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A New Perspective for Modeling Power Electronics
Converters: Complementarity Framework

Francesco Vasca, Member, IEEE, Luigi Iannelli, Member, IEEE, M. Kanat Camlibel, Member, IEEE,
and Roberto Frasca, Member, IEEE

Abstract—The switching behavior of power converters with
“ideal” electronic devices (EDs) makes it difficult to define a
switched model that describes the dynamics of the converter in
all possible operating conditions, i.e., a “complete” model. Indeed,
simplifying assumptions on the sequences of modes are usually
adopted, also in order to obtain averaged models and discrete–time
maps. In this paper, we show how the complementarity framework
can be used to represent complete switched models of a wide class of
power converters, with EDs having characteristics represented by
piecewise-affine (even complicated) relations. The model equations
can be written in an easy and compact way without the enumera-
tion of all converter modes, eventually formalizing the procedure
to an algorithm. The complementarity model can be used to per-
form transient simulations and time-domain analysis. Mathemat-
ical tools coming from nonlinear programming allow to simulate
numerically the transient behavior of even complex power con-
verters. Also rigorous time-domain analysis is possible without ex-
cluding pathological situations like, for instance, inconsistent initial
conditions and simultaneous switchings. Basic converter topologies
are used as examples to show the construction procedure for the
complementarity models and their usefulness for simulating the
dynamic evolution also for nontrivial operating conditions.

Index Terms—Modeling, piecewise linear approximation, power
conversion, simulation, switched systems, switching circuits.

I. INTRODUCTION

MOST POWER converters can be assumed to consist of
linear elements (resistors, inductors, capacitors), voltage

and current sources, and electronic devices (EDs) such as diodes
and electronic switches (thyristors, transistors, MOSFETs, etc.).
A typical way for modeling power converters consists of assum-
ing diodes and switches to be “ideal,” discriminating among the
different modes of the converter, building for each mode a linear
time-invariant dynamic model, and determining the conditions
for the commutations among the different modes [1], [2]. The
resulting model is usually called a switched model, which is
the model structure used by several power converter simula-
tors such as PLECS by Plexim GmbH and SymPowerSystems
by TheMathworks. Unfortunately, the commutation conditions
can depend on the state variables, e.g., the so-called inter-
nally controlled commutations, and the switched model eventu-
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ally becomes rather complex also for simple converter topolo-
gies [3], [4]. In general, a switched model that describes all
possible operating conditions, in the sequel indicated as a com-
plete switched model, is very difficult to construct for convert-
ers with more than two EDs. However, by fixing the sequence
of modes that alternate due to the commutations of diodes
and ideal switches (ISs), simplified switched models, and the
corresponding averaged models, pulsewidth modulation switch
models and discrete-time maps can be directly obtained [2],
[5]–[9].

In this paper, switched complementarity formalism is pro-
posed as a new perspective for obtaining complete switched
models of power electronics converters and for simulating their
behavior. Complementarity models have been proposed as a
framework for modeling (static) resistors-diodes-sources (RDS)
circuits, which include only linear resistors, independent volt-
age and current sources, and ideal diodes (IDs) [10], [11]. More
recently, switched complementarity systems have been used to
model (dynamic) switched electrical networks that contain IDs
and ISs [4], [12], [13]. A preliminary contribution on comple-
mentarity models for power converters was presented in [14].
The main idea for the construction of a power converter comple-
mentarity model consists of modeling the EDs characteristics
separately from the circuit in which they are used and then by
integrating the EDs representations with the dynamic equations
of the circuit. A similar approach is used for the modified nodal
analysis, which is the modeling method chosen for the simu-
lation program with integrated cirucit emphasis (SPICE)-like
simulators, such as PSpice [15], where EDs characteristics are
represented in detail by means of nonlinear smooth algebraic re-
lations. Instead, in this paper, dealing with switched models, the
EDs are assumed to be ideal in the sense that their characteristics
are represented by possible switching piecewise-affine relations,
which is a classical assumption used for modeling and simula-
tion convenience [15]–[18]. In particular, in our approach, the
power converter is represented as the feedback interconnection
of a linear time-invariant dynamic system Σd representing the
circuit topology, with a set of piecewise-affine characteristics
(ϕ, λ) representing the current–voltage characteristics of the
EDs (see Fig. 1). A minimal state space representation of Σd

can be obtained by using classical circuit theory methods, given
the power converter [19]. The nondecreasing piecewise-affine
EDs characteristics are represented in the complementarity form
by using RDS equivalent circuits [20], [21]. The interesting fea-
ture of the proposed representation is that, if Σd is passive,
the representation preserves the passivity of the closed-loop
system, which is a property that can be exploited for obtaining

0885-8993/$25.00 © 2009 IEEE
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Fig. 1. Feedback representation of the complementarity model of a power
converter: Σd represents the dynamic part of the circuit and (ϕ,λ) the set of
characteristics of the EDs. The motivation for using a negative feedback loop
will be clarified in the sequel of the paper.

Fig. 2. Circuit scheme of a dc/dc boost converter.

well-posedness and stability results [22], [23]. The complemen-
tarity model is simple to be built, captures all modes of the
converter, and allows the idealization of the EDs characteristics
at the desired level of abstraction. In order to obtain an efficient
time-stepping simulation [24], [25], the proposed models can
be numerically integrated by exploiting already available algo-
rithms for the integration of switched complementarity mod-
els [26]. Time-domain analysis is possible even for complex
power converters and without excluding inconsistent initial con-
ditions and simultaneous switchings, situations that are difficult
to be managed with most of the existing simulation tools based
on switched models [27].

The paper is organized as follows. In Section II, a preliminary
example for the illustration of the complementarity modeling
procedure is presented. In Section III, it is shown how given a
piecewise-affine current–voltage characteristic of an ED it can
be constructed as an equivalent RDS circuit and from that a cor-
responding (static) complementarity representation. The proce-
dure is generalized for externally controlled EDs in Section IV.
In Section V, it is shown how to integrate the ED characteris-
tics with the dynamic part of the converter in order to obtain
the switched complementarity model of the power converter.
The effectiveness of the proposed approach for modeling and
simulating power converters is demonstrated in Section VI by
considering a dc/dc boost converter and a three-phase inverter.
By using PSpice as a reference for validation of the results,
it is also shown how the proposed approach has some advan-
tages compared to well-known simulation softwares based on
switched models like PLECS. Section VII points out some con-
clusions and directions for future research.

