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Abstract. In the cellular environment, operators, researchers and end users have
poor visibility into network performance for devices. Improving visibility is chal-
lenging because this performance depends factors that include carrier, access
technology, signal strength, geographic location and time. Addressing this re-
quires longitudinal, continuous and large-scale measurements from a diverse set
of mobile devices and networks.
This paper takes a first look at cellular network performance from this perspec-
tive, using 17 months of data collected from devices located throughout the world.
We show that (i) there is significant variance in key performance metrics both
within and across carriers; (ii) this variance is at best only partially explained
by regional and time-of-day patterns; (iii) the stability of network performance
varies substantially among carriers. Further, we use the dataset to diagnose the
causes behind observed performance problems and identify additional measure-
ments that will improve our ability to reason about mobile network behavior.

1 Introduction

Cellular networks are the fastest growing, most popular and least understood Internet
systems. A particularly difficult challenge in this environment is capturing a view of
network performance that is representative of conditions at end user devices. A number
of factors frustrate our ability to capture this view. For instance, carriers enforce differ-
ent policies depending on the traffic types or geographic/social characteristics of differ-
ent locations such as population [15, 16], causing user perceived performance to differ
from advertised performance for access technologies. Other environmental factors have
a significant impact on performance, including device model [6], mobility [11], network
load [16], packet size [7, 9] and MAC-layer scheduling [11].

To account for various factors impacting Internet performance in mobile networks,
we need pervasive network monitoring that samples a variety of devices across carriers,
access technologies, locations and over time. This work takes a first look at such a view
using data collected from controlled measurement experiments in 144 carriers during
17 months, comprising 11 cellular network technologies. We use this data to identify
the patterns, trends, anomalies, and evolution of cellular networks’ performance.

This study demonstrates that characterizing and understanding the performance in
today’s cellular networks is far from trivial. We find that all carriers exhibit significant
variance in end-to-end performance in terms of latency and throughput. To explain this
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variance, we investigate geographic and temporal properties of network performance.
While we find that these properties account for some differences in performance, impor-
tantly we observe that performance is inherently unstable, with some carriers providing
relatively more or less predictable performance. Last, we identify alternative sources
of variance in performance that include routing and signal strength. An important open
question is how to design a measurement platform that allows us to understand reasons
behind most observed performance differences.

This paper differs from previous related work in that our study is longitudinal, con-
tinuous, pervasive and gathered from mobile devices using controlled experiments. In
contrast, some related work [17, 8, 13] passively collected network traffic from cellular
network infrastructure, using one month of data or less. These studies tend to be limited
to a single carrier, hampering our ability to conduct meaningful comparisons across car-
riers. Other work collected network performance data at mobile devices [3, 15, 4], but
did not use controlled experiments to capture a continuous view of performance.
Roadmap. We describe our methodology and dataset in §2, then present our findings
regarding network performance across different network technologies, carriers, loca-
tions, and times in §3.1, §3.2, and §3.3 respectively. Then we study the root causes for
performance degradation in §3.4. We discuss related work in §4 and conclude in §5.

2 Methodology and Dataset

This paper studies cellular network performance using a broad longitudinal view of net-
work behavior impacting user-perceived performance. To this end, we consider HTTP
GET throughput, round trip time latency from ping, and DNS lookup time as end-to-end
performance metrics. In addition to gathering raw performance data, we annotate our
measurements with path information gathered from traceroute, the identify of the de-
vice’s carrier, its cellular network technology, signal strength, location and timestamp.

We focus on performance from mobile devices to Google, a large, popular content
provider. We argue that Google is an ideal target for network measurements because it is
highly available and well provisioned, making it easier to isolate network performance
to cell networks vs. Google’s network. Focusing on these measurements, we identify the
performance impact of carrier, network technology, location and time. To reason about
the root cause behind performance changes, we use path information, DNS mappings
and signal strength readings.

