functions
and solve the Laplace equation1yHj = 0. As a
consequence, they cannot have a minimum in phase
space.

After having this much understanding of the com-
plex HamiltonianH(x,p) the following remarks are
in order:
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Table 1
Hamiltonian structuresH =H1+ iH2 which conform to Eq. (5)

HamiltonianH Real partH1 Imaginary partH2 Ref.

1. 1
2p

2+ 1
2ω

2x2 1
2

(
p2

1 − x2
2 + ω2x2

1 − ω2p2
2

)
p1x2+ω2x1p2 [10]

2.p2+ x2+ iγ x p2
1 − x2

2 + x2
1 −p2

2 − γp2 2p1x2+ 2x1p2+ γ x1 [7]

3.p2+ δ1(ix)+ δ2(ix)2+ δ3(ix)3 p2
1 − x2

2 − δ1p2− δ2
(
x2

1 − p2
2

)
2p1x2+ δ1x1− 2δ2x1p2

− δ3p3
2 + 3δ3x

2
1p2 − δ3x3

1 + 3δ3x1p
2
2 [7]

4. 1
2p

2+ 1
2ω

2(t)x2 1
2

(
p2

1 − x2
2 + ω2(t)x2

1 − ω2(t)p2
2

)
p1x2+ω2(t)x1p2 [10]

5. 1
2p

2+ 1
2ax

2+ 1
4bx

4 1
2

(
p2

1 − x2
2

)+ 1
2a
(
x2

1 −p2
2

)
p1x2+ ax1p2+ bx3

1p2− bx1p
3
2 [3,4]

+ 1
4b
(
x4

1 +p4
2 − 6x2

1p
2
2

)
6.p2+ ix3+ ix p2

1 − x2
2 +p3

2 − 3x2
1p2− p2 2p1x2+ x3

1 − 3x1p
2
2 + x1 [5,6]

7.p2− (ζ cosh2x − iM)2 p2
1 − x2

2 − ζ2

2 (cos4p2 cosh 4x1+ 1) 2p1x2− ζ2

2 sin 4p2 sinh 4x1

+M2− 2Mζ sin 2p2 sinh2x1 +2Mζ cos 2p2 cosh 2x1 [8]

8.p2+ ix3+ x p2
1 − x2

2 +p3
2 − 3x2

1p2+ x1 2p1x2+ x3
1 − 3x1p

2
2 +p2 [5]

Remark 1. It is well known [15] that there has been a
scarcity of integrable systems in two dimensions in the
sense that a second invariant (beside the Hamiltonian
of the system) does not exist for almost all cases. Even
if it exists for some, often its construction becomes
a difficult task. The above survey concerning the
complex Hamiltonian systems in one dimension gives
a clue to such a construction, at least for a certain
class of exotic two-dimensional Hamiltonian systems.
(Exotic in the sense that they have yet to be identified
with the Hamiltonian of a two-dimensional physical
system.)

As a matter of fact, if one identifies the structure of
H1 with the Hamiltonian of a given two-dimensional
system, then in view of (5), one can say that the
second invariant for this system isH2. In Table 1 we
provide a list of suchH1 andH2 corresponding to
a given complex HamiltonianH of Eq. (3) and note
that all the cases conform not only to condition (5)
but also to conditions (10). Most of the systems also
satisfy thePT -symmetry, except for case 8. However,
our present prescription works for all those structures
which can be written in the form (3) using (1).

Remark 2. The cases discussed above and listed in
Table 1 just offer some sort of a consistency check for
the mathematical setting through Eqs. (3)–(10). Now
the following question arises: can we determineH2

(or, say,H1) if H1 (or, say,H2) is given along with
conditions (4)? The answer is yes. It is not that for
everyH1 such a functionH2 can be constructed (or
vice versa). In factH1 has to satisfy conditions (10),
only then the construction ofH2 becomes possible.

It may be reminded that the Cauchy–Riemann
conditions (4) along with (10) offer an example of an
auto-Bäcklund transformation. In that there exists [16]
a definite prescription to determineH2 (the integral
of motion) from H1 (the Hamiltonian). The cases
listed in Table 1 all follow this prescription. Here,
however, we present some more cases in whichH2
is constructed fromH1 using the same prescription.
As we have seen from the case 4 (cf. Table 1), the
explicit dependence ofH (or for that matter ofH1
andH2) on t does not disqualify the system for the
above mentioned mathematical setting. Therefore, we
note that the couplings in the following examples can
as well be time dependent.

(i) Consider the two-dimensional Hamiltonian

H1= 1
2

(
p2

1+ p2
2

)− 1
2

(
x2

1 + x2
2

)
(11)

+β(p1p2+ x1x2)+ γ (x1p1− x2p2),

which corresponds to a pair of inverted harmonic
oscillators with (real) couplingsβ andγ . One can
verify that thisH1 satisfies (10). The prescription



50 R.S. Kaushal, H.J. Korsch / Physics Letters A 276 (2000) 47–51

of a Bäcklund transformation can be used to
constructH2. For this purpose, usingH1 from
(11), Eqs. (4) can be expressed as

∂H2

∂p2
=−x1+ βx2+ γp1,

(12)
∂H2

∂x1
=−(p2+ βp1− γ x2),

∂H2

∂x2
=+p1+ βp2+ γ x1,

(13)
∂H2

∂p1
=−(−x2+ βx1− γp2).

