
8

Adaptive Control Based On Neural Network

Sun Wei, Zhang Lujin, Zou Jinhai and Miao Siyi

College of Electrical and Information Engineering, Hunan University
Changsha City, Hunan Province, P. R. China

1. Introduction

Neural network has good nonlinear function approximation ability. It can be widely used to
identify the model of controlled plant. In this chapter, the theories of modeling uncertain
plant by using two kinds of neural networks: feed-forward neural network and recurrent
neural network are introduced. And two adaptive control strategies for robotic tracking
control are developed. One is recurrent fuzzy neural network based adaptive control
(RFNNBAC), and another is neural network based adaptive robust control (NNBARC). In
RFNNBAC, a kind of recurrent fuzzy neural network (RFNN) is constructed by using
recurrent neural network to realize fuzzy inference, In which, temporal relations are
embedded in the network by adding feedback connections on the first layer of the network.
Two RFNNs are used to identify and control plant respectively. Base on the Lyapunov
stability approach, the convergence of the proposed RFNN is analyzed. In NNBARC, A
robust controller and a neural network are combined into an adaptive robust robotic
tracking control scheme. Neural network is used to approximate the modeling uncertainties
in robotic system. Then the disadvantageous effects on tracking performance, due to the
approximating error of the neural network and non-measurable external disturbances in
robotic system, are attenuated to a prescribed level by robust controller. The robust
controller and the adaptation law of neural network are designed based on Hamilton-Jacobi-
Issacs (HJI) inequality theorem. The weights of NN are easily tuned on-line by a simple
adaptation law, with no need of a tedious and lengthy off-line training phase.
This chapter is organized in the following manner. In the first section a robust robotic
tracking controller based on neural network is designed and its effectiveness is proved by
applying it to control the trajectories of a two-link robot. Secondly, a recurrent fuzzy neural
network based adaptive control is proposed and simulation experiments are made by
applying it on robotic tracing control problem to confirm its effectiveness. Finally, some
conclusions are drawn.

2. A robust robotic tracking controller based on neural network

In the past decades, there has been much research on the applications of nonlinear control
theory to control robots, and many useful properties of robot dynamics such as the skew-
symmetry property were discovered. There are basically two strategies to control such
uncertain nonlinear systems: the robust control strategy and the adaptive control strategy. A

www.intechopen.com

Adaptive Control

182

convenient point of robust control strategy is that it can attenuate disadvantageous effects of
various uncertainties (e.g., structured parametric uncertainties and unstructured
disturbances) to a required level, provided that the upper bound of uncertainties is well
known (Abdallah et al. 1991). However, since this strategy use max-min method to design
the controller, it can not yield good transient performance. On the other hand, regressor
matrixes are always used in the design of adaptive control systems for robot manipulators
(Ortega & Spong 1989). In this situation, the unknown nonlinear dynamics of robotic
systems are always assumed to be linearly parametrisable. However, there are some
potential difficulties associated with this classical adaptive control design. For example, the
unknown parameters may be quickly varying, the linear parametrisable property may not
hold, computation of the regressor matrix is a time-consuming task, and implementation
also requires a precise knowledge of the structure of the entire robot dynamic model (Saad
et al. 1994; Sanner & Slotine 1998; Spooner & Passino 1996).
It has been shown that multi-layer neural networks can approximate any continuous
function as accurately as possible. Based on this universal approximation property, many
important adaptive neural-network-based control schemes have been developed to solve
highly nonlinear control problem (Sanner & Slotine 1998; Spooner & Passino 1996; Narenra
& Parthasarathy 1990; Polycarpou 1996). But most of these schemes use grads-descent
method to train the weights, which can not ensure the stability of whole closed-loop system.
In the recent years, researchers began to develop the neural-network-based controller with
closed-loop stability based on the Lyapunov method. A controller based on forward
propagation network was developed in (Carelli et al. 1995), but it didn’t consider the effects
of uncertainties. An adaptive neural network control strategy with guaranteed stability was
proposed in (Behera et al. 1996) on the assumption that the approximation error of the
neural network is known and bounded.
In the first part of this chapter, we will propose a neural-network-based robust robotic
tracking controller according to HJI inequation theorem presented by Shen in (Shen 1996). A
neural network equipped with a robust learning algorithm is introduced firstly to learn the
modeling uncertainties in robotic system. Then the disadvantageous effects on tracking
performance caused by neural network approximating error and non-measurable external
disturbances in robotic system will be attenuated to a prescribed level by the designing a
robust controller.
This section is organized as follows. In subsection 2.1, HJI inequation theorem is introduced.
In subsection 2.2 the dynamics of robot system and its properties are described. The neural
network based robust control strategy is proposed in subsection 2.3, where the structure of
robust controller and the robust learning algorithm of neural network are derived.
Simulations for a two-link robot are presented in subsection 2.4.

2.1 HJI inequation theorem
A system with non-measurable disturbance d can be formulated as:

g(x)df(x)x +=& (1)

For evaluating the disturbance restraint performance of system (1), an evaluation signal

h(x)z = is introduced to represent the signals need to be concerned, such as error. And a

www.intechopen.com

Adaptive Control Based On Neural Network

183

performance index signal can be defined as:

2

2

02d d

z
supJ

≠
= (2)

Obviously, smaller J means better disturbance restraint performance. The robust design
problem of system (1) can be solved by designing a controller to make J less than a
prescribed level.

HJI(Hamilton-Jacobi-Isaacs)InequationTheorem: Given an positive constant 0>γ , if there

exists an derivable function, V(x)≥0, which satisfies the following HJI inequation:
 { } d,zd

2

1
g(x)d

x

V
)x(f

x

V
x

x

V
V

222 ∀−≤∂
∂+∂

∂=∂
∂= γ&& (3)

then the performance index signal of system (1) is less than γ , that is to say, γ≤J .

2.2 Problem statement
The kinetics equation of a robotic manipulator with uncertainties can be expressed as:

Td)qT(q,G(q)q)qV(q,qM(q) R =+Δ+++ &&&&& (4)

where nRq,qq, ∈&&& is the joint position, velocity, and acceleration vectors; nnRM(q) ×∈

denotes the moment of inertia; q)qV(q, && are the Coriolis and centripetal forces; G(q) includes

the gravitational forces; T is the applied torque;)qΔT(q, & represents the modelling

uncertainties in robotic system, and Rd is external non-measurable disturbance.

