
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DOLAP’03, November 7, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-727-3/03/0011…$5.00.

XCube – XML For Data Warehouses
Wolfgang Hümmer

University of Erlangen-Nuremberg
Department of Database Systems

Martensstr. 3, 91058 Erlangen,
Germany

huemmer@cs.fau.de

Andreas Bauer
T-Systems

Merianstr. 32, 90409 Nürnberg,
Germany

andreas.bauer
@t-systems.com

Gunnar Harde
Oldenburger Forschungs- und

Entwicklungsinstitut für
Informatik-Werkzeuge und

Systeme (OFFIS)
Escherweg 2, 26121 Oldenburg,

Germany

gunnar.harde@offis.de

ABSTRACT
Data warehouse systems are nowadays a well known and widely
spread approach for supporting management decisions. In several
companies or even across companies the idea of integrating several
data warehouses into a virtual or federated data warehouse is of
growing interest. But the technical and semantic problems are very
demanding. An essential part for solving this problem is a
standardized, vendor independent format for describing
multidimensional data. This paper introduces XCube, a family of
XML based document templates to exchange data warehouse data,
i.e. data cubes, over any kind of network. XCube is organized in a
modular fashion, so the multidimensional schema, the descriptions
of the single dimensions and the fact data itself can be transmitted
in separate steps. In addition to the describing formats XCube also
offers two kinds of dynamic document types that can be used to
explore the (multidimensional) content of another warehouse in a
vendor independent way. They are primarily meant to reduce the
amount of data transferred over the network

Categories and Subject Descriptors
H 2.3 [Languages]:

Data description languages (DDL), Query languages

H.2.7 [Database Administration]:
Data warehouse and repository

General Terms
Design, Languages, Management, Standardization

Keywords
Exchange of data cubes, between data warehouses, based on
XML documents

1. INTRODUCTION
Data warehouse systems are getting more and more popular
and wide spread. In many companies they are an integral
technological part of management decision support. In most

cases the data in a warehouse are imported from transactional
systems (OLTP) of a company. By now the World Wide Web
is rarely seen as a potential data source. One reason for sure is
that data in the WWW are rather semi structured or not
structured at all: information is stored in HMTL format
without any semantic meta data, or – in very few cases – in
XML files based on different or no grammars (DTDs or XML
Schemas [1], [2]). Other information is encoded in pictures or
arbitrary binary file formats. Besides these problems of
technical heterogeneity the semantic heterogeneity is even
worse: different WWW documents might refer to different
meanings when using the same expression year, e.g. financial
year or calendar year. As long as the semantics of the online
documents is not understood it is extremely dangerous to
integrate it into a data warehouse with regard to data quality
([3]). Still it is well known that a huge amount of valuable
information is spread all over the Internet.

An even better data source for extending a data warehouse is
another data warehouse: its data is already cleaned and
verified. The situation that several data warehouses have to be
integrated can happen inside or across companies, e.g. after a
merger or for cooperation reasons. The integration of
information systems is an important issue in enterprise
application integration (EAI) and B2B integration ([4], [5]).

A standard format for online data that could be useful for data
warehouses is highly desirable and could solve the technical
problems completely and the semantic problems at least to a
certain degree. As XML ([1]) is more and more seen as the
lingua franca for exchanging data over any kind of networks,
this paper introduces XCube: XCube ([6]) is an open,
manufacturer independent and XML based family of document
templates to store, exchange and query data warehouse data,
i.e. data cubes. The benefits of this approach are manifold: the
advantages of using standards are well known and by using
XML it is easy to adapt the standard documents to the needs of
every single data warehouse in a modular fashion. To enable a
data warehouse system to handle XML documents can be seen
as rather simple – nearly every standard database system is
XML enabled nowadays ([7]). Furthermore, lots of tools exist
to transform XML data into the necessary local formats and
vice versa (e.g. XSLT, [8]). One disadvantage of using XML
for exchanging data cubes is the fact that XML documents tend
to be rather large. But with constantly growing network
bandwidth and the use of efficient, transparent compression
methods in mind the advantages prevail.

Structure of the paper
The paper is structured as follows: in the next section several
scenarios are described where an open, independent standard
for exchanging data warehouse data would be useful. Further a

33

brief overview over related work is given. Section 3 starts
introducing the family of XCube formats. Besides the basic
standards for storing dimensions, classification hierarchies and
facts also some advanced, dynamic standards are dealt with,
that allow to build a basic service infrastructure. Section 5
closes with an outlook how XCube can be combined with Web
Services and some remarks on our prototype.