Integration of these equations immediately yields
the solution

H2= (p1x2− x1p2)+ β(x2p2− x1p1)

(14)+γ (p1p2+ x1x2).

Note the interchange of couplings inH2 com-
pared to that inH1. Further, it can be easily
seen that this form ofH2 conforms to Eq. (10).
As Eqs. (11) and (14) have to represent the real
and imaginary parts of a complex Hamiltonian
H(x,p), thenH(x,p) can be obtained easily in
a very simple form as

(15)H ≡H1+ iH2= 1
2

(
p2− x2)+ b∗px,

whereb∗ = γ − iβ and the relations (1) along
with x∗ = x1− ip2, p∗ = p1− ix2 are used.

(ii) Now consider the Hamiltonian corresponding to
the coupled oscillators of equal massm and
imaginary frequency iω satisfying ω2 = 1/m,
namely

H1= ω
2

2

(
p2

1 + p2
2− x2

1 − x2
2

)
(16)+f (p1x2− p2x1)

(f real). As before in Example (i),H2 can be
derived from Eqs. (4) by integration to give

H2=
(
1+ω2)(p1x2−p2x1)

(17)− f
2

(
p2

1 + p2
2− x2

1 − x2
2

)
.

The corresponding complexH(x,p) can be ob-
tained as

H ≡H1+ iH2= 1
4

(
p2−p∗2− x2+ x∗2)

(18)− i
2

(
f + iω2)(p2− x2).

The following two examples consist of very sim-
ple two-dimensional Hamiltonian structures. Note that
the utility of these structures (or their variants) has
recently been emphasized by ’t Hooft [17] and Bla-
sone et al. [18,19] in the context of the so-called holo-
graphic principle and in the treatment of quantum
gravity as a dissipative and deterministic system. Al-
though the following two examples can be considered
as the special cases of Example (i), we would like to
give here the relevant results to make the subsequent
discussion more effective.

(iii) Consider the two-dimensional Hamiltonian

(19)H1= α(p1p2+ x1x2)+ β(p2x2− p1x1)

(α, β real), for which theH2-function can be
derived as in Example (i) as

(20)H2= α(p2x2− p1x1)− β(p1p2+ x1x2),

and the corresponding complex Hamiltonian is
given by

(21)H ≡H1+ iH2=−bpx,
whereb= β + iα is a complex constant.

(iv) Lastly, consider the simple two-dimensional
Hamiltonian (a measure of the angular momen-
tum) used by ’t Hooft [17] as

(22)H1= x2p1− x1p2,

for which

(23)H2= 1
2

(
x2

1 + x2
2 − p2

1− p2
2

)
can be obtained as before and the corresponding
complex versionH(x,p) is

(24)H ≡H1+ iH2=− i

2

(
p2− x2).

From the examples above one can make the follow-
ing observations:

(a) From Examples (i)–(iii) it can be seen that the
role of couplings inH1 andH2 interchanges. For
example,β andγ in (11) becomeγ and−β in
(14). Similarly,α andβ in (19) become−β and
α in (20).

(b) Angular momentum-type terms, namely(p1x2−
p2x1) inH1 (cf. Examples (ii) and (iv)) transform
into the form1

2(p
2
1+p2

2− x2
1− x2

2) in H2 or vice
versa (cf. Example (i)).
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(c) It may be emphasized that thePT -symmetry
is not a prerequisite as far as the constructions
above are concerned. In fact, none ofH1 and
H2 in the examples above (exceptH2 of Exam-
ple (iv)) is PT -symmetric, i.e. they are not in-
variant under the transformation(x1, x2,p1,p2)

→ (−x1,−x2,p1,p2), i→−i.

It may be mentioned that we could carry out
the constructions above using the prescription of the
Bäcklund transformation in the form of the Cauchy–
Riemann conditions, which basically are linear first-
order partial differential equations. This was
possible for a very special class of ‘Hamiltonians’
H1(x1, x2,p1,p2). Perhaps the use of other nontrivial
forms of the Bäcklund transformation will provide a
method to construct invariants for more general cases.

On the basis of the above analysis of the cases
(cf. Table 1) and constructions (cf. Examples (i)–
(iv)) and also of our earlier studies [10] it may be
remarked thatPT -symmetry is only a restricted way
of complexifying the one-dimensional Hamiltonian
H(x,p). It is rather a special case of the present
formulation carried out using the transformation (1).

To summarize, we mention that using the transfor-
mation (1) we have demonstrated the viability of the
analyticity property of the one-dimensional complex
HamiltonianH(x,p) with regard to the construction
of the second integral of motion for a certain class of
two-dimensional Hamiltonian systems which can be
identified withH1(x1, x2,p1,p2). This ensures the in-
tegrability of this latter class, at least for autonomous
systems. No doubt, most of these constructions (cf. Ta-
ble 1 and Examples (i)–(iv)) turn out to be nonconven-
tional in the sense of physics but still some of them
could be of mathematical interest in different branches
of theoretical science including biophysics.
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