Our data is collected by two Android apps using a nearly identical codebase, Speedome-
ter and Mobiperf.1 Speedometer is an internal Android app developed by Google and
deployed on hundreds of volunteer devices, mainly owned by Google employees. As
such, the bulk of our dataset2 is biased toward locations where Google employees live
and work. Speedometer collected the following measurements from 2011-10 to 2013-
2 (17 months): 6.6M ping RTTs to www.google.com (each sample consists of 10
consecutive probes), 1.7M HTTP GETs to measure TCP throughput using a 224KB
file hosted on a Google server, 0.4M UDP burst samples for measuring packet loss rate,
0.8M DNS resolutions of google.com, and 0.8M traceroute (without hop RTTs) from

1 http://www.mobiperf.com/
2 This dataset is publicly available at https://storage.cloud.google.com/speedometer



Table 1: Number of Measurement and Carriers for the Network Technologies
HSPA HSDPA UMTS EDGE GPRS LTE EVDO eHRPD 1xRTT

# of Measurements 439K 2326K 563K 506K 58K 1460K 2183K 301K 68K
# of Carriers 50 111 96 85 48 7 8 2 3

144 carriers and 9 network technologies. The dataset includes ≈ 4-5 measurements per
minute. Each measurement is annotated with device model, coarse-grained location
information (k-anonymized latitude and longitude), timestamp, carrier, and network
type.3 All users consented to participate in the measurement study; the anonymiza-
tion process is explained in the dataset’s README file. Because of anonymization, the
number of users who participated in data collection is unknown.

We augment the Speedometer dataset with 11 months of data collected by Mobiperf.
Mobiperf conducts a superset of measurements in Speedometer, and notably adds signal
strength information. The number of measurements collected by Mobiperf for each
task ranges from 17K (HTTP GET) to 58K (ping RTT test) from 71 carriers. We use
Mobiperf data to study the impact of signal strength on measurement results. Table 1
shows the number of measurements collected from the most frequently seen 9 network
technologies (ordered by peak speed) for both GSM and CDMA technologies in the
combined datasets.

3 Data Analysis

3.1 Performance across carriers

This section investigates the performance of five access technologies for each of several
carriers. Our goal is to understand how observed performance matches with expecta-
tions across access technologies, and how variable this performance is across carriers.
In Fig. 1, we plot percentile distributions (P5, P25, median, P75, and P95) of the latency
and throughput of 9 carriers from Asia, America, Europe, and Australia. We select these
carriers based on their geographic locations and relatively large data sample sizes. One
of the key observations is that performance varies significantly across carriers and ac-
cess technologies; further, the range of values is also relatively large.

For carriers that have high latency, we use traceroute data to investigate if the cause
is inefficient routes to Google [19]. However, approximately half of the carriers such as
SFR (French Carrier) and Swisscom have direct peering points with Google, making
this unlikely to be the cause for high latency.

For carriers such as AT&T, T-Mobile US, and Airtel (India), we observe high vari-
ability in latency. In the following subsections, we investigate whether this is explained
by regional differences, time-of-day effects and/or other factors.

Surprisingly, we do not observe significant latency differences across access tech-
nologies for some carriers. For example, the latency of UMTS, HSDPA, and HSPA
in Emobile (Ireland), SK Telecom (Korea), and Swisscom are almost equal. Users in
these networks may not see noticeable differences in performance for delay-sensitive
applications when upgrading to newer technologies.

3 https://github.com/Mobiperf/Speedometer
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Fig. 1: Throughput and latency across access technology and carriers.

In Fig. 1b, we plot HTTP throughput for downloading a 224KB file from a Google
domain. Compared to ping RTT, the difference between the throughput of carriers is
relatively smaller, indicating that the high variability in ping RTTs is often amortized
over the duration of a transfer.

Note that the throughput for UMTS, HSDPA, and HSPA are almost identical. This
occurs because the flow size is not sufficiently large to saturate the link for high-capacity
technologies. This indicates a need for better low-cost techniques to estimate available
capacity in such networks [5]. However, the figure shows significant performance dif-
ference between GPRS/EDGE and other access technologies.

