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Abstract. Intravascular ultrasound (IVUS) is a catheter-based medical imaging
technique that produces cross-sectional images of blood vessels. In this paper,
we present a method for the segmentation of the luminal border using IVUS ra-
dio frequency (RF) data. Specifically, we parameterize the lumen contour using
Fourier series. This contour is deformed by minimizing a cost function that is
formulated using a probabilistic approach in which the a priori term is obtained
using the prediction confidence of a Support Vector Machine classifier using fea-
tures extracted from the RF signal. We evaluated the performance of our method
by comparing our results with manual segmentations from two expert observers
on 280 frames from eight 40 MHz IVUS sequences from rabbits and pigs. The
performance was evaluated using the Dice similarity coefficient, coefficient of
determination, and linear regressions of the lumen area for each frame. Our re-
sults indicate the feasibility of our method for the segmentation of the lumen from
IVUS RF data.

1 Introduction

Intravascular ultrasound (IVUS) is a catheter-based imaging technique that provides
high-resolution, cross-sectional images of the interior of blood vessels in real time. The
IVUS system consists of a transducer which transmits pulses and receives a reflected
radio frequency (RF) signal (i.e., A-line) at a discrete set of angles. These signals are
then processed to reconstruct an image that is meaningful to the physicians (i.e., B-
mode image). Accurate segmentation of IVUS images is important in order to assess
vessel characteristics (e.g., the lumen and wall diameters), and for other applications
(e.g., the study of mechanical properties of the vessel wall and the characteristics of
the plaque, 3D reconstruction of the vessel). However, manual segmentation of IVUS
data can be very expensive considering that one typical sequence may be composed of
thousands of frames. Therefore, methods for automatic segmentation of IVUS data are
needed.

Early IVUS systems operated at frequencies in the range of 10 to 20 MHz. At these
frequencies, the blood presents a low acoustic impedance and therefore these systems
produce IVUS images in which the lumen has low intensity, no texture, and a high
contrast with respect to the vessel wall tissues. For this reason, many approaches for
IVUS segmentation were based on the use of local properties of the image such as pixel
intensity and gradient information. Modern IVUS systems operate at high frequencies
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(i.e., 30 to 40 MHz) and produce images with high resolution. In these images, the lu-
men presents some texture due to speckle, and lower contrast with respect to the vessel
wall tissues. For these images, edge information is not sufficient and therefore, later ap-
proaches incorporated prior knowledge using region and global information such as tex-
ture [12], gray level variances [5, 8], statistical properties of the intensities [1], temporal
information (3D segmentation) [2], and discrete wavelet decomposition [16]. Most re-
cent approaches include the use of nonparametric probability densities with global mea-
surements [17], multilevel discrete wavelet frame decomposition [15], discrete wavelet
packet transform [7], machine learning classification methods [4], a combination of
gray level probability density functions and the intensity gradient [3], linear-filtered
gradient vector flow which drives the deformation of a balloon snake [18], and binary
morphological object reconstruction [13].

A common characteristic of these methods is that the segmentation is performed
using the reconstructed B-mode images. This poses a limitation considering that, apart
from the frequency of operation, the appearance of the B-mode images depends on
the reconstruction settings (e.g., time gain compensation (TGC), dynamic range com-
pression, brightness, contrast and scaling) [6] (Figs. 1(a) and 1(b)). These settings are
subjectively selected by the interventionist, and may change from one intervention to
the next, or even during the same acquisition [11].

One solution to overcome these limitations is to perform the segmentation employ-
ing the raw IVUS RF signal since it is not affected by transformation parameters or
visualization settings. RF-based approaches include methods for the characterization of
different regions of interest such as plaque or blood (e.g., [14, 9]).

In this work, we present a probabilistic method for the segmentation of the lumen
from IVUS RF data. Our main contribution is a novel approach for the computation
of the a priori terms necessary for a probabilistic segmentation by the analysis of the
RF signal instead of the B-mode image. We evaluated the performance of our method
by comparing our segmentation results with the manual segmentation from two expert
observers on 280 frames from eight 40 MHz IVUS sequences from rabbits and pigs.
Our results indicate the feasibility of our method for the segmentation of lumen.

