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The estimation of direction-of-arrival (DOA) of signals is a basic and important problem in sensor array signal processing. To
solve this problem, many algorithms have been proposed, among which the Stochastic Maximum Likelihood (SML) is one of
the most concerned algorithms because of its high accuracy of DOA. However, the estimation of SML generally involves the
multidimensional nonlinear optimization problem. As a result, its computational complexity is rather high. This paper addresses
the issue of reducing computational complexity of SML estimation ofDOAbased on theAlternatingMinimization (AM) algorithm.
We have the following two contributions. First using transformation of matrix and properties of spatial projection, we propose an
efficient AM (EAM) algorithm by dividing the SML criterion into two components. One depends on a single variable parameter
while the other does not. Second when the array is a uniform linear array, we get the irreducible form of the EAM criterion
(IAM) using polynomial forms. Simulation results show that both EAM and IAM can reduce the computational complexity of
SML estimation greatly, while IAM is the best. Another advantage of IAM is that this algorithm can avoid the numerical instability
problem which may happen in AM and EAM algorithms when more than one parameter converges to an identical value.

1. Introduction

The localization of multiple signal sources by a passive sensor
array is of great importance in a wide variety of fields, such as
radar, geophysics, radio-astronomy, biomedical engineering,
communications, and underwater acoustics. The basic prob-
lem in this context is to estimate direction-of-arrival (DOA)
of narrow-band signal sources located in the far field of the
array.

A number of super-resolution techniques have been in-
troduced, such as the Maximum Likelihood (ML) method
[1–7], MUSIC [8, 9], ESPRIT [10], Weighted Subspace Fitting
(WSF) [11], and the Bayesian method [12].

Among these techniques, theML technique is well known
for its high accuracy of DOA. There are two famous ML
criterions, that is, Deterministic or Conditional Maximum
Likelihood (DML) [1, 3–5, 7] and Stochastic orUnconditional
ML (SML) [2, 5–7]. The difference between them lies in their
signal models. In particular, the SML shows much higher

resolution than other techniques. Furthermore, the SML
technique can solve coherent signals without any preprocess-
ing, such as the spatial smoothing [9]. However, the SML
technique does not become popular in practice because the
estimation of SML generally involves the multidimensional
nonlinear optimization problem, and it requires high com-
putational complexity.

To solve the multidimensional nonlinear optimization
problem, the Alternating Minimization (AM) algorithm is
one of the most classic techniques. It is an iterative technique
and usually needs one-dimensional global search in the
updating process. There are also some other efficient tech-
niques, such as Alternating Projection (AP) [3], Expectation
Maximization (EM) [13], Space Alternating Generalized EM
(SAGE) [14], genetic algorithm [15], ant colony algorithm
[16], and Particle Swarm Optimization (PSO) [17, 18]. Gen-
erally, they are all iterative techniques and usually are formu-
lated for explicit criterions (e.g., these algorithms formulated
for the criterions of DML and WSF). As for the SML
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criterion, the AM algorithm is still the most commonly used
algorithm although its computational complexity is a little
high [6].

Therefore, this paper addresses the issue of reducing
computational complexity of SML estimation of DOA based
on the conventional AM algorithm.

Firstly we show a brief description of SML estimation of
DOA and the conventional solving method, AM algorithm.
Then using transformation ofmatrix and properties of spatial
projection, we propose an efficient AM (EAM) algorithm by
dividing the AM criterion of SML into two components. One
depends on a single variable parameter while the other does
not. The computational complexity of EAM can be greatly
reduced compared to AM algorithm. However, numerical
instability may happen in calculation of EAM criterion when
more than one parameter converges to an identical value. As
a result, oscillation may happen in the convergence phase
and extra calculation is needed. To solve this problem and
reduce computational complexity further, based on the EAM
criterion we get the irreducible form of the EAM criterion
(IAM) using a uniform linear array. In this way, the EAM
criterion can be written into polynomial forms.The common
zeros can be easily canceled in numerator and denominator
of the EAM criterion. Furthermore, the computational com-
plexity is also reduced. Finally, simulation results are also
shown to demonstrate the validity of the proposed EAM and
IAM algorithms.

The rest of this paper is organized as follows. In Section 2
we introduce the problem formulation of DOA. A brief intro-
duction of exact definition of SML estimation for incoherent
signals is shown in Section 3. In Section 4, we introduce the
conventional AM algorithm and our proposed two efficient
algorithms, that is, EAM and IAM algorithms. Simulation
results are shown in Section 5 and conclusion is drawn in
Section 6.

2. Problem Formulation

Without loss of generality, consider that there are 𝑝 sensors
and 𝑞 narrow-band sources far from the array, centered
around a known frequency, impinging on the sensor array
from distinct directions 𝜃1, 𝜃2, . . . , 𝜃𝑞, with respect to a
reference point, respectively.

Note that the received signals may be coherent because
of multipath propagation. In the case where there are signals
coherent, the independent signal number is less than 𝑞. The
task of DOA estimation is to detect all 𝑞 directions. Also note
that here we assume that the signals are narrow-band. For
wideband signals, the CSM algorithms [19] can be used as
a preprocessing technique to change them into the narrow-
band.

Furthermore, the sensor configuration can be arbitrary
and we assume that all the sensors are omnidirectional and
not coupled [6, 7].