We observe that lower latency is generally correlated with higher HTTP GET through-
put, but this depends on the carrier. We quantify this using the correlation coefficient
between HTTP throughput and ping RTT for specific carrier and network type. The
strongest correlation coefficient observed was for Verizon LTE users with −0.53 and
lowest was −0.01 for T-Mobile HSDPA users, using one-hour buckets.

Having observed significant differences in performance within and between carri-
ers, we now investigate some of the potential factors behind this variability.

3.2 Performance across different locations

We now investigate the impact of geography on network performance. We focus on
four major US carriers in three US regions where our dataset is densest (New York,
Seattle, and Bay Area). Each of these carriers exhibits different topologies (Internet
egress, Google ingress and ASes between) in different regions, potentially leading to
performance differences in each region.

Despite the variety in network topologies, we surprisingly find that for AT&T, T-
Mobile, and Sprint, both of the latency and throughput were similar in these three lo-
cations. However, for Verizon, we observe different LTE performance in New York,
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Fig. 2: Verizon LTE Ping RTT in Different Locations

Seattle, and Bay Area. Fig. 2 plots these latencies over time, and clearly show that the
RTT latency for the Bay Area is lower than New York and Seattle areas. HTTP through-
put in these regions exhibit similar patterns.

We use DNS data in the Seattle area and observe that 97% of DNS requests for
google.com resolve to an IP for a server in the Los Angeles area instead of Seattle,
in part explaining the gap in latency between the two regions. For the NY area, our
measurements did not provide enough geographic information to understand whether
increased latency was due to path inefficiencies.

The key takeaway from this section is that geography alone doesn’t explain the vari-
ance in performance observed in the previous section; however, for one carrier (Veri-
zon), it explains some of it. Further, we observe that each region experiences changes
in performance independently – the correlation of performance across regions for each
carrier is negligibly small. Last, when correlating ping RTT and HTTP GET throughput
within each region, we find higher correlations than carrier-wide correlations presented
in the previous section. This further suggests that performance is affected by location.

3.3 Performance over time

We now analyze how performance depends on time – both in terms of time-of-day
effects and the stability of measurement performance over time. These properties allow
us to identify when to measure the network (e.g., during known busy hours) and when
not to measure (e.g., at ten minute intervals), thus allowing us to efficiently allocate the
limited measurement resources that users provide.

Time-of-day and long-term trends. Fig. 3 plots HTTP throughput for four major
carriers in the US. As expected, throughput decreases (and variance tends to increase)
during the busy hours for mobile usage (8AM to 7PM), likely due to higher load on
the network. Interestingly, different carriers experience minimum throughput at differ-
ent times. T-Mobile and AT&T reach their minimum throughput at 1PM and 5PM, re-
spectively; Sprint experiences minimum performance at 9PM and Verizon, two troughs
occur at 8AM and 9PM. Last, these carriers experience different relative variations in
performance during busy hours: AT&T and Sprint throughput drops by approximately
a third during busy hours while Verizon drops by 25%, and T-Mobile by 16%.
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Next, we investigate the long-term performance trends over the duration of our
study, allowing us to tell if new cellular technologies and infrastructure are keeping pace
with increased mobile Internet usage. Specifically, we look at the change in throughput
and latency of carriers through time over consecutive days for each network technology
they support in different areas. We did not observe improvement; despite technology
upgrades, performance is highly variable over time and there is no statistically signifi-
cant change during the observation period.

Stability of performance. The predictability and stability of network performance are
important not only for users, who are often frustrated more by variations in performance
than the average value, but also for determining how and when to conduct measure-
ments for future experiments. In this section, we compute stability using a weighted
moving average and autocorrelation.

First, we group the data into 1-hour buckets (to obtain a sufficiently large sample
size). Then for each bucket, we use either the median or 5th percentile latency. We
compute the moving average error for different window sizes and sampling periods.

