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Abstract

We consider the problem of extraction of trend and chaotic components from irregular stock
market time series. The proposed methods also permit to extract a part of chaotic component,
the so-called anomalous term, caused by the transient short-time surges with high amplitudes.
This provides more accurate determination of the trend component. The methods are based on
the M-evaluation with decision functions of Huber and Tukey type. The iterative numerical
schemes for determination of trend and chaotic components are brie6y presented, resulting in an
acceptable solution within a 7nite number of iterations. The optimal level for extraction of the
chaotic component is determined by a new numerical scheme based on the fractal dimension of
the chaotic component of the analyzed series. Forecasting from the realized part of the analyzed
series and a priori expert information is also discussed.
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1. Introduction

The problem of stock market series analysis aiming to identify the structural changes
in dynamics of the underlying process and eventually to predict the time series behavior
in the future is a very diFcult task. The processes underlying stock market data, noise
level and time series volatility are “regime shifting”, i.e., non-stationary. The commonly
accepted viewpoint is that this problem is compatible to inventing a perpetuum mobile
or solving problems like the quadrature of the circle [1].
A 7rst step in stochastic time series analysis is the decomposition of the time series

x(t) as a sum of a predictable, deterministic and a chaotic component:

x(t) = ỹdet(t) + ỹ ch(t) ; (1)

where ỹdet(t) is the deterministic (or trend) component and ỹ ch is the chaotic compo-
nent [2–4].
The deterministic component re6ects the time-series changes due to the in6uence

of some de7ned causes which may not be clear enough. However, as a rule their
cumulative in6uence can be predictable during relatively long periods of time. In that
case we have the possibility of forecasting.
The chaotic or stochastic part usually concerns a high frequency “noise” where the

successive elements are practically uncorrelated. This means that this component is not
predictable.
Besides, the analyzed series may also involve the anomalous component yan(t)

re6ecting the structural changes in the process dynamics. In this case (1) becomes

x(t) = ydet(t) + yan(t) + ych(t) : (2)

The terms ydet(t), ych(t) in (2) may signi7cantly diNer from the corresponding com-
ponents in (1).
Unfortunately, traditional methods do not allow the eNective extraction of the anoma-

lous term. Moreover, various traditional methods for extraction of chaotic components
may lead to the results which are qualitatively diNerent (see, for example Ref. [5]).
Moreover, traditional methods for the determination of the trend component are

not stable with respect to short-time surges of a high amplitude. This may result in
signi7cant distortion of the trend component itself and not permit to extract correctly
the anomalous component yan(t) that very often is of interest.
The aim of this work is the creation of eNective numerical schemes for estima-

tion of trend, chaotic and anomalous components for satisfactory forecasting taking
also into account a priori expert information. In Section 1 we describe the numerical
schemes for extracting of deterministic and chaotic terms using expansions in orthogo-
nal polynomials. The numerical schemes for determination of trend and chaotic terms
on the basis of robust linear splines are presented in Section 2. Section 3 is devoted
to the optimal determination of the chaotic component based on its fractal dimension.
Section 4 presents 7rst results concerning the application of the forecasting scheme
which uses a priori expert estimation.
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2. Extraction of deterministic and chaotic terms using orthogonal polynomials

The extraction of the anomalous component can be achieved by robust methods [6–
10]. We consider a robust nonlinear polynomial model of the trend component and
corresponding numerical scheme developed on the basis of robust linear splines. For
such a model of the trend component with a polynomial degree higher than 7ve there
exists a computational instability related to a bad-conditionality of the information
matrix [4,11,12] (the expression of the information matrix will be presented below).
In order to overcome this circumstance, we use here a system of orthogonal poly-

nomials, which permits to construct a robust nonlinear polynomial model of the trend
component of any rank without inversion of the information matrix.
Let x(t) be an original time-series and let n realized values x(ti)= xi; i=1; : : : ; n be

known.
We represent the trend component in the following form:

ydet(t) =
m∑

k=0

uk�k(t) ; (3)

where uk are expansion coeFcients and �k(t) are orthogonal polynomials of the degree
k conforming to orthogonality conditions

n∑
i=1

1
�2

i
�l(ti)�p(ti) = �lp ; (4)

where �lp is the Kronecker symbol.
The system of orthonormal polynomials can be calculated using, for example, the