Using complex envelope representation, the 𝑝-dimen-
sional vector received by the array can be expressed as

x (𝑡) = 𝑞∑
𝑘=1

a (𝜃𝑘) 𝑠𝑘 (𝑡) + n (𝑡) , (1)

where 𝑠𝑘(𝑡) is the 𝑘th signal received at a certain reference
point. n(𝑡) is a 𝑝-dimensional noise vector. a(𝜃) is the
“steering vector” of the array towards direction 𝜃, which is
represented as

a (𝜃) = [𝑎1 (𝜃) 𝑒−𝑗𝜔0𝜏1(𝜃), . . . , 𝑎𝑝 (𝜃) 𝑒−𝑗𝜔0𝜏𝑝(𝜃)]𝑇 , (2)

where 𝑎𝑖(𝜃) is the amplitude response of the 𝑖th sensor to
a wave-front impinging from the direction 𝜃. 𝜏𝑖(𝜃) is the
propagation delay between the 𝑖th sensor and the reference
point. The superscript 𝑇 denotes the transpose of a matrix.

In the matrix notation, (1) can be rewritten as

x (𝑡) = A (Θ) s (𝑡) + n (𝑡) ,
A (Θ) = [a (𝜃1) a (𝜃2) ⋅ ⋅ ⋅ a (𝜃𝑞)] ,
s (𝑡) = [𝑠1 (𝑡) 𝑠2 (𝑡) ⋅ ⋅ ⋅ 𝑠𝑞 (𝑡)]𝑇 ,
Θ = {𝜃1 𝜃2 ⋅ ⋅ ⋅ 𝜃𝑞} .

(3)

Suppose that the received vector x(𝑡) is sampled at𝑀 time
instants 𝑡1, 𝑡2, . . . , 𝑡𝑀 and define the matrix of the sampled
data as

X = [x (𝑡1) x (𝑡2) ⋅ ⋅ ⋅ x (𝑡𝑀)]
= A (Θ) S + N, (4)

where

S = [s (𝑡1) , s (𝑡2) , . . . , s (𝑡𝑀)] ,
N = [n (𝑡1) ,n (𝑡2) , . . . ,n (𝑡𝑀)] . (5)

The problem of DOA finding is to be stated as follows.
Given the sampled dataX, obtain a set of estimated directions

Θ̂ = {𝜃̂1 𝜃̂2 ⋅ ⋅ ⋅ 𝜃̂𝑞} (6)

of 𝜃1, 𝜃2, . . . , 𝜃𝑞.
3. SML Estimation

In this section, brief descriptions of the exact SML criterion
are shown [6, 7].

To solve the problem of ML estimation of DOA, we make
the following assumptions.

(A1) The array configuration is known and any 𝑝 steering
vectors for different 𝑞 directions are linearly indepen-
dent; that is, the matrix A(Θ) has full rank.

(A2) 𝑝, 𝑞, and 𝑀 satisfy the condition that a unique
solution of DOA exists in the noise-free case. As for
a uniform linear array, 𝑞 ≤ 2𝜂𝑝/(2𝜂 + 1) and 𝑀 ≥ 𝜂
are the necessary conditions of the uniqueness [20],
where 𝜂 is the rank of S.

(A3) 𝑝 and 𝑞 are known.
(A4) The noise samples n(𝑡𝑖) are statistically independent

Gaussian random vectors with zero mean and the
covariance matrix 𝜎2I𝑝, where I𝑝 is a 𝑝 × 𝑝 identity
matrix.
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(A5) s(𝑡𝑖) are independent samples from a complex Gaus-
sian random vector which has zero mean and signal
covariance matrix with rank 𝜂 and is independent of
the noise.

According to [6], the SML criterion can be derived based
on the process of the array covariance matrix R defined as

R = 𝐸 {XX𝐻} = A (Θ) SRA (Θ)𝐻 + 𝜎2I, (7)

where SR = 𝐸{SS𝐻} is the signal covariance matrix.
The SML criterion is shown as follows [6, 7].

Θ̂SML = argmin
Θ

𝐿SML (Θ) , (8)

𝐿SML (Θ) = detRSS × ( 1𝑝 − 𝑞 tr {RNN})𝑝−𝑞 , (9)

RNN = V𝐻N (Θ) R̂VN (Θ) , (10)

RSS = V𝐻S (Θ) R̂VS (Θ) , (11)

where

R̂ = 1𝑀XX𝐻 (12)

is the sample covariance matrix of the sampled data. VS(Θ)
is a 𝑝 × 𝑞matrix composed of an orthonormal system of the
signal subspace spanned byA(Θ).VN(Θ) is a𝑝×(𝑝−𝑞)matrix
composed of an orthonormal system of the noise subspace,
which is an orthogonal complement of the signal subspace.
The 𝑞 × 𝑞 matrix, RSS, corresponds to the covariance matrix
of the components for x(𝑡) in the signal subspace. RNN is the
covariance matrix of the components for x(𝑡) in the noise
subspace.

From (8) and (9), we can see that the estimation of SML
is to find a set of Θ which minimizes 𝐿SML in (9). This is a
multidimensional nonlinear optimization problem.

Note that there are literatures [21, 22] discussing the pre-
ciseness of SML criterion derived above. This paper focuses
on the problem of reducing the computational complexity of
SML estimation. Our efficient algorithms are derived based
on (9).

4. Efficient AM Algorithms for
SML Estimation

The AM algorithm is the most classic estimation algorithm
for multidimensional nonlinear optimization problem in
DOA estimation. In this section, we will introduce the con-
ventional AM algorithm firstly, and then we will introduce
our proposed efficient AM algorithms.