We compute the moving average error as follows: for a window size W , we pre-
dict the next data point on that series by computing moving average for the previ-
ous consecutive W points. For each W and sampling period (e.g., every N hours for
N = 1, 2, 3, . . .), we compute the average over different offsets.

Fig. 4 plots the average error for all data points with windows size of 2 and differ-
ent sampling periods for median ping RTT (results with larger window sizes of 3, 4,
and 5 are similar). We observe that prediction accuracy varies significantly by carrier,
with Verizon and Sprint in the Bay Area being relatively predictable, and T-Mobile and
Sprint in Seattle being relatively unpredictable. Also, for all of these carriers, prediction
accuracy is best when looking at the most recent data (one hour sampling period) and er-
ror tends to increase with longer durations, with the exception of 24hr (day) and 168hrs
(week) sampling periods, which are local minima. The results from autocorrelation are
similar.

These predictability results indicate that despite the large overall variance in cellular
network performance, there are regions and time scales over which performance is rela-
tively predictable, depending on the carrier. Importantly, we can use this information to
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Fig. 5: Performance Degradation in: (a)T-Mobile HSDPA network in Bay Area due to
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inform the design of measurement system that uses prediction to minimize probes that
would provide redundant results. For instance, if we subsample every other value (i.e.,
50% sampling rate) in the Verizon LTE ping data in the Bay Area (which has the lowest
error in the full sample), the distribution of latencies is nearly identical.

3.4 Performance Degradation: Root Causes

We now use our measurements to identify the reasons for persistent performance degra-
dation observed in consecutive days. We focus on cases where the issue affects both
ping RTT and HTTP throughput.

Inefficient paths. A reason for performance degradation is inefficient paths. Zarifis et
al [18] provide a detailed taxonomy and analysis of path inflation in mobile networks;
here we focus on their time evolution and constrain our analysis to only those cases
where both latency and throughput were impacted.

For example, we observe an increase in ping RTT in T-Mobile’s Bay Area HSDPA
network from Nov 12, 2011 to Dec 10, 2011. Using DNS lookups, we find that clients
previously sent to Mountain View were being sent to Seattle, with the additional delay
explained by path inflation (Fig. 5a). After Dec 10, clients are again directed toward
Mountain View.

We also observed a high-latency event for T-Mobile’s Seattle HSDPA network in
Seattle (Fig. 5b). Prior to the event, traceroutes indicate that traffic from T-Mobile in-
gresses into Level 3 in Seattle, then enters Google’s network. After Feb 15, traffic from
these subscribers ingressed into Level 3 at a peering point in Los Angeles before enter-
ing Google’s network. After Feb 20, routing returns back to its previous state (ingress
and egress point in Seattle area) and the median RTT decreases to its previous value,
strongly implying that the change in performance was due to the topology change.

In Fig. 5c, we observe that ping RTT and the number of traceroute hops increases for
Verizon LTE users in the Bay Area. Previously, clients were sent to a Google frontend
in the Bay Area; after the change clients are sent to the same Google ingress point, but
then traffic is sent to a frontend in Seattle (leading to ≈ 30% higher latency).

In this section we show that fixed-line inefficiencies can significantly impact the
performance of LTE and HSDPA networks. For these newer technologies, since the
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Fig. 6: Impact of signal strength on latency, packet loss, and throughput.

RTT is lower, the impact of inefficient routes is even relatively higher (around 80%
increase in the RTT of T-Mobile HSDPA in Seattle).

Signal strength. It is well known that weak signal strength reduces channel efficiency
for wireless communication; therefore, it is important to account for this when inter-
preting measurements. Using Mobiperf clients, we gather network measurements an-
notated with the signal strength, in Arbitrary Strength Units (ASUs),4 reported during
the probes and determine the impact of signal strength on performance.