It is well known that the robot dynamics has the following properties.

Property 1— Boundedness of the Inertia matrix: The inertia matrix M(q) is symmetric and

positive definite, and satisfies the following inequalities:

ΙλM(q)Ιλ0 Mm ≤≤< (5)

where mλ and Mλ are known positive constants.

Property 2—Skew symmetry: The inertia and centripetal-Coriolis matrices have the
following property:

0)}ξq2V(q,(q)M{ξT =− && , nRξ∈∀ (6)

Property 1 is very important in generating a positive definite function to prove the stability
of the closed-loop system. Property 2 will help in simplifying the controller.
The aim of this paper is to design a neural-network-based robust controller (NNBRC) for the
robot system under uncertainties, such that closed-loop system is guaranteed to be stable

www.intechopen.com

Adaptive Control

184

and the joint position q(t) can track the desired trajectory (t)qd rapidly and accurately.

2.3 Design of NNBRC
A NNBRC is proposed in this section. In the proposed strategy, a neural network (NN) is

firstly used for identifing modelling uncertainties)qΔT(q, & , then, a robust learning algorithm

and a robust controller are designed based on HJI equation theorem to counteract the
disadvantageous effects caused by approximation error of the NN and external disturbance

Rd .

2.3.1 Construction of the neural network

A three-layer NN is shown in Fig.1.Using
(1)
i

(1)
i o,u to denote the input and output of the ith

node in the lth layer separately, the signal propagation and the operation functions of the
nodes in each layer are introduced as follows.

1
σ

2
σ

kσ

1
x

2
x

mx

1
y

2
y

ny

1

1

1

1

11
w

nkw

∑
∑
∑

Fig. 1. Structure of three-layer NN

Layer 1— Input Layer:

i
(1)
i

(1)
i xuo == , m,1,2,i L= (7)

Layer 2— Hidden Layer:

∑= =
m

1i

(1)
i

(2)
j ou , k,1,2,j L= (8)

])uexp([11σo
(2)
jj

(2)
j −+== , k,1,2,j L= (9)

www.intechopen.com

Adaptive Control Based On Neural Network

185

Layer 3— Output Layer:

∑ ⋅=== =
k

1j

(2)
jhj

(3)
h

(3)
hh owuoy , n,1,2,h L= (10)

Let

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

nkn2n1

2k2221

1k1211

www

www

www

W

L

MMMM

L

L

,

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

k

2

1

σ
σ
σ

σ
M

,

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

n

2

1

y

y

y

Y
M

then the outputs of the three-layer NN can be written as:
 σWY = (11)

In this paper, the three-layer NN described above will be used to identify the modeling

uncertainties)qΔT(q, & in robotic system. Using Tε to denote the network approximation

error, then the modeling uncertainties can be denoted by:

)qT(q,W)q(q,ΔT TTT && Δ+= εσ (12)

where TW is the weight matrix, Tσ is the activation function vector.

Substitute (12) into (4), then the dynamics of the robot manipulator with a NN identifier can
be formulated as:

TdWG(q)q)qV(q,qM(q) RTTT =+++++ εσ&&&& (13)

Regarding Tε as another external disturbance of robotic system, and using RTR d+= εε ,

then (13) can be rewritten as:

TWG(q)q)qV(q,qM(q) RTT =++++ εσ&&&& (14)

For attenuating disadvantageous effects caused by Rε to a prescribed level, a robust

learning algorithm of NN and a robust controller can be designed based on HJI equation as
below 2.3.2.

2.3.2 Robust controller and NN learning algorithm
At first, we introduce a control signal u, which satisfies:

TuG(q)q)qV(q,qM(q) dd =+++ &&&& (15)

where n
ddd Rq,q,q ∈&&& is desired joint position, velocity, and acceleration vectors separately.

www.intechopen.com

Adaptive Control

186

Thus, the closed-loop robot control system can be constructed by substituting (15) into (14).

Let dqqe −= , the closed-loop system can be formulated as:

uWe)qV(q,eM(q) RTT =+++ εσ&&&& (16)

By regarding Rε as external disturbance and introducing the evaluation signal pezR = ,

where p is a positive constant, we can define the index signal as:

2

2

0
2

supJ
R

R

R

R

z

εε ≠
= (17)

The idea of NNBRC is to design controller u and the NN learning algorithm TW& such that

RJ is less than a prescribed level, γ .

Define two state variables as:

⎩⎨
⎧

+=
=

eex

 ex

2

1 α&
 (18)

where α is an prescribed positive constant. Thus, system (16) can be rewritten as:

⎩⎨
⎧

+−−+−=
−=

uWVxxM

 xxx

RTT22

121 εσω
α

&

&
 (19)

where eVeMω αα += & , TW is a kn× matrix that can be described as:

[]TkT2T1

nkTn2Tn1T

2kT22T21T

1kT12T11T

T w w w

www

www

www

W L

L

MMMM

L

L

=
⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

Theorem 1: Considering system (19), if the learning algorithm of NN is:

TT WW η−=& (20)

The controller u is designed as:

222TT1 x
2Y

1
Wxu ⎟⎟⎠

⎞⎜⎜⎝
⎛ +−+−−= εσω (21)

and the parameter p in the evaluation signal , 1R pxpez == , satisfies:

www.intechopen.com

Adaptive Control Based On Neural Network

187

1
2p

2

1
- εα = (22)

where 21 ,εε and η are all prescribed positive constant, then the disturbance restraint index

signal of system (19), RJ , is less than γ .