Forsythe recurrent scheme [11,13].
The expansion coeFcients uk ; k =0; : : : ; m are the solution of the following extremal

problem

u = argmin
u

n∑
i=1

�
(

x(ti)− ydet(ti)
�i

)
; (5)

where �2
i is the dispersion of a random value x(ti); i = 1; : : : ; n, and �(s) is the Huber

function

�(s) =




s2

2
; |s|6K ;

K |s| − K2

2
; |s|¿K ;

(6)

where K is the Huber parameter [9].
The values of the anomalous component are de7ned by the following equations:

yan(ti) = 0; i∈ I0 ;

yan(ti) = x(ti)− ydet − K�i; i∈ I+ ;

yan(ti) = x(ti)− ydet + K�i; i∈ I− ;

(7)
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where I0; I+; I− are sets of indices de7ned by relations

I0 = {i: |x(ti)− ydet(ti)|6K�i} ;

I+ = {i: x(ti)− ydet(ti)¿K�i}; i = 1; : : : ; n ;

I− = {i: x(ti)− ydet(ti)¡ − K�i} : (8)

The extremal problem (5) is reduced to the system of nonlinear equations [7,14]

u = (ATWA)−1ATWz ; (9)

where W =diag(1=�2
1 ; : : : ; 1=�

2
n) is the diagonal matrix, �2

i is the dispersion of a random
value xi and ATWA is the information matrix. The elements of the matrix A and the
components of the vector z are

Aij = �j(ti); i = 1; : : : ; n; j = 1; : : : m ;

zi = xi; i∈ I0 ;

zi = (Au)i + K�i; i∈ I+ ;

zi = (Au)i − K�i; i∈ I− ;

I0 = {i: |xi − (Au)i|6K�i} ;

I+ = {i: xi − (Au)i ¿K�i} ;

I− = {i: xi − (Au)i ¡ − K�i} :

(10)

To 7nd the solution of the system of nonlinear equations (9)–(10), and, consequently,
the solution of extremal problem (5), we apply the following iterative scheme

u(l+1) = (ATWA)−1ATWz(l); (11)

where the components of the vector z(l) are given by

z(l)i = xi; i∈ I (l)0 ;

z(l)i = (Au(l))i + K�i; i∈ I (l)+ ;

z(l)i = (Au(l))i − K�i; i∈ I (l)− ;

I (l)0 = {i: |xi − (Au(l))i|6K�i} ;

I (l)+ = {i: xi − (Au(l))i ¿K�i} ;

I (l)− = {i: xi − (Au(l))i ¡ − K�i} :

(12)

We have proved that the iterative scheme (11)–(12) is reduced to the robust solution
of problem (5) within a 7nite number of iterations (see Refs. [4,7,14]). Since the system
�j(ti); j=1; : : : ; m is orthonormal with weights 1=�2

i ; i=1; : : : ; n, the information matrix
ATWA is the identity matrix and the iterative scheme (11)–(12) could be presented in
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the following form:

u(l+1)
j =

n∑
i=1

1
�2

i
�j(ti)z

(l)
i ; (13)

where z(l)i are de7ned by Eqs. (12).

Remark. Similarly one may construct the iterative scheme when the Tukey function
is used in Eq. (5) as a robust function

�(s) =

{
s2; |s|6R ;

R2; |s|¿R :

To de7ne the value of the Huber parameter K , the table of K dependence on large
outliers share [9] is usually used. When analyzing real time series, the large outliers
share is not known initially and this does not permit to de7ne properly the Huber
parameter. In Ref. [4] we developed a scheme for proper estimation of the Huber
parameter without determination of large outliers share.
Upon extraction of trend and anomalous components

ych(t) = x(t)− (ydet(t) + yan(t)) (14)

the chaotic component ych(t) must represent (with a certain degree of approximation)
a random Brownian process.