II. ILLUSTRATIVE EXAMPLE

In order to show a preliminary comparison between the clas-
sical and the complementarity switched modeling approaches,
consider the dc/dc boost converter depicted in Fig. 2. Assume
that ED1 is an ideal diode, i.e., i1 ≥ 0 and v1 = 0 if the ID is

conducting and i1 = 0 and v1 ≥ 0 if the ID is blocking. (Note
that the sign of the ID electrical variables is chosen so that they
take nonnegative values.) The electronic device ED2 is assumed
to be the antiparallel connection of an electronic switch and an
ID, i.e., v2 = 0 and i2 ∈ R if ED2 is ON (ED2 is bidirectional
when ON), and (i2 , v2) corresponding to an ID characteristic if
ED2 is OFF. A typical way of modeling the converter consists of
detailing all converter modes corresponding to different states
of the switches. When ED2 is ON, then ED1 is blocking (in
usual operating conditions x2 > 0, and thus, when ED2 is ON

v1 = x2 > 0) and one can write Lẋ1 = −R1x1 + e. When ED2
is turned OFF, for positive inductor current, the diode ED1 will
be conducting and it follows Lẋ1 = −R1x1 − x2 + e. If the in-
ductor current x1 goes to zero, the converter will start operating
in discontinuous conduction mode and the current will remain
identically zero until ED2 is turned ON again. The dynamics
of the capacitor voltage can be expressed as Cẋ2 = −x2/R2
when ED1 is blocking, and as Cẋ2 = x1 − x2/R2 , when ED1
is conducting. The described behavior can be simply formal-
ized by means of a switched model. In spite of the simplicity of
the behavior, also for this quite simple converter topology, sev-
eral subtleties are hidden under the descriptive features of the
converter model. Indeed, the description does not capture (or
excludes) several scenarios, e.g., inconsistent initial conditions
corresponding to a negative capacitor voltage. Furthermore, in
describing the behavior, some implicit reasonings have been
done: for example, when the converter goes into discontinuous
conduction mode, a negative inductor current is excluded al-
though, in principle, it could flow through the antiparallel diode
of ED2 . Only by considering the whole dynamics, together with
the constraints given by the variables of the switches, it becomes
evident that such a situation has to be excluded. In general, a
complete switched model becomes rather complex to be ob-
tained also for simple converter topologies, and the problem
becomes more and more difficult when the number of EDs in-
creases.

Switched complementarity models are an interesting alterna-
tive to classical approaches for determining a complete switched
model of a power converter. Consider again the converter in
Fig. 2. By applying the Kirchhoff laws it follows:

Lẋ1 = −R1x1 − x2 + v1 + e (1a)

Cẋ2 = x1 −
1

R2
x2 + i2 (1b)

i1 = x1 + i2 (1c)

v2 = x2 − v1 (1d)

which must be satisfied independently of the commutations of
the EDs. In order to obtain a complete model, the equations
(1) must be integrated with the EDs characteristics (i1 , v1) and
(i2 , v2). The ideal EDs characteristics can be analytically rep-
resented as

0 ≤ v1 ⊥ i1 ≥ 0 (2a)

R � i2 ⊥ v2 = 0, when switch ED2 is ON (2b)

0 ≤ i2 ⊥ v2 ≥ 0, when switch ED2 is OFF (2c)
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where ⊥ is the orthogonality symbol, i.e., given two real vec-
tors z and w, the notation z ⊥ w stands for zT w = 0 (the scalar
product is zero). For notation simplicity, “R � i” is sometimes
used standing for “i ∈ R,” and “i ∈ R+” or “i ≥ 0” are equiva-
lently used throughout the paper. Note that conditions (2) imply
that for each pair (i1 , v1) and (i2 , v2), one of the two electrical
variables must be zero. The model (1), (2) can be rewritten in
the so-called switched cone complementarity form

ẋ = Ax + Bz + Eu + g (3a)

w = Cx + Dz + Fu + h (3b)

C∗
π � z ⊥ w ∈ Cπ (3c)

where x is the state vector, u is the vector of external in-
puts, A,B,C,D,E, F, g, and h are constant matrices, (z, w)
are the so-called complementarity variables [28]. In particular,
for the dc/dc boost converter x = [x1 x2 ]T , u = e, z = [v1 i2 ]T ,
and w = [i1 v2 ]T . The sets C∗

π and Cπ depend on the exter-
nally controlled commutations: if ED2 is ON, then from (2a)
and (2b) it follows that C∗

π = R+ × R and Cπ = R+ × {0},
whereas if ED2 is OFF, then from (2a) and (2c), it follows
that C∗

π = Cπ = R+ × R+ . With the aforesaid positions, (3) be-
comes a complete switched model of the dc/dc boost converter.
The model (3) captures the converter behavior in all possible
operating conditions. For instance, assume that ED2 is OFF, and
that at a time instant say t̄, the inductor current becomes zero.
As is well known, such a condition determines the converter to
operate in a discontinuous conduction mode. It is easy to show
that having x1(t) < 0 for t ∈ (t̄, t̄ + ε1 ] and any ε1 > 0 is not
possible for a solution of the complementarity model (1), (2)
because some of the constraints (2) are violated. Indeed, since
x1(t̄) = 0, in order to get a negative current, one should have
ẋ1(t) < 0 for t ∈ (t̄, t̄ + ε2 ] with some ε2 > 0. From (1a) and
(1d), it follows v2 = −Lẋ1 − R1x1 + e, and if ẋ1 < 0, it is v2
strictly positive, and from (1c), i2 = 0. Then, from (1c), one
has i1 = x1 and the constraint (2a) contradicts the hypothesis
of having a negative current. Similar considerations can be done
for the other converter modes and for detecting inconsistent
initial conditions.

In the sequel, we show that complete switched models of a
wide class of power converters can be represented in the form
(3). Note that in (3a) and (3b), all matrices are constant, the
internally controlled commutations are taken into account by
means of nonnegative inequality constraints in (3c), and the
externally controlled commutations determine a change in the
sets C∗

π and Cπ . When an ED is neither an ID nor an IS, its
current–voltage characteristic can be represented by means of
a more generic piecewise-affine relation. In that case, in order
to obtain a complementarity model (3), some intermediate steps
must be carried out. In particular, voltage and current of the
ED will not correspond to complementarity variables. On the
other hand, a different idealization of the EDs characteristics
should not affect the equations that describe the circuit topol-
ogy, e.g. (1). The EDs variables that appear into the dynamic
equations, e.g., v1 and i2 in (1a) and (1b), will be considered
as “inputs” for the circuit model part and indicated by using the
symbol ϕ with suitable subscripts (see the block Σd in Fig. 1).