4.1. Conventional AM Algorithm. The AM method is a pop-
ular iterative technique for solving a nonlinear multivariate
minimization problemwith amultimodal criterion [6]. It can
be applied to the SML criterion of DOA in the following
manner.

Let 𝐿𝑘(Θ̂(𝑘)) be a cost function of (9) for which the signal
number is assumed to be 𝑘 instead of 𝑞, where Θ̂(𝑘) = {𝜃̂1, 𝜃̂2,. . . , 𝜃̂𝑘}.
Initialization Phase. For a certain value of SNR, first assuming
a single signal, 𝑘 = 1, find 𝜃̂1 minimizing 𝐿1(Θ̂(1)) by one-
dimensional global search with respect to 𝜃̂1. Next, assuming
two signals, 𝑘 = 2, and fixing 𝜃̂1 at the value obtained
for a single signal, find 𝜃̂2 minimizing 𝐿2(Θ̂(2)) by one-
dimensional global searchwith respect to 𝜃̂2. Continue in this
fashion until all the initial values for 𝜃̂𝑘, 𝑘 = 1, 2, . . . , 𝑞 are
computed.

Convergence Phase. Repeat the following updating process
until all parameters are converged. At each updating process,
let one parameter, say 𝜃̂𝑘, be variable and let all other
parameters be held fixed. Find 𝜃̂𝑘 minimizing the criterion𝐿𝑞(Θ̂(𝑞)) by one-dimensional global search with respect to𝜃̂𝑘. Change the index 𝑘 of the parameter to be updated into(𝑘mod 𝑞) + 1.

Although a global minimum is not guaranteed in the AM
algorithm, global solutions can be obtained in most cases
because of one-dimensional global searches performed in
each update process.

4.2. Efficient AM (EAM) Algorithm for SML Estimation. In
this section, we propose an efficient version of the AM algo-
rithm. We call it the EAM algorithm. Using transformation
of matrix and properties of spatial projection, the EAM
algorithm divides the SML criterion into two components.
One depends on a variable parameter and the other one is
independent of the variable parameter. In order to simplify
expressions, parameters to be estimated are represented
without the accent hat, and the argument Θ or Θ̂ is omitted.

In each updating process, let 𝜃𝑙 be a variable parameter
and define

Θ𝑙 = {𝜃1, 𝜃2, . . . , 𝜃𝑙−1, 𝜃𝑙+1, . . . , 𝜃𝑞} ,
A𝑙 = [a (𝜃1) , . . . , a (𝜃𝑙−1) , a (𝜃𝑙+1) , . . . , a (𝜃𝑞)] . (13)

VSl is an orthonormal system of the subspace spanned by{A𝑙}.
VNl

is an orthonormal system of the orthogonal comple-
ment of the subspace spanned by {A𝑙}.

PAl
= A𝑙 {A𝐻𝑙 A𝑙}−1 A𝐻𝑙 = VSlV

𝐻
Sl , (14)

P⊥Al
= I − PAl

= VNl
V𝐻Nl

, (15)

RSl = V𝐻SlRVSl , (16)

RNl
= V𝐻Nl

RVNl
, (17)

k𝑙 (𝜃𝑙) = P⊥Al
a (𝜃𝑙)󵄩󵄩󵄩󵄩󵄩P⊥Al
a (𝜃𝑙)󵄩󵄩󵄩󵄩󵄩 . (18)
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Note that when the value of 𝜃𝑙 changes, only v𝑙(𝜃𝑙) varies and
all others above are fixed. From these definitions, we have

span {VNl
} = span {k𝑙 (𝜃𝑙)} ⊕ span {VN} ,

span {VS} = span {k𝑙 (𝜃𝑙)} ⊕ span {VSl} , (19)

where ⊕ represents the direct sum of subspaces. It follows
from (19) that there exist a (𝑝 − 𝑞 + 1) × (𝑝 − 𝑞 + 1) unitary
matrix T1 and a 𝑞 × 𝑞 unitary matrix T2 which satisfy

VNl
= [k𝑙 (𝜃𝑙)VN]T1, (20)

VS = [k𝑙 (𝜃𝑙)VSl]T2. (21)

Substituting (20) into (17), we have

RNl
= T𝐻1 [k𝐻𝑙 (𝜃𝑙)Rk𝑙 (𝜃𝑙) k𝐻𝑙 (𝜃𝑙)RVN

V𝐻NRk𝑙 (𝜃𝑙) V𝐻NRVN
]T1

= T𝐻1 [k𝐻𝑙 (𝜃𝑙)Rk𝑙 (𝜃𝑙) k𝐻𝑙 (𝜃𝑙)RVN

V𝐻NRk𝑙 (𝜃𝑙) RNN
]T1.