2. MOTIVATING USE CASES
Before explaining XCube this section is meant to sketch some
typical use cases that could benefit from our approach. The
driving force between all the scenarios presented below is that
many data warehouses exist containing lots of valuable
information spread over different departments of the same
company or even over different companies. The exchange of
data between these heterogeneous systems could be done much
easier if there was a unique format for describing the data
warehouse data in a standardized way.

2.1 The “Download” Use Case
A web server offers data warehouse cubes for download
(figure 1). Every client data warehouse interested in this data
can download it and integrate it into its local database. First of
all the description of the multidimensional schema of the cube
is downloaded, in a second step the master data is exchanged,
i.e. the classification hierarchies of the single dimensions.
Finally the transaction data is sent to the requestor and
integrated into its local data warehouse. The integration on the
client side is easy as long as any expression in the new cube
does not conflict with those of existing data cubes. If on the
other hand for example a dimension already exists the exact
relationship between the two has to be carefully checked,
which leads to the problem of semantic integration. An
interesting tool for integrating data from various sources could
be the use of standardized reference dimensions.

2.2 The “Query” Use Case
As the amount of data of a multidimensional cube is usually
rather large (especially the transaction data part) the possibility
to analyze data cubes online, i.e. on the (web) server side, is
highly desirable to reduce the consumption of network
capacities. In the online query case only schema and master
data have to be downloaded from the web server completely
which are smaller by magnitudes (steps 1 and 2 in figure 2).
With this description in hand the client application (not only
data warehouses but e.g. OLAP tools) can decide which subset
of the data cube it needs and can then send an according query
to the web server (step 3). The server then computes the
desired transaction data subcube and sends it to the client
(step 4). If the client application is a data warehouse that wants
to integrate the result into its own database, this use case is a
generalization of the download case presented in section 2.1.

For the query scenario it is important to think about an update
strategy for schema and master data on the client side because
when the client keeps this data for a longer time it can become
outdated. The problem of conflicting expressions has to be
treated in the same way as mentioned above.

2.3 The “Generating” Use Case
The generating case is about how to create data cubes that can
be offered by a web server. In principle data of any format
from all kinds of data sources can be converted to a
multidimensional cube. The conversion process is the same as
when integrating a new source into a warehouse: the data has
to undergo the complete ETL workflow.

The more interesting case is generating an online cube from an
existing data warehouse. Here the expensive integration task is
already done and it only has to be decided which subset of the
data is to be published. The transformation of
multidimensional data (independent of relational or
multidimensional storage) is simple and can be done
automatically. For implementing this case the introduction of a
data mart holding only that subset of data that is meant for
going online might be useful. Another interesting design
choice for implementation is if transforming the warehouse
data into online cubes is done statically or dynamically on
demand by a set of SQL queries.

2.4 Requirements for Representing Online
Data Cubes

The last three subsections gave a set of examples motivating
the necessity of a web based format for exchanging data cubes.
This paper describes XCube, a family of XML schemas to
precisely describe these online cubes. As the cubes are
supposed to be transferred over the Internet and contain highly
structured data, using XML ([1], [2]) seems reasonable. Before
explaining the XCube standards in the next section a list of
requirements to a format expressing online data cubes is
introduced which can be easily derived from the scenarios
presented above.

1. The format has to support a multidimensional data model.

2. The conceptual distinction between the description of
schema, master or dimension data and transaction or fact
data has to be supported.

3. The format has to be transportable over a network,
primarily over the Internet.

4. To achieve a high level of flexibility and reuse the format
has to support linking and inclusion concepts.

5. The format should be extensible to be able to adapt to
different data models or to introduce new concepts.

1. schema

2. master data

3. transaction data

Figure 1. Use Case “Download”

Internet/network
webserver with local data

data cubes warehouse

Internet/network
webserver with local data

1. schema
2. master data

4. subset of transaction data

Figure 2. Use Case “Query”

3. query

data cubes warehouse

34

6. The format must be easily convertible to and from various
data sources and formats.

7. The format could possibly allow online analytical
processing (OLAP) to reduce the amount of data to be
transferred over the network.

XCube is a family of XML based formats that fulfills these
requirements. Especially points 3 to 6 suggest XML as the
meta format of choice. Standards like XLink ([9]) and
XPointer ([10]) allow to connect remote data sources and
schemas. By applying XSLT-Stylesheets the XML
presentation of an online data cube can be converted to a vast
number of other data formats.