The other EDs variables, e.g., i1 and v2 , will be considered as
“outputs” for the circuit model part Σd and denoted by λ. The
representation of the (ϕ, λ) ED characteristic will bring into the
model the complementarity variables z and w, and will allow to
write the model in the form (3). As a preliminary step toward
the determination of the switched cone complementarity model
(3), in the next section, we show how it is possible to obtain
a complementarity representation of a piecewise-affine (ϕ, λ)
characteristic by using equivalent RDS circuit representations.

III. COMPLEMENTARITY MODEL OF PIECEWISE-AFFINE

CHARACTERISTICS VIA RDS CIRCUITS

Throughout the paper, we deal with EDs whose current–
voltage characteristics can be idealized by means of scalar
piecewise-affine nondecreasing characteristics. To elaborate on
this, let (ϕ, λ) be a pair of current and voltage, or vice versa.
Let us introduce first some useful definitions. The (ϕ, λ) char-
acteristic changes its slope at the so-called breaking points.
Then, the idealized ED characteristic is uniquely defined by the
initial slope σ0 , the final slope σp , and the set of p breaking
points {(Φj ,Λj ), j = 1, . . . , p} with the intermediate slopes
σj , j = 1, . . . , p − 1. The slope of the jth affine part of the
characteristic will be

σj
∆=

Φj+1 − Φj

Λj+1 − Λj
, j = 1, . . . , p − 1. (4)

Since we deal only with nondecreasing characteristics, we have
σj ≥ 0 for j = 0, 1, . . . , p. The slope can assume infinity as a
value. Moreover, from the definition of breaking point, it fol-
lows that σj �= σj−1 for j = 1, . . . , p. The jth breaking point
is called a convex breaking point if σj > σj−1 and a concave
breaking point if σj < σj−1 . In what follows, we show that any
nondecreasing piecewise-affine relation between ϕ and λ can be
represented by an equivalent RDS circuit and then parameter-
ized by the complementarity variables z and w in the following
complementarity form:

ϕ = asλ + bT
s z + gs (5a)

w = csλ + Dsz + hs (5b)

0 ≤ z ⊥ w ≥ 0 (5c)

where as ≥ 0, bs ∈ R
p , gs ∈ R, cs ∈ R

p ,Ds ∈ R
p×p , hs ∈ R

p .
The relation (5c) implies that for each pair of complementarity
variables at least one of them must be zero. Each pair of comple-
mentarity variables (zj , wj ) will represent current and voltage
of an ID appearing in the RDS circuit. In our complementarity
representation, the number of complementarity variables, i.e.,
the length of the vectors z and w, is equal to the number of
breaking points of the characteristic. As will be shown in the se-
quel, different RDS circuits can equivalently represent the same
(ϕ, λ) characteristic.

A. Nondecreasing Single Breaking Point Characteristics

The complementarity model (5) for the characteristic of the
so-called ideal diode (ID) (see Fig. 3), can be simply ob-
tained. Indeed, such a (ϕ, λ) characteristic can be written in the
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Fig. 3. Ideal diode symbol with the corresponding (ϕ,λ) current–voltage
characteristic and the indication of a possible pair of complementarity variables.

Fig. 4. Piecewise-affine nondecreasing convex characteristic (ϕ,λ) with a
single breaking point and a corresponding RDS circuit; here 1/g0 and 1/g1 are
resistances; Φ0 is the intersection of the initial affine part of the characteristic
with the ϕ-axis. The ID characteristic in Fig. 3 can be obtained as a particular
case with Φ0 = 0, Λ1 = 0, σ0 = g0 = 0, and σ1 = g1 infinite.

complementarity form (5) with ϕ = z and w = −λ, i.e.,
as = 0, bs = 1, gs = 0, cs = −1,Ds = 0, hs = 0 and 0 ≤ z ⊥
w ≥ 0. The ID characteristic is a particular case of a piecewise-
affine nondecreasing convex characteristic (compare Figs. 3 and
4). By using the ID behavior, it is possible to show that the (ϕ, λ)
characteristic depicted in Fig. 4 represents the current–voltage
characteristic for the circuit shown in the same figure. Note that
in [21], the series of a resistor, an ID, and a voltage source is
called a concave resistor. The (ϕ, λ) characteristic in Fig. 4
can be represented by integrating both blocking and conducting
states of the ID into the following complementarity model:

ϕ = g0λ + z1 + Φ0 (6a)

w1 = −λ +
1
g1

z1 + Λ1 (6b)

0 ≤ z1 ⊥ w1 ≥ 0. (6c)

The model (6) can be explained by analyzing conducting and
blocking operating conditions of the ID. Since z1 ≥ 0, from
(6b) it follows that for λ < Λ1 it will be w1 > 0. Then, it must
be z1 = 0 and the ID is blocking. Equation (6a) becomes ϕ =
g0λ + Φ0 , which by choosing g0

∆= σ0 ≥ 0 is the equation of
the initial affine part of the characteristic. For λ > Λ1 , since w1
must be nonnegative, from (6b) it follows that z1 must be strictly
positive, and then, the ID will be conducting, i.e., w1 = 0. By
substituting z1 obtained from (6b) in (6a), we get ϕ = (g0 +
g1)λ − g1Λ1 + Φ0 . Then, by choosing g1

∆=σ1 − σ0 > 0, we
get ϕ = σ1λ − (σ1 − σ0)Λ1 + Φ0 , which is the equation of the
affine part of the characteristic in Fig. 4 with slope σ1 . It can
be shown that (6) is a complementarity representation of any
piecewise-affine nondecreasing and convex (ϕ, λ) characteristic
with only one breaking point, independently of what type of
variables (current or voltage) ϕ and λ are [29]. Therefore, in

Fig. 5. Piecewise-affine nondecreasing concave characteristic (ϕ,λ) with a
single breaking point and a corresponding RDS circuit; here, r0 and r1 are
resistances; and Λ0 is the intersection of the initial affine part of the characteristic
with the λ-axis.

Fig. 6. Piecewise-affine nondecreasing convex (ϕ,λ) characteristic with
p = 3 breaking points.

the following, without loss of generality we assume that ϕ is a
current and λ is a voltage, as in Fig. 4.