Proof: Considering system (19), we define the following derivable function:

2
T2

T
21

T
1 W

2

1
xMx

2

1
xx

2

1
L ⋅+⋅⋅⋅+⋅⋅= (23)

Thus,

() ()
∑++

+−−+−=
∑+++=

=

=

m

1i
Ti

T
Ti 2

T
2

RTT
T
212

T
1

m

1i
iT

T
iT 2

T
22

T
21

T
1

wwx)2V-M(x
2

1

uWxxxx

wwxMx
2

1
xMxxxL

&&

&&&&&

εσωα

According to Property 2 of the robot dynamics, the above equation can be rewritten as:

Ti

m

1i

T
Ti RTT1

T
21

T
1

Ti

m

1i

T
Ti RTT

T
212

T
1

wwu)-w-(xxxx

wwu)-w-(x)x-(xxL

&

&&

∑++++−=
∑+++=

=

=
εσωα
εσωα

Substituting (20) into above equation, then

2

TRTT1
T
21

T
1 W-u)-W-(xxxxL ηεσωα +++−=&

Regarding Rε as external disturbance, let

2
1

22
R

22
T

R
T
2TT1

T
2

2
1

2
R

2
R

2

xp
2

1

2

1
W

x)uWx(xx

z
2

1

2

1
LH

+−−
−+−++−=

+−=

εγη
εσωα

εγ&

()uWxxxp
2

1
- TT1

T
2

2
1

2 +−++⎟⎠
⎞⎜⎝

⎛−= σωα

2
R

22
TR

T
2

2

1
Wx εγηε −−−

www.intechopen.com

Adaptive Control

188

{ }

()
2

T22TT1
T
2

2
1

2

2
22

2
TTT1

T
2

2
1

2

2
22

2
R

2
R

T
2

2
22

2
22

2

R2

2
22

2

R2

2
22

2
R

2
R

T
2

2
22

2
R

2
R

T
2

2
R

2
R

T
2

Wx
2

1
uWxxxp

2

1
-

x
2

1
WuWxxxp

2

1
-H

x
2

1

2

1
x

x
1

x
1

x
1

x
1

x
1

x
1

2xx
1

2x2x

ηγσωα
γησωα

γεγε
γ

γγεγ

γγεγ

γεγεγ

εγεεγε

−⎟⎟⎠
⎞

⎜⎜⎝
⎛ ++−++⎟⎠

⎞⎜⎝
⎛−=

+−+−++⎟⎠
⎞⎜⎝

⎛−≤
≤−−∴

≤
++−=

⎪⎭
⎪⎬⎫⎪⎩

⎪⎨⎧ −+−=
⎪⎭
⎪⎬⎫⎪⎩

⎪⎨⎧ −++−=
+−=−−Q

Substituting (21), (22) into above inequation, then

{ }2
R

2
R

2

2
T

2
22

2
11

z
2

1
L

0WxxH

−≤∴
≤−−−≤

εγ
ηεε

&

According to HJI equation theorem, we can conclude that the disturbance restraint

performance index signal of system (19), RJ , is less than γ . The structure of the proposed

neural network based robust control strategy is illustrated in Fig. 2.

Fig. 2. Structure of the NN-based robust tracking control system

www.intechopen.com

Adaptive Control Based On Neural Network

189

2.4 Simulation example
In this section, the proposed control strategy will be applied to control the trajectory of a
two-link robot (see Fig. 3) for proving its effectiveness.

1t

2t 1m

2m

1l

2l

1θ

2θ

Fig. 3. Two-link robot

In Fig.3, m1and m2 are masses of arm1 and arm2 respectively; l1 and l2 are lengths of arm1

and arm2; t1 and t2 are torques on arm1 and arm2; 1θ and 2θ are positions of arm1 and

arm2. The dynamics model of two-link robot is same as (4).
Let

[]T21 θ θq = , []T21 θ θq &&& = (24)

 []T21 θ θq &&&&&& = , []T21 t tT = (25)

ii cosθc ≡ , ii sinθs ≡ ,)θcos(θc jiij +≡ (26)

then M, V,G in (4) can de described as:

⎥⎥⎦
⎤

⎢⎢⎣
⎡

+
++++=

2
222212

2
22

2212
2
22221

2
2

2
12

2
11

lmcllmlm

cllmlm)cl2ll(lmlm
M(q) (27)

⎥⎥⎦
⎤

⎢⎢⎣
⎡ −−=

0qsllm

qsllmqsll2m
)qV(q,

12212

2221122212

&

&&
& (28)

⎥⎦
⎤⎢⎣

⎡ ++=
1222

11211222

gclm

gc)lm(mgclm
G(q) (29)

www.intechopen.com

Adaptive Control

190

In this paper, the parameters of the two-link robot are 10m1 = kg, 2m 2 = kg, 1.1l1 = m,

and 0.8l 2 = m. The Initial states are 0.5]0.5[q(0) = rad, T0] [0(0)q =& rad/s, and

T0]0[(0)q =&& rad/s2. The desired trajectories can be described as:

 []Td t)cos(2 t)sin(2)t(q ππ= rad (30)

 []Td t)sin(22- t)cos(22)t(q ππππ=& rad/s (31)

 []T22
d t)cos(24- t)sin(24-)t(q ππππ=&& rad/s2 (32)

The model error due to friction is assumed as:

⎥⎥⎦
⎤

⎢⎢⎣
⎡

−+
−+=

)]eexp()[0.2e(sign

)]eexp()[0.1e(0.5sign
ΔT

22

11

&&

&&
 N·m (33)

The external disturbance, []T21R d dd = is a random signal which amplitude is less than

10N·m. In simulations, the NNBRC can be designed based on (21), in which 50=α ,

0.11 =ε , 0.12 =ε , 0.05=γ , 9p = . The NN learning algorithm is designed according to (20),

where 0.1=η .

Fig.4 and Fig.5 present the simulation experiment results, in which, proposed control

strategy is compared to traditional robust control (TRC) strategy. From these results, we can

conclude that the NN-based robust tracking control strategy proposed in this paper can

counteract disadvantageous effects caused by uncertainties in robotic system efficiently, and

can achieve better transient performance than traditional robust control.