The most challenging point above is the first one:
unfortunately there is no unique multidimensional data model.
Interesting proposals for a standard multidimensional data
model can be found e.g. in [11], [12] or [13]. XCube is
designed especially with the features of mUML ([13]) in mind,
but because of XCube’s flexibility it is compatible with other
data models as well.
As a direct consequence of the second and the fifth point an
appropriate format for representing data cubes cannot be a
single format but rather a family of specialized formats that are
linked together. These formats will be described in detail in the
following sections. As a format like this is first of all meant for
exchanging data between several data warehouses point 7 is
only suggested as optional, but a certain subset of OLAP
functionality could be useful.

2.5 Related Work
To the authors’ knowledge only few research has been done on
creating an XML standard for storing multidimensional data
and what benefits such a standard could offer.

With the Common Warehouse Metamodel (CWM, [14]) the
Object Management Group (OMG, [15]) creates a standard
format for data warehouse meta data. Based on the UML it

offers a complex model for describing data warehouse meta
data; dimension and fact data are completely left out. The main
goal of CWM is not the exchange of data cubes between data
warehouses but to create a standard interface to data
warehouses that every kind of tools can access, e.g. OLAP
tools, ETL tools etc. More detailed information on CWM can
be found in [16].
Another proposal for a meta data standard for data warehouses
is MetaCube-X ([17]) which is based on XML. Similarly to
CWM it only concentrates on meta data and does not take care
of the fact data, i.e. the data cube itself. There is no separation
between schema and dimension data, and because dimension
data is encoded as XML element names, reusability is
aggravated.
Following the growing popularity of Web Services, XML for
Analysis ([18], [19]) allows SOAP and XML based access to
remote OLAP systems. The current version of XML for
Analysis is an XML wrapping of MDX, so at the moment this
approach is limited to warehouses built on SQL Server. It
allows to discover a server on several levels of detail, e.g. an
overview of the available data cubes, which dimensions are
involved and finally the fact data itself. However it is not sure
if XML for Analysis will be accepted as a standard because of
its tight relations to Microsoft based systems.

3. BASIC XCUBE FORMATS
The basis of XCube consists of XCubeSchema,
XCubeDimension and XCubeFact. These three formats allow
to completely describe a data cube with XCubeSchema holding
the multidimensional schema, XCubeDimension the
hierarchical structure of the dimensions involved and
XCubeFact containing the fact data i.e. the cells of the cube.

3.1 XCubeSchema
XCubeSchema is the central format for describing the
multidimensional structure of the data cube: it ties together the
dimensions and the measures contained in a cube. The basic
structure of an XCubeSchema document can be seen in
figure 3 in the upper half. The dashed lines express a parent-
child relationship, the asterisks indicate that the child can
appear an arbitrary number of times (even zero times). Under
the root, multidimensionalSchema, a cubeSchema
block and a classSchema block can be found. The
cubeSchema section contains a collection of facts and
dimensions, while classSchema describes the classification
levels of the dimensions involved. Besides attribute which
determines the current level, rollUp points to the next higher
classification level, thus implicitly defining the complete
hierarchy. The connection between a dimension and the
classification hierarchy is achieved by a reference from
cubeSchema/dimension to classSchema/class-
Level. A simple example of an XCubeSchema document
according to the grammar presented above is depicted in
figure 4.

The example describes a data cube named sale containing
two facts (sales and revenue) set up by two dimensions
(geography and article). For both dimensions their
finest granularity is given (branch resp. article) which is
a reference to the following classification schemas as
mentioned before. The classification schema for geography
consists of the branch level containing a manager attribute.
It rolls up to the higher city level, that again rolls up to

Figure 3. Two structures of XCubeSchema documents

<multidimensionalSchema>

<rollUp>

<attribute>

*

*

<classSchema>

<classLevel>*

<cubeSchema>

<fact>*

<dimension>*

<multidimensionalSchema>

<multiCubeSchema>

<cubeSchema id=”sale”>

<isComposedBy cubeSchema=”soldProduct”/>

<cubeSchema id=”soldProduct” inheritedFrom=”product”>

<cubeSchema id=”product” abstract=”true”>

Single Cube

Multi Cube

35

region and so on. The same is done for the product
dimension starting with the article level.

Besides expressing simple multidimensional data cubes as
shown above XCubeSchema is enriched by a set of special
features some of which will be briefly introduced in the
following:

• Instead of simple cubes XCubeSchema can also represent
Multi Cubes by replacing the cubeSchema element
under multidimensionalSchema in the upper half of
figure 3 by the multiCubeSchema element that in turn
collects a number of standard cubeSchemas. Thus it is
possible to store several related cubes in one schema. This
is especially interesting because XCube allows to create
cubeSchemas by inheritance or composition of other
cubeSchemas. The Multi Cube in the lower half of
figure 3 contains a sale cube that is composed of the
soldProduct cube which in turn is inherited from an
abstract product cube. Please note that the Multi Cube
structure depicted in the lower half of figure 3 is not a
pure schema but an instance.