(22)

Taking the trace of both sides in (22), we have

tr {RNl
} = tr {RNN} + k𝐻𝑙 (𝜃𝑙)Rk𝑙 (𝜃𝑙) . (23)

Substituting the definition of P⊥Al
and v𝑙(𝜃𝑙) into (23), we have

tr {RNl
} = tr {RNN} + a𝐻 (𝜃𝑙)VNl

RNl
V𝐻Nl

a (𝜃𝑙)
a𝐻 (𝜃𝑙)VNl

V𝐻Nl
a (𝜃𝑙) . (24)

Substituting (21) into (11), we have

RSS = T𝐻2 [k𝐻𝑙 (𝜃𝑙)Rk𝑙 (𝜃𝑙) k𝐻𝑙 (𝜃𝑙)RVSl

V𝐻SlRk𝑙 (𝜃𝑙) V𝐻SlRVSl

]T2

= T𝐻2 [k𝐻𝑙 (𝜃𝑙)Rk𝑙 (𝜃𝑙) k𝐻𝑙 (𝜃𝑙)RVSl

V𝐻SlRk𝑙 (𝜃𝑙) RSl

]T2.
(25)

Taking the determinant of both sides in (25) and using the
definition of (16), we have

det {RSS} = det {RSl} × (k𝐻𝑙 (𝜃𝑙)Rk𝑙 (𝜃𝑙)
− k𝐻𝑙 (𝜃𝑙)RVSlR

−1
Sl V
𝐻
SlRk
𝐻
𝑙 (𝜃𝑙)) . (26)

Substitute the definition ofP⊥𝐴𝑙 and v𝑙(𝜃𝑙) into (26), and define
W = RNl

− V𝐻Nl
RVSlR

−1
Sl V
𝐻
SlRVNl

, (27)

and then we have

det {RSS} = det {RSl} a
𝐻 (𝜃𝑙)VNl

WV𝐻Nl
a (𝜃𝑙)

a𝐻 (𝜃𝑙)VNl
V𝐻Nl

a (𝜃𝑙) . (28)

Define

u (𝜃𝑙) = V𝐻Nl
a (𝜃𝑙) (29)

and then the final form of the proposed algorithm, EAM
algorithm, can be derived from (24) and (28) as follows:

tr {RNN (Θ)} = tr {RNl
} − u𝐻 (𝜃𝑙)RNl

u (𝜃𝑙)󵄩󵄩󵄩󵄩u (𝜃𝑙)󵄩󵄩󵄩󵄩2 , (30)

det {RSS (Θ)} = det {RSl} u𝐻 (𝜃𝑙)Wu (𝜃𝑙)󵄩󵄩󵄩󵄩u (𝜃𝑙)󵄩󵄩󵄩󵄩2 . (31)

In (29), (30), and (31), all quantities except for u(𝜃𝑙) are
fixed and can be computed before starting the one-
dimensional search with respect to 𝜃𝑙. Therefore main com-
putations of each step in the one-dimensional search are
a product of the matrix V𝐻Nl

and the vector a(𝜃𝑙) in (29)
and evaluation of two Hermitian forms in (30) and (31).
Evaluation of u(𝜃𝑙) requires 𝑂(𝑝 × (𝑝 − 𝑞 + 1)) multiplica-
tions. Then evaluation of ‖u(𝜃𝑙)‖2 requires 𝑂((𝑝 − 𝑞 + 1)2)
multiplications. Therefore, at each step of one-dimensional
search with respect to the variable parameter, 𝜃𝑙, 𝑂(𝑝 × (𝑝 −𝑞+1))multiplications are required.Therefore, computational
complexity can be greatly reduced since, in the conventional
AM algorithm, we need to calculate the whole SML criterion
in each step of one-dimensional search.

(1) Oscillation Problem in EAM Algorithm. Define the sub-
space

U (Θ) = span {a (𝜃1) a (𝜃2) ⋅ ⋅ ⋅ a (𝜃𝑞)} . (32)

The linear combination

a (𝜃𝑗) − a (𝜃𝑖)𝜃𝑗 − 𝜃𝑖 (33)

always belongs to U(Θ). Even when 𝜃𝑗 → 𝜃𝑖, we have
dim{U(Θ)|𝜃𝑖→𝜃𝑗} = 𝑞, where dim{} represents the dimension
of the subspace.

On the other hand, when 𝜃𝑗 = 𝜃𝑖, we have
dim{U(Θ)|𝜃𝑖=𝜃𝑗} < 𝑞. This implies that the criterion has
discontinuous points in the parameter space.

Next, we consider calculation of the EAM criterion v𝑙(𝜃𝑙)
in (18). When the variable parameter 𝜃𝑙 approaches the
value of a fixed parameter 𝜃𝑖, v𝑙(𝜃𝑙) vanishes and both
the numerator and denominator in (18) become zero.
Then v𝑙(𝜃𝑙) becomes indefinite. Therefore the calculation of
v𝑙(𝜃𝑙) becomes numerically instable. This can be verified in
Section 5.

In the case that the DOA can be solved, the numerical
instability does not occur, since each parameter in the
convergence phase of the EAM criterion comes apart from
others.However, at the threshold region, whenmore than one
signal approaches an identical value, the numerical instability
becomes significant. In practice, when this case happens, the
sequence of DOA obtained in the convergence phase of the
EAM criterion shows oscillation that is because the estimated
directions can not converge well due to the numerical
instability and would oscillate around that identical value.

Let us give an example. In the simulation there are two
sources located in 0 and 8 degrees (the true DOAs). When
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SNR = 0 dB and with specific noise samples, the solutions of
SML criterion are 3.999 and 4.001 degrees (the solutions of
SML). However, in this case, when calculating 𝜃1 = 𝜃2 = 4
degrees, the oscillation happens. As a result, the estimated
DOAs may be 4 and 4 degrees (the estimated DOAs). In this
case, because of oscillation, extra computation is required.
Furthermore, the estimated DOAs are wrong (because they
are not the solutions of SML criterion) although they are
very close to the solutions of SML criterion. As a result, the
estimation accuracy is also affected. These explanations will
be shown in Section 5.