Fig. 4. Robot trajectories

www.intechopen.com

Adaptive Control Based On Neural Network

191

Fig. 5. Robot tracking errors

3. A Recurrent Fuzzy Neural Network Based Adaptive Control

Recently, much research has been done on using neural networks (NN) to identify and
control dynamic systems (Park et al. 1996; Narendra & Parthasarathy 1990; Brdys &
Kulawski 1999). NN can be classified as feed forward neural networks and recurrent neural
networks. Feed forward neural networks can approximate a continuous function to an
arbitrary degree of accuracy. However, feed forward neural network is a static mapping; it
can not represent a dynamic mapping. Although this problem can be solved by using
tapped delays, feed forward neural network requires a large number of neurons to represent
dynamical responses in the time domain. Moreover, since the weight updates of feed
forward neural network is irrelative to the internal information of neural network, the
function approximation is sensitive to the training data. On the other hand, recurrent neural
networks (Ku & Lee 1995; Ma & Ji 1998; Sundareshan & Condarcure 1998; Liang & Wang
2000) are able to represent dynamic mapping very well and store the internal information
for updating weights later. Recurrent neural network has an internal feedback loop; it
captures the dynamical response of a system without external feedback through delays.
Recurrent neural network is a dynamic mapping and demonstrates good performance in the
presence of uncertainties, such as parameter variations, external disturbance, unmodeled
and nonlinear dynamics. However, the drawbacks of recurrent neural network, which are
same as neural network, are that the function of the network is difficult to interpret and few
efficient constructive methods can be found for choosing network structure and determining
the parameters of neurons.
As is widely known, both fuzzy logic systems and neural network systems are aimed at
exploiting human-like knowledge processing capability. In recent years, researchers started
to recognize that fuzzy control has some similarities to neural network (Jang & Sun 1993;
Hunt et al. 1996; Buckley et al. 1993; Reyneri 1999). Fuzzy neural network (FNN), which uses
NN to realize fuzzy inference, combines the capability of fuzzy reasoning in handling
uncertain information and the capability of neural networks in learning from processes. It is

www.intechopen.com

Adaptive Control

192

possible to train NN using the experience of human operators expressed in term of linguistic
rules, and interpret the knowledge that NN acquired from training data in linguistic form.
And it is very easy to choose the structure of NN and determine the parameters of neurons
from linguistic rules. However, a major drawback of the FNN is that its application domain
is limited to static problems due to its feed forward network structure.
Recurrent fuzzy neural network (RFNN) is a modified version of FNN, which use recurrent
network for realizing fuzzy inference and can be constructed from a set of fuzzy rules. It
inherits all characteristics of FNN such as fuzzy inference, universal approximation and
convergence properties. Moreover, with its own internal feedback connections, RFNN can
temporarily store dynamic information and cope with temporal problems efficiently. For
this ability to temporarily store information, the structure of RFNN is much simpler than
FNN. Fewer nodes are required in RFNN for system identification.
In this section, a recurrent fuzzy neural network structure is proposed, in which, the
temporal relations are embedded by adding feedback connections on the first layer of FNN.
Back propagation algorithm is used to train the proposed RFNN. To guarantee the
convergence of the RFNN, the Lyapunov stability approach is applied to select appropriate
learning rates. For control problem, an adaptive control scheme is proposed, in which, two
proposed RFNN are used to identify and control plant respectively. Finally, simulation
experiments are made by applying proposed adaptive control scheme on robotic tracking
control problem to confirm its effectiveness.
This section is organized as follows. In subsection 3.2, RFNN is constructed. The
construction of RFNNBAC is presented in subsection 3.3. Learning algorithms of RFNN are
derived in subsection 3.4. Stability of RFNN is analyzed in subsection 3.5. In subsection 3.6
proposed RFNNBAC is applied on robotic tracking control and simulation results are given.
Finally, some conclusions are drawn in subsection 3.7.

3.1 Construction of RFNN
The structure of the proposed RFNN is shown in Fig. 6, which comprises n input variables,
m term nodes for each input variable, l rule nodes, and p output nodes. This RFNN thus
consists of four layers and n + (n × m) + l + p nodes.

Using k
iu , k

iO to denote the input and output of the ith node in the kth layer separately, the

signal propagation and the operation functions of the nodes in each layer are introduced as
follows.
Layer 1 (Input Layer): This layer accepts input variables. Its nodes transmit input values to
the next layer. Feedback connections are added in this layer to embed temporal relations in
the network. For every node in this layer, the input and output are represented as:
 () () () () () n,1,2,i ,kukO,1-kOwkxku 1

i
1
i

1
i

1
i

1
i

1
i L==+= (34)

where k is the number of iterations; 1
iw is the recurrent weights.

Layer 2 (Membership Layer): Nodes in this layer represent the terms of respective linguistic
variables. Each node performs a Gaussian membership function

www.intechopen.com

Adaptive Control Based On Neural Network

193

)exp(uO,
)(b

)a-(O
u 2

ij
2
ij2

ij

2
ij

1
i2

ij =−= (35)

where n,1,2,i L= , m,1,2,j L= ; ija and ijb are the mean and the standard deviation of the

Gaussian membership function; the subscript ij indicates the jth term of the ith input
variable.

Fig. 6. Structure of four-layer RFNN

Layer 3(Rule Layer): This layer forms the fuzzy rule base and realizes the fuzzy inference.
Each node is corresponding to a fuzzy rule. Links before each node represent the
preconditions of the corresponding rule, and the node output represents the “firing
strength” of corresponding rule.
If the qth fuzzy rule can be described as:

www.intechopen.com

Adaptive Control

194

qth rule: if 1x is
q
1A , 2x is

q
2A , … , nx is q

nA then 1y is
q

1B , 2y is
q
2B , … , py is q

pB ,

where
q
iA is the term of the ith input in the qth rule;

q
jB is the term of the jth output in the

qth rule.
Then, the qth node of layer 3 performs the AND operation in qth rule. It multiplies the input
signals and output the product.