Consider the piecewise-affine nondecreasing concave single
breaking point characteristic in Fig. 5. By using the ID behavior
and arguments similar to those presented earlier, it is simple to
show that the (ϕ, λ) characteristic represents the current–voltage
characteristic for the circuit depicted in the same figure. Note
that in [21], the parallel of a resistor, an ID, and a current source
is called a convex resistor. By applying the Kirchhoff Current
Law (KCL) and Kirchhoff Voltage Law (KVL) to the circuit
the (ϕ, λ) characteristic can be represented in the following
complementarity form:

ϕ =
1

r0 + r1
(λ − r1z1 − Λ0 + r1Φ1) (7a)

w1 =
r1

r0 + r1
(λ + r0z1 − Λ0 − r0Φ1) (7b)

0 ≤ z1 ⊥ w1 ≥ 0 (7c)

where r0
∆= 1/σ0 ≥ 0 and r1

∆= 1/σ1 − 1/σ0 > 0. By imposing
r0 = 0,Φ1 = 0,Λ0 = 0 and letting r1 → +∞, the model (7)
becomes the complementarity representation of an ID in which
ϕ = −z1 is the opposite of the nonnegative ID current and
λ = w1 is the nonnegative ID voltage.

B. Nondecreasing Convex Characteristics

Consider the piecewise-affine nondecreasing convex char-
acteristic in Fig. 6. All breaking points are convex and σj >
σj−1 ≥ 0 for j = 1, . . . , p. Fig. 6 represents the current–voltage
characteristic of the RDS circuit in Fig. 7, where p = 3 and

g0
∆= σ0 (8a)

gj
∆= σj − σj−1 , j = 1, . . . , p. (8b)
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Fig. 7. RDS circuit that has a piecewise-affine convex current–voltage (ϕ,λ)
characteristic. A pair of complementarity variables is associated to each ID;
1/gj , j = 0, . . . , p are resistances.

Fig. 8. Piecewise-affine nondecreasing concave (ϕ,λ) characteristic with
p = 3 breaking points; Λ0 is the intersection of the (continuation of the) initial
affine part (the one with slope σ0 ) with the λ-axis.

Note that g0 ≥ 0 and gj > 0 for j = 1, . . . , p, i.e., all resistances
in Fig. 7 are positive. The circuit topology can be explained by
noticing that the RDS circuit in Fig. 7 is obtained from that
in Fig. 4 by adding concave resistors in parallel, one for each
breaking point. For λ < Λ1 all IDs are blocking; for Λ1 < λ <
Λ2 , the first ID is conducting and all the other IDs are blocking;
for Λ2 < λ < Λ3 , the first two IDs are conducting; and so on. In
other words, the jth ID will be conducting if λ > Λj . Note that
if the characteristic has a final vertical piece, one has 1/gp = 0,
and a shortcut will replace the resistance in the pth concave
resistor of the RDS circuit in Fig. 7.

By applying the KCL and KVL to the RDS circuit in Fig. 7,
we get

ϕ = g0λ +
p∑

k=1

zk + Φ0 (9a)

wj = −λ +
1
gj

zj + Λj , j = 1, . . . , p. (9b)

Moreover the IDs characteristics can be modeled as

0 ≤ zj ⊥ wj ≥ 0, j = 1, . . . , p. (10)

The complementarity representation (9), (10) of a piecewise-
affine nondecreasing convex (ϕ, λ) characteristic can be simply
rewritten in the form (5).

C. Nondecreasing Concave Characteristics

Consider the nondecreasing concave (ϕ, λ) characteristic
shown in Fig. 8. If all breaking points are concave, then
0 ≤ σj < σj−1 for j = 1, . . . , p. The characteristic in Fig. 8
represents the current–voltage characteristic of the RDS circuit

Fig. 9. RDS circuit that has a nondecreasing concave current–voltage (ϕ,λ)
characteristic.

in Fig. 9, where p = 3 and

r0
∆=

1
σ0

(11a)

rj
∆=

1
σj

− 1
σj−1

, j = 1, . . . , p. (11b)

The RDS circuit is obtained from that in Fig. 5 by adding convex
resistors in series. For ϕ < Φ1 , all IDs are conducting, for Φ1 <
ϕ < Φ2 only the first ID is blocking, and so on. In other words,
the jth ID will be blocking if ϕ > Φj . If the characteristic has
a final horizontal part, one has σp = 0, and consequently, rp is
replaced by an open circuit. Note that in this case if p > 1, the
ID in the pth convex resistor requires a different choice of the
complementarity variables in order to get a complementarity
representation (see (13b) as follows).

Indeed, by applying the KVL to the RDS circuit in Fig. 7, we
get

λ = r0ϕ +
p−1∑
k=1

wk + zp + Λ0 . (12)

By applying the KCL at the different nodes of the circuit in
Fig. 7, we get

wj = rjϕ + rj zj − rjΦj , j = 1, . . . , p − 1 (13a)

wp = −ϕ +
zp

rp
+ Φp . (13b)

By substituting (13a) in (12) and solving for ϕ

ϕ =
1∑p−1

k=0 rk

λ −
∑p−1

k=1 rkzk + zp∑p−1
k=0 rk

+
∑p−1

k=1 rkΦk − Λ0∑p−1
k=0 rk

.

(14)
Note that

∑p−1
k=0 rk = 1/σp−1 . Then, (14) is well posed provided

that σp−1 is finite. The condition σp−1 being infinite corresponds
to a nondecreasing concave characteristic with one breaking
point and infinite slope of the initial part, i.e. p = 1 and σ0
infinite. Such a situation is already included in the model (7) with
r0 = 0. By substituting (14) in (13), we get the complementarity
model (5).

D. Nondecreasing Characteristics

It is possible to construct now a complementarity model for
a generic piecewise-affine nondecreasing (ϕ, λ) characteristic,
defined by the set of breaking points, the initial slope, and the
final slope. The breaking points set can be divided into the
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Fig. 10. Current–voltage characteristic of a diode and a corresponding ideal-
ized piecewise-affine characteristic: VB is the breakdown voltage and VF is the
forward voltage.

Fig. 11. RDS circuit corresponding to the piecewise-affine diode characteristic
in Fig. 10.

sequences of consecutive convex and concave breaking points.
A sequence of consecutive convex (concave) breaking points is
also called a convex (concave) sequence. By using a procedure
similar to that presented earlier, to each convex (concave) se-
quence, one can associate an equivalent RDS circuit. Then, an
RDS circuit having (ϕ, λ) as current–voltage characteristic can
be obtained by collecting and by connecting the RDS circuits
corresponding to the different breaking point sequences. By us-
ing such a circuit, it is possible to formulate an algorithm for
the construction of a complementarity model of any piecewise-
affine nondecreasing characteristic (see [29] for the details).