• XCube also allows the definition of data types and units
for measures, classification nodes and attributes. It is
possible to use the data types defined by XML Schema
([2]) or to create own types and measures by using
simpleType-elements as defined by XML Schema.

• Further interesting features for a multidimensional data
model provided by XCube is the possibility to define
several aggregation operations based on the measure or
the dimension, the ability to use computed measures and
the special treatment of time dimensions. For further
details the reader is referred to [20].

3.2 XCubeDimension
While XCubeSchema
describes the multi-
dimensional aspects of a
data cube, XCube-
Dimension ([21]) is
meant to formalize the
dimensional structures. In
essence an XCube-
Dimension document
contains the nodes
belonging to the
classification levels
defined in XCubeSchema
thus instanciating the
hierarchies of the
dimensions. The basic
structure of every XCubeDimension document is depicted in
figure 5. The root element, dimensionData, has two
children, units for importing units defined in the
XCubeSchema (see above), and classification. The
latter carries the real payload which is a set of nodes for each
classification level level. Besides the set of attributes that
are characteristic for a certain node, the node also has to
implement the roll-up-relationships given by the
corresponding XCubeSchema document which is done by the
rollUp-element linking to another node on a higher
classification level. It is left to the application logic to enforce
that the roll-up-relationships of the nodes are consistent with
the roll-up-relationships of the classification levels. Please

<multidimensionalSchema version="0.4"
xmlns="http://www.xcube-open.org/V0_4/XCubeSchema.xcsd">

<cubeSchema id="sale">
<fact id="sales"/>
<fact id="revenue"/>
<dimension id="geography" granularity="branch"/>
<dimension id="product" granularity="article"/>

</cubeSchema>

<classSchema>
<!-- geography -->
<classLevel id="branch">

<attribute id="manager"/>
<rollUp toLevel="city"/>

</classLevel>
<classLevel id="city">

<rollUp toLevel="region"/>
</classLevel>
<!-- ... -->

<!-- product -->
<classLevel id="article">

<attribute id="articleName"/>
<attribute id="brand"/>
<rollUp toLevel="productGroup"/>

</classLevel>
<classLevel id="productGroup">

<rollUp toLevel="productFamily"/>
</classLevel>
<!-- ... -->

</classSchema>

</multidimensionalSchema>

Figure 4. Simple XCubeSchema document

Figure 5. Structure of an
XCubeDimension document

<dimensionData>

<node>

<attribute>

<rollUp>

*

*

<classification>

<level>*

*

<units>

<entry>*

<dimensionData version="0.4"
xmlns="http://www.xcube-open.org/V0_4/
XCubeDimension_base.xcsd">

<units>
<entry unitType="currency" unit="EUR"/>

</units>

<classification>

<!-- dimension: geography -->
<level id="country">

<node id="Germany"/>
<node id="Switzerland"/>
<node id="France"/>
<!-- ... -->

</level>

<level id="region">
<node id="Northern Germany">

<rollUp toNode="Germany" level="country"/>
</node>
<node id="Western Germany">

<rollUp toNode="Germany" level="country"/>
</node>
<node id="Eastern Germany">

<rollUp toNode="Germany" level="country"/>
</node>
<node id="Southern Germnamy">

<rollUp toNode="Germany" level="country"/>
</node>
<!-- ... -->

</level>

<!-- ... -->

</classification>

</dimensionData>

Figure 6. Example of an XCubeDimension document

36

note that though the roll-up-relationships in figure 5 look very
similar to those in figure 3, they are not redundant at all: while
the roll-ups in XCubeSchema documents express relationships
between classification levels e.g. branch – city, those in
XCubeDimension documents express the relationships
between nodes, i.e. instances of the levels as with Northern
Germany – Germany.
An example of an XCubeDimension document related to the
XCubeSchema from figure 4 can be found in figure 6. After
defining EUR as a specialized currency unit, parts of the
geography dimension are presented: Germany, Switzerland and
France are instances of the country classification level.
Several parts of Germany are shown as instances of the region
level all rolling up to the country node Germany.
Due to the lack of space the extended features of
XCubeDimension are only briefly mentioned here. When
constructing dimensions naming collisions might occur,
therefore XCubeDimension introduces the concept of keys:
every node can be provided with a unique key thus resolving
the naming problem. Several data warehouses support shared
roll-ups, i.e. a certain node, e.g. a modern mobile phone, can
be rolled up to several higher nodes, e.g. mobile phone and
digital camera ([22]). Although situations like that should be
avoided by appropriate modelling XCubeDimension allows to
specify weights for different higher classification nodes.
Similarly to XCubeSchema XCubeDimension supports default
time dimensions.