Using 2
iiqO to denote the membership of ix to

q
iA , where { }m,1,2,q i L∈ , then the input

and output of qth node can be described as:

∏=
i

2
iiq

3
q Ou , l,1,2,qn;,1,2,i,uO 3

q
3
q LL === (36)

Layer 4(Output Layer): Nodes in this layer performs the defuzzification operation. the input
and output of sth node can be calculated by:

∑=
q

3
q

4
sq

4
s Owu , ∑=

q

3
q

4
s4

s
O

u
O (37)

where p,1,2,s L= , l,1,2,q L= , 4
sqw is the center of

q
jB , which represents the output

action strength of the sth output associated with the qth rule.
From the above description, it is clear that the proposed RFNN is a fuzzy logic system with
memory elements in first layer. The RFNN features dynamic mapping with feedback and
more tuning parameters than the FNN. In the above formulas, if the weights in the feedback

unit 1
iw are all equal to zero, then the RFNN reduces to an FNN. Since a fuzzy system has

clear physical meaning, it is very easy to choose the number of nodes in each layer of RFNN

and determine the initial value of weights. Note that the parameters 1
iw of the feedback

units are not set from human knowledge. According to the requirements of the system, they
will be given proper values representing the memorized information. Usually the initial
values of them are set to zero.

3.2 Structure of RFNNBAC
In this section, the structure of RFNNBAC will be developed below, in which, two proposed
RFNN are used to identify and control plant respectively.

3.2.1 Identification based on RFNN
Resume that a system to be identified can be modeled by an equation of the following form:

() () () () ()()uy nku,,ku,nky,1kyfky −−−= LL (38)

www.intechopen.com

Adaptive Control Based On Neural Network

195

where u is the input of the system, yn is the delay of the output, and un is the delay of the

input.
Feed forward neural network can be applied to identify above system by using y(k-1),…
,y(k-n-1), u(k), … , u(k-m) as inputs and approximating the function f.
For RFNN, the overall representation of inputs x and the output y can be formulated as

(k))O,(k),g(Oy(k) 1
n

1
1 L= (39)

Where
 () () () ()

() () () () ()[]
() () () () () ()

() () () ()0x1w1kwkw

2kx1kwkw1kxkwkx

2kO1kw1kxkwkx

1kOkwkxkO

i
1
i

1
i

1
i

i
1
i

1
ii

1
ii

1
i

1
ii

1
ii

1
i

1
ii

1
i

L

L

M

−+
+−−+−+=

−−+−+=
−+=

Using the current input u(k) and the most recent output y(k-1) of the system as the inputs of
RFNN, (39) can be modified as:
 () () () () ()()0u,,ku,0y,,1kyf̂kŷ LL−= (40)

By training the RFNN according to the error e(k) between the actual system output and the
RFNN output, the RFNN will estimate the output trajectories of the nonlinear system (38).
The training model is shown in Fig.7.

Fig. 7. Identification of dynamic system using RFNN

www.intechopen.com

Adaptive Control

196

From above description, For Using RFNN to identify nonlinear system, only y(k-1) and u(k)
need to be fed into the network .This simplifies the network structure, i. e., reduces the
number of neurons

3.2.2 RFNNBAC
The block diagram of RFNNBAC is shown in Fig. 8. In this scheme, two RFNNs are used as
controller (RFNNC) and identifier (RFNNI) separately. The plant is identified by RFNNI,
which provides the information about the plant to RFNNC. The inputs of RFNNC are e(k)

and (k)e& . e(k) is the error between the desired output r(t) and the actual system output

y(k). The output of RFNNC is the control signal u(k), which drives the plant such that e(k) is
minimized. In the proposed system, both RFNNC and RFNNI have same structure.

Fig. 8. Control system based on RFNNs

3.3 Learning Algorithm of RFNN
For parameter learning, we will develop a recursive learning algorithm based on the back
propagation method

3.3.1 Learning algorithm for identifier
For training the RFNNI in Fig.8, the cost function is defined as follows:

() ()() () ()()∑ ∑ −== = =
p

1s

p

1s

2
s Is

2
s II kykyke

2

1
kJ (41)

where (k)ys is the sth output of the plant, () 4
ss I Oky = is the sth output of RFNNI, and ()ke s I is the error between (k)ys and ()ky s I for each discrete time k.

By using the back propagation (BP) algorithm, the weights of the RFNNI is adjusted such

www.intechopen.com

Adaptive Control Based On Neural Network

197

that the cost function defined in (41) is minimized. The BP algorithm may be written briefly
as:

⎟⎟⎠
⎞⎜⎜⎝

⎛
∂
∂+=

+=+

(k)W

(k)J
-(k)W

(k)ΔW(k)W1)(kW

I

I
II

III

η (42)

where Iη represents the learning rate and IW represents the tuning weights, in this case,

which are 4
sq Iw ,

iiq Ia , iqi Ib , and 1
i Iw . Subscript I represents RFNNI.

According to the RFNNI structure (34)~(37), cost function (41) and BP algorithm (42), the
update rules of RFNNI weights are

() () ()()kw

kJ
kw1kw

4
sq I

Iw4
I

4
sq I

4
sq I ∂

∂−=+ η (43)

() () ()()ka

kJ
ka1ka

iiq I

Ia
Iiiq Iiiq I ∂

∂−=+ η (44)

() () ()()kb

kJ
kb1kb

iiq I

Ib
Iiiq Iiiq I ∂

∂−=+ η (45)

() () ()()kw

kJ
kw1kw

1
i I

Iw1
I

1
i I

1
i I ∂

∂−=+ η (46)

Where

()() ()∑−=∂
∂

q

3
q I

3
q I

s I4
sq I

I

O

O
ke

kw

kJ

()() () ()()∑ −⋅⋅∑
−⋅−=∂

∂
s

2
iiq I

iiq I
1

i I3
q I

q

3
q I

4
s I

4
sq I

s I
iiq I

I

b

aO2
O

O

Ow
ke

ka

kJ

()() () ()()∑ −⋅⋅∑
−⋅−=∂

∂
s

3
iiq I

2

iiq I
1

i I3
q I

q

3
q I

4
s I

4
sq I

s I
iiq I

I

b

aO2
O

O

Ow
ke

kb

kJ

()() () ()() ()1kO
b

aO2
O

O

Ow
ke

kw

kJ 1
i I2

iiq I

iiq I
1

i I3
q I

q s
q

3
q I

4
s I

4
sq I

s I1
i I

I −⋅−−⋅⋅∑∑ ∑
−⋅−=∂

∂

www.intechopen.com

Adaptive Control

198

3.3.2 Learning algorithm for controller
For training RFNNC in Fig. 8, the cost function is defined as

() ()() () ()()∑ ∑ −== = =
p

1s

p

1s

2
ss

2
sC kykrke

2

1
kJ (47)

where)k(rs is the sth desired output,)k(ys is the sth actual system output and)k(es is

the error between)k(rs and)k(ys .