3. Extraction of deterministic and chaotic terms using robust linear splines

Another eNective numerical scheme for determination of the trend component is
based on robust linear splines [4].
The robust linear spline S#(t) is the solution of the extremal problem for the mini-

mum of the function

J#(S#(t)) =
n∑

i=1

�
(

xi − Si

�i

)
+ #

n−1∑
i=1

(Si+1 − Si)2 ; (15)

where �(s) is the robust function, Si = S#(ti) are the required values of the robust
linear spline, #¿ 0 is the smoothing parameter (similar to the regularization parameter
for ill-posed problems [12]).
If in (15) �(s) is the Huber function, then in order to get the required vector S =

(S1; : : : ; Sn)T, we use the following algorithm for extraction of all three components
based on the robust smoothing linear splines. The system for solving the extremum
problem (15) is

AS(l+1) = F (l) ; (16)
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where A is the three-diagonal, positively de7ned symmetrical matrix and

S(l) = (S(l)
1 ; : : : ; S(l)

n )T ;

F (l) = (y(l)
1 ; : : : ; y(l)

n )T ;

y(l)
i = xi; |xi − S(l)

i |6K�i ;

y(l)
i = S(l)

i + K�i; xi − S(l)
i ¿K�i ;

y(l)
i = S(l)

i − K�i; xi − S(l)
i ¡ − K�i :

The iterative scheme (16) is reduced to the robust linear spline that minimizes the
objective function (15) within a 7nite number of iterations.
The de7nition of the optimal value of the evening parameter is given in Sections 4

and 5.
The robust extraction of time-series components using the Huber function assumes

the symmetry of large outliers with respect to the trend component. In case of symmetry
failure, instead of the Huber function one can use the Tukey function.
The iterative scheme (16) with the Tukey function �(s) can be constructed in the

similar way.

4. Determination of fractal dimension

In order to choose the optimal level of smoothness determined by a number m
of expansion coeFcients (3) or by a smoothing parameter #, we use the HausdorN–
Besicovitch (HB) fractal dimension [15,16]. The fractal dimension of Brownian process
is 1.5 [17]. Therefore, we 7nd the smoothing level for which the fractal dimension of
the chaotic component is closely adjacent to 1.5. We assume of course that the chaotic
component is close to Brownian motion.
Usually the determination of time series fractal dimension is based on the estimation

of the Hurst exponent [18,19]. We use a new algorithm for the direct determination
of fractal dimension of time series [20]. This algorithm is based on the asymptotic
formula

S(�) ∼ �2−dF ; � → +0 ; (17)

where dF is the HB fractal dimension, � is the time step for a uniform subdivision
of the analyzed time interval on n sub-intervals, S(�)=

∑n
i=1(max(x(t))−min(x(t)))�

is the area of minimal function graph covering x(t) by rectangles {(ti6 t6 ti+1) ∩
(max(x(t))6 x(t)6min(x(t)))}; i=1; : : : ; n, and max(x(t));min(x(t)) are de7ned within
interval t ∈ [ti; ti+1] [20].
From (17) we have

ln S(�) = b + a ln � : (18)

Thus, plotting the dependence graph S(�) in the double logarithmic scale and 7tting
by the least-squares method the angular coeFcient a, we 7nd the HB fractal dimension
using the formula dF = 2− a.
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After the extraction of chaotic components corresponding to diNerent values of m
(when the robust orthonormal polynomials are used) or # (when the robust splines are
used) and plotting the dependence of m or # against the fractal dimensions of corre-
sponding chaotic components, can de7ne the optimal values of m or # that correspond
to the minimum of the objective function (dF − 1:5)2.
The numerical experiments have shown that the amount of experimental data nec-

essary for reliable determination of the HB fractal dimension applying the scheme
(17)–(18) is several times (sometimes dozens of times) less compared to data neces-
sary for reliable determination of the Hurst exponent. The last circumstance permits
one to increase the eFciency of extraction of chaotic components, and, thus, increase
the eFciency of time-series forecasting.