Fig. 6 shows how three performance metrics vary with ASU values for AT&T HS-
DPA users in Seattle. The figures indicate high packet loss, latency and low throughput
for ASU values between 0 and 8 (confirming the results in [14]); at larger ASU values
that increase in signal strength has less impact on performance. These results indicate
that accounting for signal strength is critically important for properly interpreting mea-
surement results. For example, when measuring a carrier’s capacity, it is important to
do such tests in regions with high signal strength.

4 Related Work

Many previous studies attempt to improve our visibility into and understanding of mo-
bile network performance. We can broadly characterize them according to what type
of network performance they measured, where they conducted measurements and how
they performed measurements. In this work, we are the first to use controlled, active
measurement experiments to continuously monitor end-to-end network performance
seen from mobile devices, across more than 100 carriers during a period of 17 months.
Previous work differs as follows.
Passive measurements, infrastructure, single carrier. Several studies focus on pas-
sive measurements from inside mobile carriers [17, 8, 13]. While important for debug-
ging the infrastructure components of latency, the view from such locations does not
necessarily indicate the performance on mobile devices.

4 Android shows zero signal bar for the ASU values between 0 and 2 and full signal bars when
ASU value is more than 12.



Active measurements, end devices, single carrier. Several projects use active mea-
surements from end devices, but focus on a single carrier for a limited duration of time,
often doing a fine-grained and low-level analysis of performance. In [7], authors mea-
sured goodput, delay, and jitter of HSDPA and WCDMA networks from an operator in
Finland using active measurements from a laptop. In [9], the authors compare LTE and
HSPA networks by conducting high precision latency measurements for an operator
in Austria. In [10, 11, 2, 12], authors studied the TCP performance in CDMA2000 net-
works. In[10], the authors investigate the steady-state TCP performance over CDMA 1x
EV-DO downlink/uplink with the active measurement of long-lived TCP connections at
the end-points for a Korean operator. [12, 11] conducted a cross-layer measurement of
transport, physical and MAC layer parameters. [12] characterizes the wireless scheduler
in a commercial CDMA2000 network and its impact on TCP performance by perform-
ing end-to-end experiments and sending UDP and TCP packets.
Active measurements, end devices, several carriers.: Similar to the previous exam-
ples, several studies also include comparisons across multiple carriers. In [1], by in-
vestigating the performance of three Norwegian operator and conducting active mea-
surements from end-to-end devices, they studied the impact of the packet size on the
minimal one-way delay for the uplink in 3G mobile networks. In [4], by performing ac-
tive measurements for more than 6 months from 90 voting locations and by measuring
the round trip delay of three network operator in Norway, they found the operator-
specific network design and configurations as the most important factor for delays. In
[16], by measuring data throughput, latency, and video and voice calls handling capaci-
ties, they compared the 3G performance of three carriers in Hong Kong under saturated
conditions by conducting measurements at 170 sites in four months.
Active measurements, end devices, pervasive. Most closely related to our work is
[15] and [6]. Both projects gather active measurements from apps running on mobile
devices; however, they all rely on user-generated tests. In contrast our work uses con-
trolled experiments to schedule measurements independent of user activity. This enables
a more continuous view of performance in mobile networks.

5 Conclusion

This paper took a first look at end-to-end performance as seen from mobile devices,
using a dataset of scheduled network measurements spanning more than 100 carriers
over 17 months. We find that there are significant performance differences across car-
riers, access technologies, geographic regions and over time; however, we emphasize
that these variations themselves are not uniform, making network performance difficult
to diagnose. Using supplemental measurements such as DNS lookups and traceroutes,
we identified the reasons behind persistent performance problems. Further, we exam-
ined the stability of network performance, which can help inform efficient scheduling
of future network measurements. Overall, we find that performance in cell networks
is not improving on average, suggesting the need for more monitoring and diagnosis.
As part of our future work, we are investigating how to automatically detect persistent
performance problems in real time, gather additional network measurements to explain
them and provide this information to carriers and end users automatically.
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