Then, the gradient of CJ is

() ()() ()
() () ()∑ ∂

∂⋅−=
∑ ∂

∂⋅∂
∂−=

∑ ∂
∂⋅∂

∂=∂
∂

s C

o
sos

s C

o

o

s
s

s C

s

s

C

C

C

W

ku
kyuke

W

ku

ku

ky
ke

W

y

y

J

W

J

, (48)

where ou is the oth control signal, which is also the oth output of RFNNC, and () () ()kukykyu osso ∂∂= denotes the system sensitivity. Thus the parameters of the RFNNC

can be adjusted by

)

(k)W

(k)J
((k)W

(k)ΔW(k)W1)(kW

C

C
CC

CCC

∂
∂−+=

+=+
η (49)

Note that the convergence of the RFNNC cannot be guaranteed until ()kyu so is known.

Obviously, the RFNNI can provide ()kyuso to RFNNC. Resume that the oth control signal

is also the oth input of RFNNI, then ()kyuso can be calculated by

2
oIoq

oIoq
1
Io3

Iq
q

q

3
Iq

4
Is

4
sq I

o

1
Io

1
Io

2
oIoq

2
oIoq

3
Iq

q
3
Iq

4
Is

o

s

)(b

)a-2(O-
 O

O

Ow

u

O

O

O

O

O

O

O

(k)u

(k)y

⋅∑ ⋅∑
−=

∂
∂⋅∂

∂⋅∂
∂⋅∑ ∂

∂=∂
∂

 (50)

3.4 Stability analysis of the RFNN
Choosing an appropriate learning rate η is very important for the stability of RFNN. If the

value of the learning rate η is small, convergence of the RFNN can be guaranteed, however,

www.intechopen.com

Adaptive Control Based On Neural Network

199

the convergence speed may be very slow. On the other hand, choosing a large value for the
learning rate can fasten the convergence speed, but the system may become unstable.

3.4.1 Stability analysis for identifier

For choosing the appropriate learning rate for RFNNI, discrete Lyapunov function is
defined as

() () ()()∑==
s

2
s III ke

2

1
kJkL (51)

Thus the change of the Lyapunov function due to the training process is

() () ()
()() ()()
()() ()()[]∑ −+=

∑ ∑−+=
−+=

s

2
s I

2
s I

s s

2
s I

2
s I

III

ke1ke
2

1

ke
2

1
1ke

2

1

kL1kLkΔL

 () ()() () ()()[]∑ −+⋅++=
s

s Is Is Is I ke1keke1ke
2

1
 (52)

() ()() ()[]
()() () ()[]
()() () ()[]∑∑ +=

∑ +=
∑ ⋅+=

s
s Is I

s

2
s I

s
s Is I

2
s I

s
s Is Is I

kΔek2e
2

1
kΔe

2

1

kΔek2ekΔe
2

1

kΔekΔek2e
2

1

The error difference due to the learning can be represented by

() () () ()() ()kΔW
kW

ke
 ke1kekΔe I

I

s I
s Is Is I ⋅∂

∂≈−+= (53)

Where

() ()() ()() ()()
() ()()kW

ke
ke

kW

ke

ke

kJ

kW

kJ
kΔW

I

s I

s
s II

s I

s I

s I

I
I

I

I
II

∂
∂∑ ⋅−=

∑ ∂
∂⋅∂

∂−=∂
∂−=

η
ηη

So (52) can be modified as

www.intechopen.com

Adaptive Control

200

() ()() ()() () ()() ()()
()() ()() ()() () ()()∑ ⎟⎟⎠

⎞⎜⎜⎝
⎛

∂
∂⋅⋅∂

∂−∑ ⎟⎟⎠
⎞⎜⎜⎝

⎛
∂
∂⎟⎟⎠

⎞⎜⎜⎝
⎛

∂
∂=

∑ ⎥⎥⎦
⎤

⎢⎢⎣
⎡

⎟⎟⎠
⎞⎜⎜⎝

⎛
∂
∂−⋅∂

∂⋅+∑ ⎥⎥⎦
⎤

⎢⎢⎣
⎡

⎟⎟⎠
⎞⎜⎜⎝

⎛
∂
∂−⋅∂

∂=

s I

s I
s I

I

I
I

2

s I

s I
2

I

I
I

s I

I
I

I

s I
s I

2

s I

I
I

I

s I

kW

ke
ke

kW

kJ

kW

ke

kW

kJ

2

1

kW

kJ

kW

ke
k2e

2

1

kW

kJ

kW

ke

2

1
kΔL

ηη

ηη

(54)

()() ()() ()()
()() ()() ⎥⎥⎦

⎤
⎢⎢⎣
⎡ −∑ ⎟⎟⎠

⎞⎜⎜⎝
⎛
∂
∂⎟⎟⎠

⎞⎜⎜⎝
⎛
∂
∂=

⎟⎟⎠
⎞⎜⎜⎝

⎛
∂
∂−∑ ⎟⎟⎠

⎞⎜⎜⎝
⎛
∂
∂⎟⎟⎠

⎞⎜⎜⎝
⎛

∂
∂=

2
kW

ke

kW

kJ

2

1

kW

kJ

kW

ke

kW

kJ

2

1

2

s I

s I
I

2

I

I
I

2

I

I
I

2

s I

s I
2

I

I
I

ηη

ηη

To guarantee the convergence of RFNNI, the change of Lyapunov function ()kΔL I should

be negative. So learning rate must satisfy the following condition:

() ()()∑ ⎟⎟⎠
⎞⎜⎜⎝

⎛
∂
∂<<

s

2

I

s I
I

kW

ke
2k0 η . (55)

For the learning rate of each weight in RFNNI, the condition (22) can be modified as