As example, consider the piecewise-affine representation of
a diode characteristic shown in Fig. 10. The (ϕ, λ) characteris-
tic has two breaking points: (0, VB ) is concave and (0, VF ) is
convex. The characteristic corresponds to the current–voltage
characteristic of the RDS circuit depicted in Fig. 11. The circuit
is obtained by connecting the RDS circuit corresponding to the
concave breaking point (0, VB ) (Fig. 5 with Λ0 = VB , r0 =
0, r1 replaced by an open circuit and Φ1 = 0) with the RDS cir-
cuit corresponding to the convex breaking point (0, VF ) (Fig. 4
with Φ0 = 0, g0 = 0, 1/g1 = RON and Λ1 = VF ). By applying
the KVL and KCL to the circuit in Fig. 11, one can write

ϕ1 = −z1 (15a)

ϕ2 = z2 (15b)

w1 = λ1 − VB (15c)

w2 = −λ2 + RONz2 + VF (15d)

ϕ = ϕ1 + ϕ2 (15e)

λ = λ1 = λ2 . (15f)

By substituting λ for λ1 and λ2 in (15c) and (15d), and by using
(15e), the complementarity model of the (ϕ, λ) characteristic in
Fig. 10 can be represented in the form (5) with the following

Fig. 12. IS with the complementarity variables and the corresponding char-
acteristics in ON and OFF states. Note that, as for the ID, the complementarity
variables zIS and wIS are chosen with the source sign convention.

matrices:

as = 0, bT
s = [−1 1 ] , gs = 0, (16a)

cs =
[

1
−1

]
, Ds =

[
0 0
0 RON

]
, hs =

[−VB

VF

]
. (16b)

Note that two pairs of complementarity variables are needed
in order to represent the piecewise-affine diode characteristic
in Fig. 10 whereas only one pair of complementarity variables
is enough for the ID. The motivation for that is on the number
of breaking points of the two characteristics. In general, dif-
ferent complementarity representations can be obtained with a
different choice of the z and w variables.

IV. CONE COMPLEMENTARITY MODELS FOR SWITCHING

ELECTRONIC DEVICES

In the analysis presented earlier, we have considered only
uncontrolled EDs. In order to represent the characteristics of
switching EDs, i.e., EDs whose state can be forced ON and OFF,
we need to generalize the model (5) in the so-called cone com-
plementarity form. Introduce first the complementarity model of
the (IS). Without loss of generality, let zIS be the voltage across
the switch and wIS the current through the switch. The behavior
of an IS can be represented with zIS = 0 and wIS ∈ R if the IS
is ON, and zIS ∈ R and wIS = 0 if the IS is OFF (see Fig. 12).
Such relations can be rewritten in the following form

K∗
π � zIS ⊥ wIS ∈ Kπ (17)

where π = 1 if IS is ON, π = −1 if IS is OFF, and we define the
following sets

K0 = K∗
0 = R+ (18a)

K1 = R, K∗
1 = {0} (18b)

K−1 = {0}, K∗
−1 = R. (18c)

The sets K0 ,K1 , and K−1 are cones and the sets K∗
0 ,K∗

1 , and
K∗

−1 are the corresponding dual cones [12]. The novelty of (17)
with respect to the complementarity condition (5c) is that the
IS model can also represent the commutations by means of the
switching function π which can be time–varying. Moreover,
the model (17) includes also the representation of an ID, which
can be obtained by choosing a constant π = 0.

By using the IS device, it is possible to model in the cone com-
plementarity framework any ED whose current–voltage charac-
teristics in the ON and OFF states are representable in a piecewise-
affine form. Say (ϕON, λON) the characteristic of the ED when
ON and (ϕOFF, λOFF) when OFF. Consider the circuit in Fig. 13
where ϕ is the current and λ is the voltage of the ED to be
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Fig. 13. Circuit for the complementarity representation of the current–voltage
characteristics of a switching ED. The RDS circuits corresponding to the char-
acteristics in the ON and OFF states are represented by the equivalent impedances
ξON and ξOFF, respectively.

modeled. Two ISs are used and their states are controlled so that
for each state of the ED only one leg of the parallel determines
the ED behavior. When the ED is ON, one has to assign IS1
ON (π1 = 1) and IS2 OFF (π2 = −1), so that the characteris-
tic (ϕ, λ) is represented by the equivalent impedance ξON, i.e.
ϕ = ϕON and λ = λON. Vice versa if the ED is OFF, one fixes IS1
OFF (π1 = −1) and IS2 ON (π2 = 1), so that ϕ = ϕOFF, λ = λOFF,
and the characteristic of the ED is represented by the equivalent
impedance ξOFF. Then, for any state of the ED, we can write

ϕ = wIS1 + wIS2 (19a)

wIS1 = ϕON = aONλON + bT
ONzON + gON

= aONλ + aONzIS1 + bT
ONzON + gON (19b)

wIS2 = ϕOFF = aOFFλ + aOFFzIS2 + bT
OFFzOFF + gOFF (19c)

wON = cONλ + cONzIS1 + DONzON + hON (19d)

wOFF = cOFFλ + cOFFzIS2 + DOFFzOFF + hOFF. (19e)

Equations (19) can be rewritten in the form

ϕ = asλ + bT
s z + gs (20a)

w = csλ + Dsz + hs (20b)

C∗
π � z ⊥ w ∈ Cπ (20c)

where

zT = [ zIS1 zIS2 zON zOFF ] (21a)

wT = [wIS1 wIS2 wON wOFF ] (21b)

as = aON + aOFF, bT
s = [ aON aOFF bT

ON bT
OFF ] (21c)

gs = gON + gOFF (21d)

cs =




aON

aOFF

cON

cOFF


 , hs =




gON

gOFF

hON

hOFF


 (21e)

Ds =




aON 0 bT
ON 0

0 aOFF 0 bT
OFF

cON 0 DON 0
0 cOFF 0 DOFF


 (21f)

Cπ = Kπ1 ×K∗
π1

× R
pON

+ × R
pOFF

+ (21g)

C∗
π = K∗

π1
×Kπ1 × R

pON

+ × R
pOFF

+ (21h)

with π1 = 1 (π2 = −1) if the ED is ON and π1 = −1 (π2 = 1) if
the ED is OFF, pON and pOFF being the numbers of breaking points
(and IDs) for the (ϕON, λON) and (ϕOFF, λOFF) characteristics,
respectively. The representations of both states of the ED (ON

and OFF) are now included in (20).
If the ED behaves as a shortcut when ON (as an open circuit

when OFF, respectively), the circuit in Fig. 13 can be simplified
to the parallel (series) connection of an IS with the equivalent
impedance of the OFF (ON) phase. If ϕ is a voltage and λ is
a current, one can obtain the cone complementarity represen-
tation by using dual circuits [29]. It should be noticed that by
exploiting the specific ED characteristic, it is possible to obtain
representations that involve a lower number of complementarity
variables. Moreover, there exist some changes of the character-
istics of ξON and ξOFF that affect only the vectors gs and hs in the
representation (20). In particular, this is the case for variations
of the characteristic such that the number of breaking points and
the slopes of each sequence of breaking points do not change.
That could be useful to prove robust stability under specific
uncertainties of the characteristics.