3.3 XCubeFact
After describing the
dimensions and how they
play together, the cells of the
data cubes can be defined by
using the XCubeFact schema
([23]) which is outlined in
figure 7. For each cube a
collection of cells is
defined. Each cell consists
of two parts, dimension
representing the multidimensional coordinates, i.e. the links to
the dimensions and their corresponding classification nodes,
and the fact values themselves (as each multidimensional
cube can store several facts, also each cell has to be able to
hold several facts).
A sample document further clarifying the use of XCubeFact
can be seen in figure 8. For the sale cube constructed in the
code examples above two cells are shown: sales and revenue
values are given for the product MA-450 in two different shops
(branch48 and branch75) on 24th July 2003.

3.4 Summary
In this section the core of XCube is presented. It consists of a
set of three XML Schemas responsible for expressing the
multidimensional schema, the single dimensions and the fact
values. One reason for this decomposition is the possibility of
reusing some of these documents, e.g. an XCubeDimension
document can be shared by several cubes or even applications.
Another reason is the attempt to deal with the different
multidimensional terminologies. Perhaps it is possible to
integrate these diversified streams by introducing an open
XML standard for data warehouses.

It is further important to note that the three schemas expose no
redundancies. Though several elements appear in all schemas
they are realized as references (here XML is quite similar to
relational database systems).

4. XCUBE EXTENDED STANDARDS
Besides the basic description of data cubes XCube contains
advanced formats like XCubeText, XCubeQuery and
XCubeFunction. XCubeText allows to add textual descriptions
and comments to XCubeSchema- and XCube-Dimension-files.
While the formats so far are static and meant for describing a
cube, XCubeQuery and XCubeFunction are dynamic.
XCubeQuery allows to issue queries to a data cube and its meta
data over the network, while XCubeFunction is designed to
find out the capabilities of a server holding a cube.

4.1 XCubeText
XCubeText ([24]) is meant to add textual descriptions and
comments to nearly every element of XCubeSchema- and
XCubeDimension documents. The current version 0.4 of
XCube only allows to insert these text blocks directly into
these structures; a future version will allow to extract these
descriptions into its own files. XCubeText allows several
degrees of detail by applying the elements short, medium,
long and html.
The decision to collect all XCubeText-comments in one or
more external files gives rise to several new possibilities, e.g.
multi-language support or different comments for different
application domains.

4.2 XCubeQuery
XCubeQuery ([25]) is one of the dynamic formats of the
XCube family. With Web Services ([26]) growing more and
more popular the idea of interactively asking for (static)
XCube documents is not far away. XCubeQuery is meant to
organize this interactive dialog between client and server.
However XCubeQuery is not supposed to compete with full-
fledged OLAP tools or XML query languages (XQuery etc.).
Rather it might deliver a basis for a more efficient exchange of

Figure 7. Structure of an
XCubeFact document

<cubeFacts>

<cube>

<cell>

<dimension>

<fact>

*

*

*

*

<cubeFacts version="0.4"
xmlns="http://www.xcube-open.org/V0_4/XCubeFact_base.xcsd">

<cube id="sale">
<cell>

<dimension id="geography" node="branch48"/>
<dimension id="product" node="MA-450"/>
<dimension id="time" node="2003-07-24"/>
<fact id="sales" value="3"/>
<fact id="revenue" value="960"/>

</cell>

<cell>
<dimension id="geography" node="branch75"/>
<dimension id="product" node="MA-450"/>
<dimension id="time" node="2003-07-24"/>
<fact id="sales" value="2"/>
<fact id="revenue" value="640"/>

</cell>
<!-- ... -->

</cube>

<!-- ... -->

</cubeFacts>

Figure 8. Example of an XCubeFact document

37

data by narrowing down the amount of data needed on the
client side. XCubeQuery consists of seven different query
formats which are oriented along the process of data
exploration and will be described in the following.

List of available cubes
The first question a
client might ask is
which cubes a server
can offer. This task is
accomplished by the
getCubeSchema-
List element which
does not need any
further elements or
attributes. The server
replies with a list of
cubeSchema
elements known from XCubeSchema enumerating the IDs of
the available cubes. An example can be seen in figure 9, where
the server offers the cubes sale, purchase and stock.