() ()() ⎪⎭
⎪⎬
⎫

⎪⎩
⎪⎨
⎧
∑ ⎟⎟

⎟
⎠
⎞

⎜⎜
⎜
⎝
⎛
∂
∂<<

s

2

4
sq I

s I

q

w4
I

kw

ke
max2k0 η (56)

() ()
() ⎪⎪⎭

⎪⎪⎬
⎫

⎪⎪⎩
⎪⎪⎨
⎧
∑ ⎟⎟

⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
∂
∂<<

s

2

iiq I

s I

iq,

a
I

ka

ke
max2k0 η (57)

() ()
() ⎪⎪⎭

⎪⎪⎬
⎫

⎪⎪⎩
⎪⎪⎨
⎧
∑ ⎟⎟

⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
∂
∂<<

s

2

iiq I

s I

iq,

b
I

kb

ke
max2k0 η (58)

() ()() ⎪⎭
⎪⎬
⎫

⎪⎩
⎪⎨
⎧
∑ ⎟⎟⎠

⎞
⎜⎜⎝
⎛
∂
∂<<

s

2

1
i I

s I

i

w1
I

kw

ke
max2k0 η . (59)

3.4.2 Stability analysis for controller
Similar to (51), the Lyapunov function for RFNNC can be defined as

www.intechopen.com

Adaptive Control Based On Neural Network

201

 () () ()()∑==
s

2
s CC ke

2

1
kJkL (60)

So, similar to (56)-(59), the learning rates for training RFNNC should be chosen according to
the following rules:

() ()() ⎪⎭
⎪⎬
⎫

⎪⎩
⎪⎨
⎧
∑ ⎟⎟

⎟
⎠
⎞

⎜⎜
⎜
⎝
⎛
∂
∂<<

s

2

4
sq C

s

q

w4
C

kw

ke
max2k0 η (61)

() ()
() ⎪⎪⎭

⎪⎪⎬
⎫

⎪⎪⎩
⎪⎪⎨
⎧
∑ ⎟⎟

⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
∂
∂<<

s

2

iiq C

s

iq,

a
C

ka

ke
max2k0 η (62)

() ()
() ⎪⎪⎭

⎪⎪⎬
⎫

⎪⎪⎩
⎪⎪⎨
⎧
∑ ⎟⎟

⎟
⎠

⎞
⎜⎜
⎜
⎝

⎛
∂
∂<<

s

2

iiq C

s

iq,

b
C

kb

ke
max2k0 η (63)

() ()() ⎪⎭
⎪⎬
⎫

⎪⎩
⎪⎨
⎧
∑ ⎟⎟⎠

⎞
⎜⎜⎝
⎛
∂
∂<<

s

2

1
i C

s

i

w1
C

kw

ke
max2k0 η (64)

3.5 Simulation Experiments
Dynamics of robotic manipulators are highly nonlinear and may contain uncertain elements
such as friction and load. Many efforts have been made in developing control schemes to
achieve the precise tracking control of robot manipulators. Among available options, neural
networks and fuzzy systems (Er & Chin 2000; Llama et al. 2000; Wang & Lin 2000; Huang &
Lian 1997) are used more and more frequently in recent years. In the simulation experiments
of this chapter, the proposed RFNNBAC is applied to control the trajectory of the two-link
robotic manipulator described in chapter 2.4 to prove its effectiveness.

In the simulation, the parameters of manipulator are 1m =4 kg, 2m =2 kg, 1l =1 m, 2l =0.5

m, g =9.8 N/kg. Initial conditions are given as ()0θ1 =0 rad, ()0θ2 =1 rad, ()0θ1
& =0,

and ()0θ2
& =0 rad/s. The desired trajectory is given by ()tθ̂1 = ()t2sin π and ()tθ̂2 = ()t2cos π .

The friction and disturbance terms in (4) are assumed to be

 ⎥⎦
⎤⎢⎣

⎡=
5cos(5t)

5cos(5t)
dR Nm,)q0.5sign()qΔT(q, && = Nm.

www.intechopen.com

Adaptive Control

202

Simulation results are shown in Fig.9 ~Fig.14. Fig.9 and Fig.10 illustrate the trajectories of
two joints; the two outputs of identifier (RFNNI) are shown in Fig.11 and Fig.12 separately;
the cost function for RFNNC is shown in Fig.13; and Fig.14 shows the cost function for
RFNNI.
From simulation results, it is obvious that the proposed RFNN can identify and control the
robot manipulator very well.

 Fig. 9. Trajectory of joint1 Fig. 10. Trajectory of joint2

 Fig. 11. Identifier (RFNNI) output1 Fig. 12. Identifier (RFNNC) output2

 Fig. 13. Cost function for RFNNC Fig. 14. Cost function for RFNNI

www.intechopen.com

Adaptive Control Based On Neural Network

203

4. Conclusion

In this paper, the adaptive control based on neural network is studied. Firstly, a neural
network based adaptive robust tracking control design is proposed for robotic systems
under the existence of uncertainties. In this proposed control strategy, the NN is used to
identify the modeling uncertainties, and then the disadvantageous effects caused by neural
network approximating error and external disturbances in robotic system are counteracted
by robust controller. Especially the proposed control strategy is designed based on HJI
inequation theorem to overcome the approximation error of the neural network bounded
issue. Simulation results show that proposed control strategy is effective and has better
performance than traditional robust control strategy. Secondly, an RFNN for realizing fuzzy
inference using the dynamic fuzzy rules is proposed. The proposed RFNN consists of four
layers and the feedback connections are added in first layer. The proposed RFNN can be
used for the identification and control of dynamic system. For identification, RFNN only
needs the current inputs and most recent outputs of system as its inputs. For control, two
RFNNs are used to constitute an adaptive control system, one is used as identifier (RFNNI)
and another is used as controller (RFNNC). Also to prove the proposed RFNN and control
strategy robust, it is used to control the robot manipulator and simulation results verified
their effectiveness.

5. References

Abdallah, C., Dawson, D., Dorato, P. & Jamshidi, M. (1991). Survey of the robust of rigid
robots, IEEE Control Systems Magazine, Vol. 11, No. 2, pp. 24-30.