V. COMPLEMENTARITY MODELS FOR POWER CONVERTERS

In the previous analysis, we have shown that any switching
piecewise-affine characteristic of an ED can be represented in
the cone complementarity form (20), where (ϕ, λ) is the pair of
current and voltage (or vice versa) of the device and (z, w) is
the pair of vectors of the complementarity variables associated
with that device. In the first part of this section, we show how,
given the representations of the EDs of a power converter, it
is possible to obtain the representation of the entire converter.
In the second part of the section, a possible approach for the
numerical integration of the model is presented.

A. Switched Cone Complementarity Model

Consider current and voltage on each ith ED as an input
ϕdi

or as an output λdi
for the remaining part of the circuit

which represents the dynamic part of the system. We assume
for the sign of voltage and current on the EDs the convention
used for sources. Such a choice is important to check passiv-
ity of the dynamic model of the converter with respect to the
input ϕd and the output λd [23]. On the other hand, since the
typical voltage and current sign convention chosen for the ED
characteristic representation is the opposite, i.e., the one used
for passive components, that motivates the negative feedback in
Fig. 1 which can be now more specifically represented as shown
in Fig. 14 and with a different representation in Fig. 15. The
circuit obtained by extracting Ns EDs, which will consist of lin-
ear elements (resistors, inductors, and capacitors) and external
sources, under very general assumptions [19], can be described
by the state-space system

ẋ = Adx + Bdϕd + Edu (22a)

λd = Cdx + Ddϕd + Fdu (22b)

where x is the state vector, u denotes the external sources,
ϕd and λd are vectors with Ns components, and (ϕsi

, λsi
) =
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Fig. 14. Feedback structure for the switched cone complementarity model of
a power electronic converter.

Fig. 15. Block scheme of the power electronic converter with “external” elec-
tronic devices. For simplicity, external sources are not shown.

(−ϕdi
, λdi

) represents the characteristic of the ith ED. Note
that possible state reduction, e.g., a three-phase converter with
currents equilibrium on the ac side, can be handled at this mod-
eling stage following the typical approach used for classical
state space representations of power electronic systems.

Now collecting the complementarity models (20) of the Ns

EDs of the power converter into the following cone complemen-
tarity model:

ϕs = Ãsλs + B̃sz + g̃s (23a)

w = C̃sλs + D̃sz + h̃s (23b)

C∗
π � z ⊥ w ∈ Cπ (23c)

Cπ =
Ns∏
i=1

(Kπi
×K∗

πi
× R

pONi
+ × R

pOFFi
+ ) (23d)

where ϕs ∈ R
Ns , λs ∈ R

Ns , Ãs ∈ R
Ns ×Ns , B̃s ∈ R

Ns ×p̃ with
p̃ =

∑Ns

i=1(2 + pONi
+ pOFFi

), g̃s ∈ R
Ns , C̃s ∈ R

p̃×Ns , D̃s ∈
R

p̃×p̃ , h̃s ∈ R
p̃ . The matrices shown earlier are given by

Ãs = diag {asi
} ≥ 0, i = 1, . . . , Ns (24a)

B̃s =




bT
s1

0 · · · 0
0 bT

s2
· · · 0

...
...

. . .
...

0 0 · · · bT
sN s


 (24b)

g̃s = col {gsi
} i = 1, . . . , Ns (24c)

C̃s =




cs1 0 · · · 0
0 cs2 · · · 0
...

...
. . .

...
0 0 · · · csN s


 (24d)

D̃s = diag {Dsi
} i = 1, . . . , Ns (24e)

h̃s = col {hsi
} i = 1, . . . , Ns (24f)

where “diag” indicates block diagonal matrices and “col” indi-
cates matrices obtained by appending in a unique column several
scalars or column vectors. By using ϕd = −ϕs and λd = λs (see

the feedback scheme in Fig. 14) and by substituting (23a) in (22)
one obtains

ẋ = Adx − Bd

[
Ãsλd + B̃sz + g̃s

]
+ Edu (25a)

λd = Cdx − Dd

[
Ãsλd + B̃sz + g̃s

]
+ Fdu (25b)

w = C̃sλd + D̃sz + h̃s . (25c)

By looking at (25b), if the matrix DdÃs has no eigenvalues

in −1, the matrix M
∆= I + DdÃs ∈ R

Ns ×Ns is invertible and

λd = M−1 [Cdx − DdB̃sz − Ddg̃s + Fdu]. (26)

Note that M being singular, it means that the feedback struc-
ture has an algebraic loop not solvable and we get an ill-
posed problem. In the case Dd > 0 and Ãs ≥ 0, the matrix
M = (I + DdÃs) is invertible [30]. The same can be proved
if Dd ≥ 0 and Ãs ≥ 0 and diagonal [29], which is the case
for the proposed complementarity model (Dd ≥ 0 follows from
passivity of Σd and Ãs ≥ 0 from (24a) because the EDs charac-
teristics are assumed to be nondecreasing). By using (26), after
some algebra (25a) and (25c) can be written in the switched
cone complementarity form (3), which is repeated here for the
sake of readability

ẋ = Ax + Bz + Eu + g (27a)

w = Cx + Dz + Fu + h (27b)

C∗
π � z ⊥ w ∈ Cπ (27c)

with the cones given by (23d) and

A := Ad − BdÃsM
−1Cd (28a)

B := BdÃsM
−1DdB̃s − BdB̃s (28b)

C := C̃sM
−1Cd (28c)

D := D̃s − C̃sM
−1DdB̃s (28d)

E := −BdÃsM
−1Fd + Ed (28e)

F := C̃sM
−1Fd (28f)

g := BdÃsM
−1Ddg̃s − Bdg̃s (28g)

h := h̃s − C̃sM
−1Ddg̃s . (28h)

It is interesting to note that the converter scheme in Fig. 14 can
also be used if there are no dynamic elements (inductors and
capacitors) in the circuit, i.e., the state dimension is zero and
the matrices Ad,Bd,Ed , and Cd disappear. Such circuits are
typically used to describe basic topologies of power electronics
converters, e.g., a single-phase full-bridge rectifier with diodes,
an ideal sinusoidal voltage source, and an ideal current source
as a load. These configurations, which can also be part of more
complex circuits, cannot be simply modeled and simulated with
tools that use switched models of power converters [31].