Getting the schema of a special cube
The client might want to explore one of the cubes from the
result of the previous getCubeSchemaList query in more
detail. That is done by sending an XCubeQuery document
containing the getCubeSchema element with the ID of the
desired cube (figure 10). The result consists of the major part
of an XCubeSchema document containing a list of facts and
a list of dimensions including their granularities.
Additionally the dataTypes and unitTypes involved are
included.
In contrast to a complete XCubeSchema document as
introduced in section 3 the classification schema is missing.
The reason for that is to minimize the amount of data to be
transferred over the network as much as possible. The client
still might decide that the cube he is just querying is not
applicable to his needs.

Querying the Classification Schema
The next step in exploring the data cube consists of asking for
the detailed classification schemas of the dimensions.
Therefore the client sends a document containing the
getClassSchema element to the server containing a list of
desired dimensions (this list has to be a subset of the set of
dimensions returned by the previous getCubeSchema
query). A possible request together with a valid response can
be found in figure 12: a client is interested in the classification
schemas for the dimensions time and geography. As a result
the server returns the standard time classification levels month
(xs:gYearMonth) and quarter for the time dimension. For
geography the levels branch, city, region and country are
returned. Further the response includes the definition of the

Figure 9. Example for
getCubeSchemaList and response

<request>
<getCubeSchemaList/>

</request>

<cubeSchema id=”sale”/>
<cubeSchema id="purchase"/>
<cubeSchema id="stock"/>

request

response

<request>
<getCubeSchema id=”sale”>

</request>

<cubeSchema id="sale"
xmlns:xs=”http//www.w3.org/2001/XMLSchema”>
<fact id="sales">

<defaultAggregate>
<aggregation operator="sum"/>
<aggregation operator="max"/>
<aggregation operator="min"/>

</defaultAggregate>
</fact>
<fact id="revenue">
<dimension id="geography" granularity="branch"/>
<dimension id="product" granularity="article"/>
<dimension id="time" granularity="xs:date" stdLevel="true"/>

</cubeSchema>
<dataTypes/>
<unitTypes/>

Figure 10. Example of getCubeSchema and response

request

response

<request>
<getClassNodes level=”branch”/>

</request>

<level id="branch">
<node id="branch48">

<rollUp toNode="Frankfurt" level="city"/>
<attribute id="manager" value="Meier"/>

</node>
<node id="branch75">

<rollUp toNode="Frankfurt" level="city"/>
<attribute id="manager" value="Bauer"/>

</node>
<!-- ... -->

</level>

Figure 11. Example of getClassNodes and response

request

response

<request>
<getClassSchema>

<dimension id=”time”/>
<dimension id=”geography”/>

</getClassSchema>
</request>

<classSchema xmlns:=”http://www.w3.org/2001/XMLSchema”>
<stdTimeClassLevel id="xs:gYearMonth">

<rollUp toLevel="quarter"/>
</stdTimeClassLevel>
<timeClassLevel id="quarter" timeBase="quarter">

<rollUp toLevel="xs:gYear" stdLevel="true"/>
</timeClassLevel>

<classLevel id="branch">
<attribute id="manager"/>
<rollUp toLevel="city"/>

</classLevel>
<classLevel id="city">

<rollUp toLevel="region"/>
<addKey level="region"/>

</classLevel>
<classLevel id="region">

<rollUp toLevel="country"/>
</classLevel>
<classLevel id="country"/>

</classSchema>
<dataTypes>

<dataType name="quarter">
<xs:restriction base="xs:gYearMonth">

<xs:pattern value="[0-9]{4}-0[1-4]"/>
</xs:restriction>

</dataType>
</dataTypes>
<unitTypes/>

Figure 12. Example of getClassSchema and response

request

response

38

data type quarter, which is a restriction of xs:gYearMonth. The
unitTypes clause in this example is empty.

Querying Classification Nodes
After having found out the dimensions and their classification
hierarchies a client has gathered enough knowledge to request
nodes of certain classification levels. This can be achieved by
sending an XCubeQuery document consisting of a
getClassNodes element to find out all nodes of a given
level, or containing a getClassNode element only asking
for detailed information on a single node. An example of the
first choice is given in figure 11 returning information on all
branches including their attributes and roll-up-relationships.

Requesting the Facts
At this point the
client should have
gathered all necessary
data to decide which
part of the data cube
he needs. The
getFacts request
displayed in figure 13
is obviously the most
complex of all
XCubeQuery
elements. It contains
an arbitrary number
of cubes, a set of
dimensions optionally restricted to certain classification nodes,
and a number of facts. The example in figure 14 asks for the
subsection of the sale cube defined by the dimensions
geography and product; only the revenue fact is of interest and
geography is restricted to two branches, branch48 and
branch75. The functionality of getFacts is rather similar to
the OLAP operations slice & dice ([27]). But it is important to
know that these restrictions can only be applied to the basic
granularity of the cubes, i.e. roll-up or drill-down operations

are not supported. As mentioned before XCube is not meant to
be another OLAP dialect but only a data format for exchanging
multidimensional data over the network. The result of the
getFacts request is a set of cell elements consisting of
multidimensional coordinates (dimensions with nodes) and
the according fact value(s).