To solve these problems, the key point is to cancel the
common zeros in the numerator and denominator of the
EAM criterion. Next we try to establish the irreducible form
of the EAM criterion using a uniform linear array.

4.3. Irreducible Form of Efficient AM Criterion (IAM). In this
section, we derive the irreducible form of the EAM criterion
using a uniform linear array. With a uniform linear array, the
EAM criterion can be written into polynomial forms. Then
we can easily cancel the common zero in both numerator
and denominator. Thus numerical instability never happens
in IAM criterion. Furthermore, we can find that the IAM
algorithm can reduce the computational order of EAM
criterion from square to one in each updating process.

The array configuration is uniform linear array composed
of omnidirectional sensors, of which steering vector is repre-
sented as

a (𝜃) = [1 𝑒−𝑗𝜙(𝜃) ⋅ ⋅ ⋅ 𝑒−𝑗(𝑝−1)𝜙(𝜃)]𝑇 , (34)

𝜙 (𝜃) = 2𝜋Δ𝜆 sin 𝜃, (35)

where 𝜆 is the wavelength of signals impinging on the array
and Δ is the sensor spacing between two adjacent sensors. As
a necessary condition that a unique direction 𝜃 is determined
by the phase parameter 𝜙, Δ ≤ 𝜆/2 is imposed on the array
configuration. In this paper, Δ = 𝜆/2.

Using the uniform linear array, we derive the irreducible
form of (30) and (31). Define

𝑓𝑙 (𝜃) = u𝐻 (𝜃𝑙)RNl
u (𝜃𝑙)󵄩󵄩󵄩󵄩u (𝜃𝑙)󵄩󵄩󵄩󵄩2 ,

𝑓̃𝑙 (𝜃) = u𝐻 (𝜃𝑙)Wu (𝜃𝑙)󵄩󵄩󵄩󵄩u (𝜃𝑙)󵄩󵄩󵄩󵄩2
(36)

which are the varying parts in (30) and (31).
First we derive the irreducible form of (30). Substituting

(15) and (29) into 𝑓𝑙(𝜃), we get
𝑓𝑙 (𝜃) = a𝐻 (𝜃𝑙)P⊥Al

RP⊥Al
a (𝜃𝑙)

a𝐻 (𝜃𝑙)P⊥Al
a (𝜃𝑙) . (37)

Using the uniform linear array defined above, the steering
vector a(𝜃) in (34) can be represented as follows:

a𝐻 (𝜃) = 𝜁𝑝 (𝑧) = [1 𝑧 ⋅ ⋅ ⋅ 𝑧𝑝−1]󵄨󵄨󵄨󵄨𝑧=𝑒−𝑗𝜙(𝜃) . (38)

Then 𝑓𝑙(𝜃) can be rewritten into the form of a rational
function

𝑓𝑙 (𝜃) = 𝜁𝑝 (𝑧)P⊥Al
RP⊥Al
𝜁𝑝∗ (𝑧)

𝜁𝑝 (𝑧)P⊥Al
𝜁𝑝∗ (𝑧) = 𝑁 (𝑧)𝐷 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑒−𝑗𝜙(𝜃) , (39)

where 𝜁𝑝∗(𝑧) is the paraconjugate of 𝜁𝑝(𝑧) defined as

𝜁𝑝∗ (𝑧) = 𝜁𝐻𝑝 ( 1𝑧∗ ) = [1 𝑧−1 ⋅ ⋅ ⋅ 𝑧−(𝑝−1)]𝑇 (40)

and the superscript ∗ is the complex conjugate of a complex
number.

Let 𝜃𝑙 be variable and all other parameters are held fixed
as well as in last subsection. As we have discussed in the
problem of EAM, when 𝜃𝑙 becomes equal to 𝜃𝑖, both the
polynomials𝑁(𝑧) and 𝐷(𝑧) have double zeros at 𝑧 = 𝑒−𝑗𝜙(𝜃𝑖)
in the complex z-plane, since it holds 𝜁𝑝(𝑒−𝑗𝜙(𝜃𝑖))P⊥𝐴𝑙 = 0.
Without canceling these common zeros, 𝑓𝑙(𝜃) is indefinite at𝜃 = 𝜃𝑖.

The irreducible form of the EAM criterion of 𝑓𝑙(𝜃) can be
derived by canceling these common zeros. First, we define the
polynomial𝑊𝑙(𝑧) having zeros at 𝑧 = 𝑒−𝑗𝜙(𝜃𝑖), 𝑖 = 1, 2 . . . , 𝑙 −1, 𝑙 + 1, . . . , 𝑞,

𝑊𝑙 (𝑧) = 𝑞∏
𝑖=1,𝑖 ̸=𝑙

(𝑧 − 𝑒−𝑗𝜙(𝜃𝑖))
= 𝑤0 + 𝑤1𝑧 + ⋅ ⋅ ⋅ + 𝑤𝑞−1𝑧𝑞−1.