B. Numerical Integration

The switched cone complementarity model (27) can be used
for the simulation of the power converter dynamic behavior. In
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order to obtain the numerical integration of (27), the continuous-
time model (27a) can be discretized by using classical tech-
niques for the integration of linear differential equations. For
instance, the discretization of (27a) with the backward Euler
method leads to

xk = (I − Aθ)−1(xk−1 + Bθzk + Eθuk + gθ) (29)

where k represents the discrete time variable and θ is the sam-
pling period. Moreover, the sampled version of (27b) can be
written as

wk = qk + M̄zk (30)

with

qk = C(I − Aθ)−1(xk−1 + Eθuk + gθ) + Fuk + h (31a)

M̄ = D + C(I − Aθ)−1Bθ. (31b)

At each time step, given xk−1 and uk , the vector qk is known
and also the state πk of the externally controlled switches
is known. Then, one can solve the following cone comple-
mentarity problem: given qk , M̄ , and πk , find zk such that
C∗

πk
� zk ⊥ wk ∈ Cπk

with wk given by (30) [13]. Such type of
integration algorithm can be simplified so that a lower number
of complementarity variables is considered at each integration
step. Assume the ith ED is ON. The complementarity variables
used for the representation of the OFF characteristic of the ED
do not influence the relation between ϕ and λ (see Fig. 13),
hence they do not affect the converter behavior. The model (19)
reduces to

ϕ = aONλ + bT
ONzON + gON (32a)

wON = cONλ + DONzON + hON (32b)

with 0 ≤ zON ⊥ wON ≥ 0. An analogous representation can be
obtained from (19) when ED is OFF. Therefore, at each step,
given the states of the externally controlled EDs, one can select
the complementarity representation (5) for the specific ED state
(ON or OFF) and use only those matrices in (24). The meaning
(and also the size) of the complementarity variables z and w
change when external commutations of EDs occur, though ϕ
and λ preserve their physical meanings as current and voltage,
or vice versa. By selecting at each step the representations of
the EDs corresponding to the ON or OFF states, the original cone
complementarity system becomes a linear complementarity sys-
tem. Then, one can compute the matrices (28), and by using (31),
solve the following linear complementarity problem: given qk

and M̄ , find zk such that 0 ≤ zk ⊥ wk ≥ 0 (because only con-
straints in the form (5c) are now considered). The numerical
integration is simplified because linear complementarity prob-
lems can be efficiently solved [29], [32], [33].

VI. SIMULATION RESULTS

In this section, by considering as examples a dc/dc boost
converter and a three-phase inverter, we show the potentialities
of the complementarity framework for modeling and simulating
power converters.

A. DC/DC Boost Converter

Consider the dc/dc boost converter in Fig. 2. From the cir-
cuit topology, using (1a)–(1d), the converter can be repre-
sented in the form (22a)–(22b) with x = [x1 x2 ]T , u = e, ϕd =
[v1 i2 ]T , λd = [i1 v2 ]T and the following matrices

Ad =

[
−R1

L − 1
L

1
C − 1

R2 C

]
, Bd =

[
1
L 0

0 1
C

]
, Ed =

[
1
L

0

]

(33a)

Cd =
[

1 0
0 1

]
, Dd =

[
0 1
−1 0

]
, Fd =

[
0
0

]
. (33b)

Assuming ED1 to be an ID, one can write

ϕs1 = −ϕd1 = −z1 , λs1 = λd1 = w1 (34a)

0 ≤ z1 ⊥ w1 ≥ 0. (34b)

Assume ED2 to be an antiparallel connection of an ID and an
electronic switch

ϕs2 = −ϕd2 = −z2 , λs2 = λd2 = w2 (35a)

K∗
π � z2 ⊥ w2 ∈ Kπ (35b)

where π = −1 if the switch ED2 is ON and π = 0 if the switch
ED2 is OFF [see (18)]. The matrices of the model (23) can be
simply obtained from (34a) and (35a); the cones in (27c) will
be C∗

π = R+ ×K∗
π and Cπ = R+ ×Kπ with π = −1 if ED2 is

ON and π = 0 if ED2 is OFF. Using (28), it is simple to achieve
the complementarity representation (27) for the converter under
investigation. In particular, it will be A = Ad,B = Bd,C =
Cd,D = Dd,E = Ed, F = Fd, g = 0, and h = 0, which can
be simply verified to be equal to the model presented in
Section II.

Consider the following parameters: e = 5 V, R1 = 0.1 Ω,
L = 0.2 mH, R2 = 20 Ω, C = 40 µF. Moreover, an open-loop
pulse width modulation of ED2 with a period equal to 100µs
and a duty cycle equal to 0.5 is considered. Fixed-step numerical
integrations with different sampling periods have been imple-
mented. At each time step, the linear complementarity problem
is solved by using the Lemke algorithm [32], which for low-
order problems is usually faster than the PATH algorithm [33].
Time evolutions of the state variables are depicted in Fig. 16.
Similar results are also obtained by using the PLECS tool. Ta-
ble I shows a comparison of the numerical results assuming the
PSpice results as the “real” evolutions. The time required for the
complementarity model numerical integration is larger than the
time required for the simulation when using PLECS or PSpice.
However, the integration of the complementarity model is ob-
tained by using the standard Matlab code: code optimization
and computational burden minimization are out of the scope of
this paper. The interesting result is that by decreasing the sam-
pling period almost the same rate of improvement is obtained
both with PLECS and the integration of the complementarity
model. Also, the comparison with the PSpice simulation results
demonstrates the reliability of the complementarity model.

The complementarity model can be used to simulate the
power converter behavior also in the presence of inconsistent
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Fig. 16. Inductor current and capacitor voltage starting from x1 (0) = 1 A
and x2 (0) = 2 V.

TABLE I
COMPARISON OF THE DC/DC BOOST CONVERTER SIMULATION RESULTS

Fig. 17. Inductor current and capacitor voltage with x1 (0) = 1 A and
x2 (0) = −2 V.

initial conditions. By assuming x2(0) = −2, the simulation re-
sults are shown in Fig. 17 and the corresponding error with
respect to PSpice in Fig. 18. At the first step, the integration of
the complementarity model determines the state jump from the
inconsistent initial condition to a consistent value of the capac-
itor voltage [34]. Note that the PLECS simulation is stopped at
the first integration step and an error message due to the nega-
tive initial capacitor voltage is generated. It should be stressed
that for the numerical integration of the power converter com-
plementarity model, differently from the integration techniques
that use classical switched models [31], [35], it is not necessary
to enumerate and compute the models of the different modes of
the converter that are embedded in the complementarity model
by means of the constraints on the complementarity variables.