4.3 XCubeFunction
The latest format of XCube is XCubeFunction which is still
under development, so here only a brief outline can be given.
The main idea behind this format is the ability to query an
XCube server about its functionality. Primitive servers might
only be able to deliver complete cubes, i.e. no restriction with
regards to facts, dimensions or classification nodes is possible.
Highly sophisticated servers on the other hand might even be
able to process full-fledged OLAP queries including all kinds
of multidimensional operations.

5. CONCLUSION AND OUTLOOK
In this paper we presented XCube, an open, vendor
independent and modular family of XML based document
templates for describing data cubes as they are common in data
warehouse systems. A short overview is given in table 1. The
most important structures are XCubeSchema,
XCubeDimension and XCubeFact because these are the
common ingredients of every multidimensional model.
However all three of them are flexible enough to express
special features like shared roll-ups or multicubes. By splitting
the description of a data cube into three parts, a client can
easily explore if a certain cube is interesting for him or not,
especially because schema and dimension data are by far
smaller than the huge amount of fact data.

As XCube is first of all meant to describe existing,
multidimensional structures most of its templates are static
(XCubeSchema, XCubeDimension, XCubeFact and
XCubeText); but with XCubeQuery and XCubeFunction two
dynamic document types are introduced that allow to discover
the cubes and their structures step by step. They form a sound
basis for a more complex and efficient infrastructure.

We think that this representation of cubes can be very useful,
because the cubes are now easily transferrable from one data
warehouse to another. The approach can easily be combined
with the new Web Service paradigm (the XCube documents
simply have to be included into the body of SOAP messages,
and XCubeQuery has to be translated to WSDL code). At least
the technical heterogeneity problems when attempting to

Figure 13. Structure of
XCubeQuery.getFacts

<getFacts>

<cube>

<node>

<dimension>

<fact>

*

*

*

*
<addKey>*

<request>
<getFacts>

<cube id=”sale”>
<dimension id=”geography” all=”false”>

<node id=”branch48”/>
<node id=”branch75”/>

</dimension>
<dimension id=”product” all=”true”/>
<fact id=”revenue”/>

</cube>
</getFacts>

</request>

<cube id="sale">
<cell>

<dimension id="geography" node="branch48"/>
<dimension id="product" node="MA-450"/>
<fact id="revenue" value="960"/>

</cell>
<cell>

<dimension id="geography" node="branch75"/>
<dimension id="product" node="MA-450"/>
<fact id="revenue" value="640"/>

</cell>
<!-- ... -->

</cube>

Figure 14. Example of getFacts and response

request

response

XCube format Description
XCubeSchema stores the description of the

multidimensional schema of a data cube
XCubeDimension stores hierarchical dimension data

XCubeFact format for describing the fact data of a
data cube

XCubeText format to hold text blocks to allow multi-
language support

XCubeQuery query language for data cubes
XCubeFunction allows to find out which services the data

source offers

Table 1. Overview over the XCube family

39

integrate data warehouses can be solved completely by
applying XCube.

Another interesting point in XCube is the evolution of
XCubeText. Extracting all descriptive texts into special files
gives rise to supporting several languages or dialects for
different application domains and thus making the same data
cube useful for different professions.

A last idea for using XCube sketched here is to create new data
warehouses according to the XCube standards. Originally
XCube is meant to work on top of an existing warehouse, thus
the system dependent representation of the data has to be
transformed to XCube. For new data warehouse projects it
might be worth thinking about using XCube right from the
beginning for the conceptual modelling phase. The advantage
would be an even easier way to integrate this new data into
other warehouses. As a first step towards this direction one
could think of introducing standard dimensions similar to the
standard time dimension.

Finally we want to remark that XCube is not only a mere
specification but that OFFIS and the University of Erlangen-
Nuremberg have jointly developed a set of prototypes. We
have written an export component that extracts the TPC-H
scenario ([28]) from a MS SQL-Server 2000 to XCube; further
we have developed a plug-in oriented import component
named XCubeLoader that is able to import the TPC-H data in
XCube representation into several database systems, among
them MS Access and Oracle 9iR2. By writing new plug-ins
against a well defined interface nearly every database system
can be made XCube aware.