(41)

Using the coefficients of 𝑊𝑙(𝑧), define the following 𝑝 ×(𝑝 − 𝑞 + 1)matrix as

W𝑙 =

[[[[[[[[[[[[[[[[[

𝑤0 0 ⋅ ⋅ ⋅ 0𝑤1 𝑤0 ⋅ ⋅ ⋅ 0... ... d 0𝑤𝑞−1 𝑤𝑞−2 d 𝑤00 𝑤𝑞−1 d 𝑤1... ... d
...0 0 ⋅ ⋅ ⋅ 𝑤𝑞−1

]]]]]]]]]]]]]]]]]

. (42)

Then we have a𝐻(𝜃𝑖)W𝑙 = 0 for 𝑖 = 1, . . . , 𝑙 − 1, 𝑙 + 1, . . . , 𝑞.
Since the column vectors inW𝑙 are all orthogonal to a(𝜃𝑖), the
projection matrix P⊥Al

can be written as

P⊥Al
= W𝑙G

−1
𝑙 W
𝐻
𝑙 ,

G𝑙 = W𝐻𝑙 W𝑙. (43)

Here, note that 𝑊𝑙(𝑧) represents a polynomial, while W𝑙
represents a matrix.

Using the expressions

𝜁𝑝−𝑞+1 (𝑧)𝑊𝑙 (𝑧) = [𝑊𝑙 (𝑧) 𝑧𝑊𝑙 (𝑧) ⋅ ⋅ ⋅ 𝑧𝑝−𝑞𝑊𝑙 (𝑧)]
= 𝑊𝑙 (𝑧) 𝜁𝑝−𝑞+1 (𝑧) ,

𝜁𝑝−𝑞+1 (𝑧) = [1 𝑧 ⋅ ⋅ ⋅ 𝑧𝑝−𝑞] ,
(44)
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the irreducible form of 𝑓𝑙(𝜃) is derived as

𝑓𝑙 (𝜃) = 𝑊𝑙 (𝑧) 𝜁𝑝−𝑞 (𝑧)N𝑙𝜁(𝑝−𝑞)∗ (𝑧)𝑊𝑙 (𝑧)𝑊𝑙 (𝑧) 𝜁𝑝−𝑞 (𝑧)D𝑙𝜁(𝑝−𝑞)∗ (𝑧)𝑊𝑙 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑒−𝑗𝜙(𝜃)

= 𝜁𝑝−𝑞 (𝑧)N𝑙𝜁(𝑝−𝑞)∗ (𝑧)
𝜁𝑝−𝑞 (𝑧)D𝑙𝜁(𝑝−𝑞)∗ (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑒−𝑗𝜙(𝜃) ,
(45)

where 𝑊𝑙(𝑧) is the common zero factor at 𝑧 = 𝑒−𝑗𝜙(𝜃), 𝑖 ≤ 𝑞,𝑖 ̸= 𝑙, and
N𝑙 = G−1𝑙 W

𝐻
𝑙 RW𝑙G

−1
𝑙 = {𝑛𝑖,𝑗}𝑝−𝑞𝑖,𝑗=0 ,

D𝑙 = G−1𝑙 = {𝑑𝑖,𝑗}𝑝−𝑞𝑖,𝑗=0 .
(46)

As for the irreducible form of 𝑓̃𝑙(𝜃), it can be derived like
this form similarly,

𝑓̃𝑙 (𝜃) = 𝜁𝑝−𝑞 (𝑧) Ñ𝑙𝜁(𝑝−𝑞)∗ (𝑧)𝜁𝑝−𝑞 (𝑧)D𝑙𝜁(𝑝−𝑞)∗ (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑒−𝑗𝜙(𝜃) , (47)

where

Ñ𝑙 = N𝑙 − G−1𝑙 W
𝐻
𝑙 RVSlR

−1
Sl V
𝐻
SlRW𝑙G

−1
𝑙 = {𝑛̃𝑖,𝑗}𝑝−𝑞𝑖,𝑗=0 . (48)

Define the following polynomials

𝑛𝑙 (𝑧) = 𝑛0 + 𝑛1𝑧 + ⋅ ⋅ ⋅ + 𝑛𝑝−𝑞𝑧𝑝−𝑞,
𝑑𝑙 (𝑧) = 𝑑0 + 𝑑1𝑧 + ⋅ ⋅ ⋅ + 𝑑𝑝−𝑞𝑧𝑝−𝑞, (49)

where

𝑛0 = 𝑝−𝑞∑
𝑖=0

𝑛𝑖,𝑖,
𝑛𝑚 = 2𝑝−𝑞∑

𝑖=𝑚

𝑛𝑖,𝑖−𝑚,
𝑑0 = 𝑝−𝑞∑
𝑖=0

𝑑𝑖,𝑖,
𝑑𝑚 = 2 𝑝−𝑞∑

𝑖=𝑚

𝑑𝑖,𝑖−𝑚, 𝑚 = 1, 2, . . . , 𝑝 − 𝑞,

(50)

and similarly define 𝑛̃𝑙(𝑧) to calculate the matrix Ñ𝑙 which
realizes the same function as 𝑛𝑙(𝑧).

Then we have the final form of 𝑓𝑙(𝜃) and 𝑓̃𝑙(𝜃) shown as
follows:

𝑓𝑙 (𝜃) = Re {𝑛𝑙 (𝑒𝑗𝜃)}
Re {𝑑𝑙 (𝑒𝑗𝜃)} ,

𝑓̃𝑙 (𝜃) = Re {𝑛̃𝑙 (𝑒𝑗𝜃)}
Re {𝑑𝑙 (𝑒𝑗𝜃)} ,

(51)

where Re{} represents the real part of the complex value.

Therefore the irreducible form of efficient AM criterion
(IAM) is shown like this.

tr {RNN} = tr {RNl
} − Re {𝑛𝑙 (𝑒𝑗𝜃)}

Re {𝑑𝑙 (𝑒𝑗𝜃)} ,
det {RSS} = det {RSl} Re {𝑛̃𝑙 (𝑒

𝑗𝜃)}
Re {𝑑𝑙 (𝑒𝑗𝜃)} .