5. Forecasting scheme based on a priori expert estimations

We developed the forecasting scheme given a priori expert estimates de7ned in the
form of a set of pairs

{xexp(ti); �2
i ; i = n + 1; : : : ; n + L} ; (19)

where xexp(ti) is the most probable expert estimate of the analyzed series for the future
time ti, �2

i is the corresponding dispersion and L is the forecasting horizon.
The forecasting scheme involves only part of the analyzed time series

x(tn−l); x(tn−l+1); : : : ; x(tn); xexp(tn+1); : : : ; xexp(tn+L) (20)

for the determination of the trend component by robust orthogonal polynomials or
robust linear splines.
The horizon l of realized values of the analyzed series is selected according to

the chosen rank m (when the system of robust orthonormal polynomials is used) or
the smoothing parameter # (when robust linear splines are used) and the forecasting
horizon L. The values of the smoothing parameters (m or #) and l can be estimated
through minimization of the residual functional based on the diNerence between the real
values of the analyzed series and the predicted values (at the stage of a preliminary
tuning of the forecasting scheme on realized part of the analyzed time series).
If a priori expert estimates are absent, then, by default, one may assume

xexp(tn+i) = x(tn); �i = �; i = 1; : : : ; L ; (21)

where � is the dispersion of diNerences between realized time series values x(tn−l+i); : : : ;
x(tn) from values xdet(tn−l); : : : ; xdet(tn) determined by the trend component on the basis
of a realized part of the analyzed series. As forecasted values xfor(tn+i); i=1; : : : ; L are
used, the values xdet(tn+i) corresponding to the trend component determined by the
scheme described above.
Figs. 1, 4 and 7 show the time series of close prices (solid curve) for some leading

corporation stocks (Fig. 1-Merrill Lynch Corp., Fig. 4-Citibank Inc., Fig. 7-Bank of
America Corp.) included in S& P500 together with the trend components (dashed
curve) determined using robust orthogonal polynomials and robust linear splines.



I. Antoniou et al. / Physica A 336 (2004) 538–548 545

Fig. 1. Time series of close prices for Merrill Lynch Corp. (solid curve) superimposed by the trend term
(dashed curve).

Fig. 2. Chaotic component for time series presented in Fig. 1.

Fig. 3. Time series of close prices for Merrill Lynch Corp. (solid curve) superimposed by the forecasted
values (dashed curve).

Figs. 2, 5 and 8 demonstrate the chaotic components of time-series presented in
Figs. 1, 4 and 7.
Figs. 3, 6 and 9 show the time series of close prices (solid curve) and the time

series of forecasted values.
The preliminary analysis of forecasting results shows that the percentage of coinci-

dence in increase and decrease of predicted and real prices amounts to 65–73%. This
bound of the developed approach is obtained in cases of absence of a priori information,
when instead of expert estimates xexp(tn+i) were used realized values x(tn).
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Fig. 4. Time series of close prices for Citigroup inc. (solid curve) superimposed by the trend term (dashed
curve).

Fig. 5. Chaotic component for time series presented in Fig. 4.

Fig. 6. Time series of close prices for Citigroup inc. (solid curve) superimposed by the forecasted values
(dashed curve).

6. Conclusion

The developed schemes for estimation of the trend and chaotic components together
with the forecasting scheme based on robust orthogonal polynomials and robust or-
thogonal splines possess computational stability and stability against transient large
outliers in realized values of the analyzed series. This approach permits to extract
the abnormal large outliers, including those not obviously clear by their time position
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Fig. 7. Time series of close prices for Bank of America Corp. (solid curve) superimposed by the trend term
(dashed curve).

Fig. 8. Chaotic component for time series presented in Fig. 7.

Fig. 9. Time series of close prices for Bank of America Corp. (solid curve) superimposed by the forecasted
values (dashed curve).

and by the amplitude, which provides the possibility of detailed analysis of anoma-
lous and critical events in economics. The proposed forecasting scheme allows to take
into account additional a priori expert information and, therefore provide more accurate
prediction of future events.
The eFciency of our preliminary analysis of the above described approach has been

demonstrated. The comparison with other existing methods will be considered in future
work.
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