Ortega, R. & Spong, M. W. (1989). Adaptive motion control of rigid robots: a tutorial,
Automatica, Vol. 25, No. 3, pp. 877-888.

Saad, M., Dessaint, L. A., Bigras, P. & Haddad, K. (1994). Adaptive versus neural adaptive
control: application to robotics, International Journal of Adaptive Control and Signal
Processing, Vol. 8, No. 2, pp. 223-236.

Sanner, R. M. & Slotine, J. J. E. (1992). Gaussian networks for direct adaptive control, IEEE
Transactions on. Neural Network, Vol. 3, No. 4, pp. 837-863.

Spooner, J. T. & Passino, K. M. (1996). Stable adaptive control using fuzzy systems and
neural networks, IEEE Transactions on Fuzzy system, Vol. 4, No. 2, pp. 339-359.

Narenra, K. S. & Parthasarathy, K. (1990). Identification and control of dynamical systems
using neural networks, IEEE Transactions on Neural networks, Vol. 1, No. 1, pp. 4-27.

Polycarpou, M. M. (1996). Stable adaptive neural control scheme for nonlinear systems, IEEE
Transactions on Automatic Control, Vol. 41, No. 2, pp. 447-451.

Carelli, R., Camacho, E. F. & Patino, D. (1995). A neural network based feedforward
adaptive controller for robot, IEEE Transactions on Systems, Mman and Cybernetics,
Part B: Cybernetics, Vol. 25, No. 6, pp. 1281-1288.

Behera, L., Chaudhury, S. & Gopal, M. (1996). Neuro-adaptive hybrid controller for robot-
manipulator tracking control, IEE Proceedings Control Theory Applications, Vol.143,
No.1, pp.2710-275.

Shen, T. L. (1996). H∞ control theory and its applications, ISBN 7302022151, Tsinghua Press,
Beijin, China.

www.intechopen.com

Adaptive Control

204

Park, Y. M., Choi, M. S. & Lee, K. Y. (1996). An optimal tracking neuro-controller for
nonlinear dynamic systems, IEEE Transactions on Neural Networks, Vol. 7, No. 5, pp.
1099-1110.

Narendra, K. S. & Parthasarathy, K. (1990). Identification and control of dynamical systems
using neural networks, IEEE Transactions on Neural Networks, Vol. 1, No. 1, pp. 4-27.

Brdys, M. A. & Kulawski, G. J. (1999). Dynamic neural controllers for induction motor, IEEE
Transactions on Neural Networks, Vol. 10, No. 2, pp. 340-355.

Ku, C. C. & Lee, K. Y. (1995). Diagonal recurrent neural networks for dynamic systems
control, IEEE Transactions on Neural Networks, Vol. 6, No. 1, pp. 144-156.

Ma, S. & Ji, C. (1998). Fast training of recurrent neural networks based on the EM algorithm,
IEEE Transactions on Neural Networks, Vol. 9, No. 1, pp. 11-26.

Sundareshan, M. K. & Condarcure, T. A. (1998). Recurrent neural-network training by a
learning automation approach for trajectory learning and control system design,
IEEE Transactions on Neural Networks, Vol. 9, No. 3, pp. 354-368.

Liang, X. B. & Wang, J. (2000). A recurrent neural network for nonlinear optimization with a
continuously differentiable objective function and bound constraints, IEEE
Transactions on Neural Networks, Vol. 11, No. 6, pp. 1251-1262.

Jang, J. S. R. & Sun, C. T. (1993). Functional equivalence between radial basis function
networks and fuzzy inference systems, IEEE Transactions on Neural Networks, Vol. 4,
No. 1, pp. 156-159.

Hunt, K. J., Hass, R. & Munay-Smith, R. (1996). Extending the functional equivalence of
radial basis function networks and fuzzy inference systems, IEEE Transactions on
Neural Networks, Vol. 7, No. 3, pp. 776-781.

Buckley, J. J., Hayashi, Y. & Czogala, E. (1993). On the equivalence of neural nets and fuzzy
expert systems, Fuzzy Sets and Systems, Vol. 53, No. 2, pp. 129-134.

Reyneri, L. M. (1999). Unification of neural and wavelet networks and fuzzy systems, IEEE
Transactions on Neural Networks, Vol. 10, No. 4, pp. 801-814.

Er, M. J. & Chin, S. H. (2000). Hybrid adaptive fuzzy controller of robot manipulators with
bounds estimation, IEEE Transactions on Industrial Electronics, Vol. 47, No. 5, pp.
1151-1160.

Llama, M. A., Kelly, R. & Santibanez, V. (2000). Stable computed-torque control of robot
manipulator via fuzzy self-tuning, IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics, Vol. 30, No. 1, pp. 143-150.

Wang, S. D. & Lin, C. K. (2000). Adaptive tuning of the fuzzy controller for robots, Fuzzy Sets
Systems, Vol. 110, No. 3, pp. 351-363.

Huang, S. J. & Lian, R. J. (1997). A hybrid fuzzy logic and neural network algorithm for
robot motion control, IEEE Transactions on Industrial Electronics, Vol. 44, No. 3, pp.
408-417.

www.intechopen.com

Adaptive Control
Edited by Kwanho You

ISBN 978-953-7619-47-3
Hard cover, 372 pages
Publisher InTech
Published online 01, January, 2009
Published in print edition January, 2009

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more
and more adaptive algorithms are applied in various control applications, it is becoming very important for
practical implementation. As it can be confirmed from the increasing number of conferences and journals on
adaptive control topics, it is certain that the adaptive control is a significant guidance for technology
development.The authors the chapters in this book are professionals in their areas and their recent research
results are presented in this book which will also provide new ideas for improved performance of various
control application problems.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sun Wei, Zhang Lujin, Zou Jinhai and Miao Siyi (2009). Adaptive Control Based On Neural Network, Adaptive
Control, Kwanho You (Ed.), ISBN: 978-953-7619-47-3, InTech, Available from:
http://www.intechopen.com/books/adaptive_control/adaptive_control_based_on_neural_network

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