(52)

Furthermore, we can find that RNl
, RSl , N𝑙, Ñ𝑙, and D𝑙

can be calculated before each updating process. Therefore, at
each updating process we only need to evaluate Re{𝑛𝑙(𝑒𝑗𝜃)},
Re{𝑛̃𝑙(𝑒𝑗𝜃)}, and Re{𝑑𝑙(𝑒𝑗𝜃)}. Evaluation of them only needs𝑂(𝑝 − 𝑞) multiplications. Compared to 𝑂(𝑝(𝑝 − 𝑞)) multi-
plications in each updating process of EAM algorithm, the
computational complexity can be reduced further.

Here we should note that the IAM algorithm is only
applicable to the ULA that is because the IAM algorithm is
formulated based on (34) and (35). The steering vector can
only bewritten into this formwhen the array is uniform linear
array (ULA). Based on (34) and (35), the EAM criterion can
be written into polynomial form. And then the irreducible
form of EAM can be derived by canceling the common zero
in both numerator and denominator. Therefore, the IAM is
only applicable to the ULA.

5. Simulations

In this section, we show some simulation results to demon-
strate the validity of the EAM and IAM algorithms. In
simulation, the array configuration is a uniform linear array
as discussed above.

The SNR is defined as

SNR𝑘 = 10 log10𝐸 [󵄨󵄨󵄨󵄨𝑠𝑘 (𝑡)󵄨󵄨󵄨󵄨2]𝜎2 . (53)

The Root-Mean-Square-Error (RMSE) is defined as

RMSE = √ 1𝑞𝑁
𝑞∑
𝑘=1

𝑁∑
𝑛=1

󵄨󵄨󵄨󵄨󵄨𝜃̂𝑘,𝑛 − 𝜃𝑘󵄨󵄨󵄨󵄨󵄨2, (54)

where 𝜃̂𝑘,𝑛 is the estimation of 𝜃𝑘 at the 𝑛th trial. The number
of trails in our simulation is 100.

In Figure 1, the scenario is 𝑝 = 3, 𝑞 = 2, 𝜂 = 2, SNR = 10,𝑀 = 100. Two true sources are independently located at 0
and 8 degrees.The estimated bearing 𝜃2 is fixed at 10 degrees,
while 𝜃1 varies from 9.99999 to 10.00001. The dashed line
represents the value of SML with EAM criterion, while the
solid line represents the IAM criterion. It shows clearly that
numerical instability occurs when the EAM criterion is used.
In particular, the value changes violently around the point𝜃2 = 𝜃1 = 10 degrees because it is indefinite. As for the IAM
criterion, we can find that the value becomes monotonic and
it is numerically stable.
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Figure 1: Numerical instability in EAM and stability in IAM crite-
rion.

Due to the numerical instability, oscillation may happen
as Figure 2 shows. The scenario is the same as Figure 1. In
Figures 2(a) and 2(b), the estimated two bearings 𝜃1 and𝜃2 converge to an identical value represented by the solid
line and the dashed line. The convergence condition is that
when the variation of each bearing is less than 10−5 or when
the iteration reaches the maximum number, 800. When the
EAM criterion is used, the iteration does not stop until it
reaches the maximum number because of oscillation. As
for the IAM criterion, it converges well for less than 100
iterations. Figure 2(c) shows the oscillation rate of the two
criterions in 100 independent trials. We can find that there
is no oscillation when the IAM criterion is used. Note that
the oscillation rate of EAM decreases when SNR increases as
shown in Figure 2(c) that is because the oscillation happens
when more than one parameter converges to an identical
value. In simulations, two sources are independently located
in 0 and 8 degrees. When SNR is relatively low, the case that
the estimated twobearings are extremely close (e.g., 3.990 and
4.010) or even equal exists. In this case, oscillation happens.
When SNR increases, the estimated two bearings will signifi-
cantly separate each other. As a result, the oscillation rate will
decrease.

Figure 3 shows the comparison of RMSE between SML,
MUSIC, and ESPRIT. The scenario is the same as Figure 2
except for SNR. In simulation we use the original AM and
our proposed EAM and IAM algorithms for SML estimation
of DOA. We find that the RMSE of all the three algorithms
are completely the same.The reason is that the proposed IAM
and EAM algorithms are just transformations for SML crite-
rion and there is no any modification. All these algorithms
can find the solution of SML successfully (of course we have
to delete the oscillation cases for AM and EAM criterions.
Obviously, oscillation affects the estimation accuracy because
the bearings do not converge to their optimal value). Also

Table 1: Comparison of computational complexity of AM, EAM,
and IAM.The scenario is the same as Figure 5 when SNR = 5 dB.

Average
iteration times Main computational process

AM 127

127 ∗ (180/0.5 + 0.5 ∗ 2/0.001 +0.001 ∗ 2/0.00001) = 83,820 times of
calculation of 𝐿SML (det{RSS} and
tr{RNN})

EAM 127
127 times of calculation of det{RSl },
tr{RNl

} and𝑊 + 83,820 times of
calculation of u(𝜃𝑙)

IAM 127

127 times of calculation of
det{RSl }, tr{RNl

},N𝑙, Ñ𝑙 andD𝑙 +
83,820 times of calculation of
Re{𝑛𝑙(𝑒𝑗𝜃)}, Re{𝑛̃𝑙(𝑒𝑗𝜃)}, and Re{𝑑𝑙(𝑒𝑗𝜃)}

Figure 3 shows that the solution of SML is much better than
that of MUSIC and ESPRIT.