6. REFERENCES
[1] Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.:

Extensible Markup Language (XML) 1.0 (Second Edition)
W3C Recommendation 6 October 2000
http://www.w3.org/TR/REC-xml

[2] Fallside, D.C.: XML Schema Part 0: Primer W3C
Recommendation 2 May 2001
http://www.w3.org/TR/xmlschema-0/

[3] Jarke, M.; Jeusfeld, M.A.; Quix, C.; Vassiliadis, P.:
Architecture and Quality in Data Warehouses: An extended
Repository Approach. In: Information Systems, 24(3), 1999

[4] Linthicum, D.S.: Enterprise Application Integration.
Addison-Wesley, Boston, 2000

[5] Linthicum, D.S.: B2B Application Integration. Addison-
Wesley, Boston, 2001

[6] http://www.xcube-open.org

[7] Bourret, R.: XML Database Products. 2003
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

[8] Clarke, J.: XSL Transformations (XSLT) Version 1.0 W3C
Recommendation, 16 November 1999
http://www.w3.org/TR/xslt

[9] DeRose, S.; Maler, E.; Orchard, D.: XML Linking Language
(XLink) Version 1.0 W3C Recommendation 27 June 2001
http://www.w3.org/TR/xlink/

[10] Grosso, P.; Maler, E.; Marsh, J.; Walsh, N.: XPointer
Framework W3C Recommendation 25 March 2003

http://www.w3.org/TR/2003/REC-xptr-framework-
20030325/

[11] Albrecht, J.; Bauer, A.; Deyerling, O.; Günzel, H.; Hümmer,
W.; Lehner, W.; Schlesinger, L.: Management of
Multidimensional Aggregates for Efficient Online Analytical
Processing. In: IDEAS, Montreal, Canada, 1999

[12] Sapia, C.; Blaschka, M.; Höfling, G.; Dinter, B.: Extending
the E/R Model for the Multidimensional Paradigm. In:
Advances in Database Technologies, Lecture Notes in
Computer Science, Vol. 1552, Springer, Heidelberg, 1999

[13] Herden, O.; Harren, A.: MML und mUML – Sprache und
Werkzeug zur Unterstützung des konzeptionellen Data
Warehouse-Designs. In: DMDW, Magdeburg, Germany,
1999

[14] N.N.: Common Warehouse Metamodel (CWM) Specification.
Version 1.0, OMG, 2001
http://www.omg.org/docs/ad/01-02-01.pdf

[15] http://www.omg.org

[16] Poole, J.; Chang, D.; Tolbert, D.; Mellor, D.: Common
Warehouse Metamodel: An Introduction to the Standard for
Data Warehouse Integration. John Wiley & Sons, New York,
2002

[17] Nguyen, T.B.; Tjoa, A.M.; Mangisengi, O.: MetaCube-X: An
XML Metadata Foundation for Interoperability Search among
Web Warehouses. In: DMDW, Interlaken, Switzerland, 2001

[18] N.N.: XML for Analysis Specification. Version 1.0. Microsoft
Corporation, Hyperion Solutions Corporation, 2001
http://xmla.org/download.asp?id=2

[19] http://xmla.org

[20] Harde, G.: XML Schemata for XCubeSchema, version 0.4.
2002
http://www.xcube-open.org/V0_4/XCubeSchema.xcsd

[21] Harde, G.: Basic XML Schemata for XCubeDimension,
version 0.4. 2002
http://www.xcube-open.org/V0_4/XCubeDimension.xcsd

[22] Hümmer, W.; Lehner, W.; Bauer, A.; Schlesinger, L.: A
Decathlon in Multidimensional Modeling: Open Issues and
Some Solutions. In: DAWAK, Aix-en-Provence, France, 2002

[23] Harde, G.: Basic XML Schemata for XCubeFact, version 0.4.
2002
http://www.xcube-open.org/V0_4/XCubeFact.xcsd

[24] Harde, G.: XML Schemata for XCubeText, version 0.4. 2002
http://www.xcube-open.org/V0_4/XCubeText.xcsd

[25] Harde, G.: XML Schemata for XCubeQuery, version 0.4. 2002
http://www.xcube-open.org/V0_4/XCubeQuery.xcsd

[26] http://www.w3.org/2002/ws/

[27] Kimball, R.; Ross, M.: The Datawarehouse Toolkit, 2nd ed.
John Wiley & Sons, Chichester, 2002

[28] N.N.: TPC Benchmark H (Decision Support) Standard
Specification, Revision 2.0.0. Transaction Processing
Performance Council, 2002
http://www.tpc.org/tpch/spec/tpch2.0.0.pdf

40