Fig. 18. Voltage (top) and current (bottom) error between the complementarity
and the PSpice results.

Fig. 19. Three-phase power converter with input filter.

B. Three-Phase Converter

Consider the three-phase converter in Fig. 19. From the circuit
topology, and using the KVL and KCL, after some algebra, by
defining x = [xC xL xr xs ]T (note that xt = −xr − xs)
and u = [ e er es et ]T , the converter can be represented
in the form (22a), (22b) with

Ad = −R

L




L
RRC C − L

RC 0 0

L
RLf

LRf

RLf
0 0

0 0 1 0
0 0 0 1


 (36a)

Bd = − 1
3L




3L
C

3L
C

3L
C 0 0 0

0 0 0 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1


 (36b)

Ed =
1

3L




0 0 0 0
3L
Lf

0 0 0
0 2 −1 −1
0 −1 2 −1


 (36c)

Cd =




−1 0 0 0
−1 0 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1
0 0 1 1




(36d)
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Dd =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0




(36e)

and Fd is zero. In order to obtain the complementarity model
(27), one must now insert the EDs characteristics. For in-
stance, if the EDs are all IDs, since ϕs = −ϕd and λs = λd , by
choosing z = [ϕs1 ϕs2 ϕs3 −ϕs4 −ϕs5 −ϕs6 ]T and
w = [−λs1 −λs2 −λs3 λs4 λs5 λs6 ]T , it is straight-
forward to obtain the matrices of (20), and using (28), the com-
plementarity representation (27) with Cπ = C∗

π = R
6
+ .

Note that if the EDs of the converter are modeled as IDs, the
resulting matrix D = Dd is skew symmetric, i.e., D + DT = 0.
Instead, if the EDs are diodes modeled by using the equivalent
piecewise-affine characteristic in Fig. 10, it is simple to check
that D + DT > 0, whereas Dd + DT

d is still zero because it
depends only on the circuit topology and not on the specific EDs
characteristics. It is possible to show that for any power converter
model, the matrix D is skew symmetric when, by considering all
converter capacitors (inductors) as shortcut (open circuits), i.e.,
with the initial conditions of the corresponding state variables
set to zero, there will not exist any dissipation path into the
resulting equivalent circuit. If the power diode is represented by
means of the equivalent circuit in Fig. 11, independently of the
converter in which the diode is included, there will exist at least
the dissipation path including RON and VB .

Consider the following circuit parameters: R = 1 Ω, L =
100 mH, Rf = 2 Ω, Lf = 10 mH, Cf = 10 mF, RC =
10 kΩ. Moreover, consider the inputs e = 300 V, er =
Aesin(2πfet), es= Aesin(2πfet− 2π/3), et = Aesin(2πfet −
4π/3) with Ae = 100 V and fe = 48 Hz. The EDs are assumed
to be the antiparallel connection of an electronic switch and an
ID. A square-wave modulation with a frequency of 50 Hz is
fixed. Figs. 20 and 21 report the state variables time evolution.
After 0.5 s, it is simulated a failure: the third leg is completely
disconnected. Such a situation is simply simulated by fixing
different matrices for the ED models, i.e., open circuits, at
the failure time instant. Then, at 0.7 s, the third phase is
connected again. At 1 s, a three-phase shortcut on the third
leg occurs and the first two legs are no more forced, i.e., EDi

for i = 1, 2, 4, 5 behave as IDs, and for i = 3, 6, are shortcuts.
The capacitor voltage xC goes to zero instantaneously and the
inductor current goes to e/Rf = 150 A with the dynamics of
the first-order system given by Rf and Lf (see Fig. 22). Note
that the (ideal) state discontinuity of the capacitor voltage is
simulated without problems by the complementarity model
(see [34] for the explicit computation of state discontinuities in
switching circuits).

Up to 0.5 s, a performance comparison with the PSpice and
PLECS simulations confirms the considerations done for the
case of the boost converter results. On the other hand, the situa-
tions generated at 0.5 s and at 1 s determine inconsistent states
that cannot be simulated by using PLECS.

Fig. 20. Currents xr , xs , and xt of the three-phase converter.

Fig. 21. Capacitor voltage xC and inductor current xL of the three-phase
converter.

Fig. 22. Capacitor voltage xC and inductor current xL of the three-phase
converter. Note the different vertical time scale with respect to the previous
figure.

VII. CONCLUSION

Complementarity formalism has been proposed as a frame-
work for representing complete switched models of power con-
verters and for their time-domain analysis. The complemen-
tarity model can be constructed without explicitly detailing all
modes of the converter and by representing the piecewise-affine
current–voltage characteristics of the electronic devices (EDs)
at the desired level of abstraction. A general procedure for
the construction of the complementarity model has been pre-
sented. We have shown that any piecewise-affine relation can be
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represented by means of an equivalent RDS circuit in which an
ideal diode is associated to each change of slope of the charac-
teristic. The RDS circuit allows to determine a static comple-
mentarity model of the ED characteristic and the use of ISs gen-
eralizes the RDS circuits also for EDs with externally controlled
commutations. A feedback structure of the converter topology
model with the complementarity models of the device character-
istics leads to the final switched cone complementarity model of
the power converter. A dc/dc boost converter and a square-wave
inverter have been presented as examples in order to illustrate the
potentialities of the complementarity models for time-domain
analysis and for the numerical simulation of power converter
behaviors also in the presence of inconsistent state conditions.

The use of the complementarity formalism opens interesting
new frontiers for the modeling and formal analysis of power
electronic converters. For instance, by combining the comple-
mentarity model with the passivity concept, one can prove exis-
tence, uniqueness, and stability of solutions of power converters.
The complementarity model has been used in [36] for com-
puting steady-state solutions of a simple converter topology.
This could represent the basis for the use of the complemen-
tarity framework for frequency-domain analysis of converters,
which is a direction of future research. Moreover, the proposed
approach can be used for modeling other classes of nonlin-
ear circuits, e.g., sensing circuits containing elements such as
thermistor and bridges. On the other hand, although the com-
plementarity formalism is valid also for controlled converters,
it is not easy to predict how the complementarity formalism
might help for the power converters control design. The main
difficulty is that the power converters control acts on the model
indexes of the switching set, i.e., the cones to which the com-
plementarity variables belong. Overall, the complementarity
framework seems to be useful to tackle, in a future research,
a wide range of different topics with practical interest in power
electronics.
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