Figures 4 and 5 and Table 1 show the comparison of
computational complexity of AM, EAM, and IAM. Figures
4 and 5 show the average amount of operations of each
algorithm. In Figure 4, 𝑝 = 3, 𝑞 = 2, 𝜂 = 2, 𝑀 = 100. The
true DOA is 0 and 8 degrees. In Figure 5𝑝 = 8, 𝑞 = 5, 𝜂 = 3,𝑀 = 100. The true DOA is 0, 8, 16, 24, and 32 degrees. Note
that in Figure 5 𝜂 < 𝑞, which means that there are correlated
signals (coherent case).

In Figures 4 and 5, “amount of arithmetic operations”
represents the summation of all the complex addition, sub-
traction, multiplication, and division.These two figures show
clearly that bothEAMand IAMcan reduce the computational
complexity of SML estimation greatly, while IAM is the best.

Table 1 shows the detailed comparison of computa-
tional complexity including average iteration times and main
calculation process of Figure 5 when SNR = 5 dB for 30
independent trials. For all these three algorithms, in the
one-dimensional global search of each updating process, we
use different step-sizes for searching. At first, we have a
relatively large step-size (0.5 degrees) for rough search (note
that this step-size should not be too large; otherwise the one-
dimensional globalminimummay bemissed) and thenmuch
smaller step-sizes (0.001 and 0.00001 degrees) for fine search.
For example, for the AM algorithm in the one-dimensional
global search of an updating process, the searching range for
the variable parameter (𝜃𝑖) is from −90∘ to 90∘. As a result,
the rough search needs 180/(0.5) times of calculation of 𝐿SML.
And then the fine search needs (0.5 ∗ 2/(0.001) + 0.001 ∗2/(0.00001)) times of calculation of 𝐿SML. Since the number
of iterations is 127, themain computational complexity of AM
algorithm is 83,820 times of calculation of 𝐿SML. For the EAM
and IAM algorithms, the main computational complexity
is also shown in Table 1 in the same manner. As we have
discussed above, for the EAM and IAM algorithm, before
each updating process, we can calculate many components in
advance (the detailed components are shown in Table 1). We
do not need to calculate the whole cost function 𝐿SML every
time. As a result, the computational complexity of EAM and
IAM is much smaller than that of AM algorithm.
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Figure 2: Oscillation in EAM algorithm while not in IAM.

Furthermore, from Figures 4 and 5, we can find two
phenomena. First, the efficiency of EAM and IAM is more
obvious than that of AM when the number of parameters
increases. Here the number of parameters represents the
number of incident signals, that is, 𝑞. The task of DOA is to
find the directions of all the incident signals. When there are
more parameters, the AM algorithm needs more iterations to
solve the multidimensional nonlinear optimization problem
of SML. For our proposed algorithms (EAM and IAM),
in each updating process the computational complexity is
greatly reduced. As a result, the efficiency is more obvious
when the number of parameters increases (in Figure 5
there are 5 parameters to be estimated, and in Figure 4

there are 2). Second, the computational complexity of all
these three methods changes with SNR that is because
the computational complexity of all these methods mainly
depends on the iteration times for the initial value converges
to the estimated value. As we show in Section 4.1, the initial
value is determined by the [Initialization Phase]. Obviously,
the initial value will change according to different SNRs.
Therefore, the total iteration times will change with SNR. As
a result, computational complexity also changes with SNR.

In a huge number of simulations, we have confirmed the
efficiency of our proposed EAM and IAM algorithms, while
IAM is the best.



International Journal of Antennas and Propagation 9

SML
ESPRIT
MUSIC

−5 0 5 10 15 20−10
SNR (dB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

RM
SE

Figure 3: Comparison of RMSE between SML, MUSIC, and ES-
PRIT.

5 10 15 20 25 30 35 400
SNR (dB)

0

1e + 006

2e + 006

3e + 006

4e + 006

5e + 006

A
m

ou
nt

 o
f a

rit
hm

et
ic

 o
pe

ra
tio

ns

AM
EAM
IAM

Figure 4: Average amount of operations for AM, EAM, and IAM
algorithms. 𝑝 = 3, 𝑞 = 2, 𝜂 = 2.

6. Conclusions

In this paper, to reduce the computational complexity of SML
estimation, based on theAMalgorithm,we propose twomore
efficient algorithms, that is, EAM and IAM algorithms. The
EAM algorithm mainly uses transformation of matrix and
properties of spatial projection to divide the SML criterion
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Figure 5: Average amount of operations for AM, EAM, and IAM
algorithms. 𝑝 = 8, 𝑞 = 5, 𝜂 = 3.

into two components. One is variable, while the other is
fixed. Computational complexity can be greatly reduced
since the fixed part can be calculated once in advance and
only the varying part should be calculated in each one-
dimensional updating process. To avoid numerical instability
of EAM (note that because of the numerical instability, wrong
estimation of DOAmay be got) and to reduce computational
complexity further, we derive the irreducible form of EAM,
that is, IAM algorithm. The main idea of IAM is to use
a uniform linear array and rewrite the EAM criterion into
polynomial forms. Then the irreducible form can be got
by canceling the common zero factor of the polynomial
form. Simulation results show that the IAM algorithm can
avoid the numerical instable problem of EAM and reduce
computational complexity further.
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