The rest of the paper is organized as follows: Section 2 presents the steps of our
segmentation method, Section 3 presents the results obtained with our method, and
Sections 4 and 5 present our discussion and conclusion, respectively.

2 Methods

The proposed method is a significant improvement of our method presented in [10].
In that work, the segmentation of the lumen was achieved by the minimization of a
probabilistic cost function formulated using a Bayesian approach:

U(C) =
∑
r

∑
θ

Pl(r, θ,C)[−log(vl(r, θ))]+ [1−Pl(r, θ,C)][−log(vn(r, θ))] , (1)

where r and θ represent the polar coordinates of each pixel (i.e., radius and angle,
respectively),Pl is the probability of each pixel to belong to the lumen class, and vl(r, θ)
and vn(r, θ) represent to the a priori information (i.e., likelihood of the pixel to belong
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to the lumen and non-lumen, respectively). The probability of a pixel to belong to lumen
class is defined by its radial distance from the lumen curve S(θ,C) using a sigmoid
function: Pl(r, θ,C) =

(
1 + exp−λ(S(θ,C)−r))−1

.
Using this formulation, those pixels far above the contour will have a higher prob-

ability of belonging to the lumen, while the pixels far below the contour will have
probability close to zero. For the pixels near the contour, depending on the value of λ,
the probability of belonging to lumen will be close to 0.5.

The two major limitations of our previous method [10] are the number of parameters
to be tuned for the parameterization of the curve which uses a mixture of Gaussians,
and the simple method for estimating the a priori information models using gray-level
histograms which limited the method for the segmentation of 20 MHz IVUS sequences
exclusively. The proposed method has two significant differences with respect to that
work: (i) we propose a parameterization which requires less parameters to be tuned
and that suits better to the characteristics of the segmentation problem, and (ii) the
computation of the a priori terms is based on the analysis of the RF signal.

The RF IVUS data corresponding to a cross section of a vessel consist of a set of
one-dimensional signals. Each of these signals corresponds to the acoustic echoes ac-
quired at a particular angle using a single-rotating transducer or a circular array of trans-
ducers. Therefore, the data can be analyzed using polar coordinates where the radius
corresponds to the penetration of the ultrasound beam measured from the transducer
(Fig. 1(d)). In this context, the lumen contour can be represented as a one-dimensional
periodic curve. In this work, we have chosen to define the lumen curve using one-
dimensional Fourier series instead of other parameterizations due to its simplicity and
because this parameterization provides a periodic curve for which the smoothness can
be controlled by the number of harmonics (i.e., number of coefficients Nk). The lumen
contour is defined by:

S(θ,C) =
a0
2

+

Nk∑
k=1

[
ak cos

(
k2πθ

Nθ

)
+ bk sin

(
k2πθ

Nθ

)]
, (2)

where Nθ represents to the number of A-lines in a frame (i.e., width of the polar B-
mode image), and C = [a0, a1, ..., aNk−1, b1, ..., bNk−1]

T are the Fourier coefficients
that control the shape of the curve.

For the computation of the a priori terms, we employ features extracted from the
IVUS RF signal using our blood detection method proposed in [9]. In that work, the
structures present in the vessel are modeled as a distribution of random positioned scat-
terers for which the acoustic power scattered in the direction of the ultrasound trans-
ducer is defined by the differential backscattering cross section (DBC) of the scatterer.
The RF signal corresponding to each A-line is divided into NP non overlapping par-
titions of constant width. The DBC of the scatterers that generates the signal of each
partition is computed by minimizing the difference between the root mean square power
of the real RF signal and the modeled RF signal computed with the model. In this work,
we employ the DBC and the radial distance of the partition as features to detect the
blood and non-blood regions using a machine learning method for classification.

In summary, our method consists of six steps: (i) divide the RF signal correspond-
ing to each A-line of a frame intoNP non-overlapping partitions; (ii) compute the DBC
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values for all the partitions using the method described in [9]; (iii) construct a feature
vector vp ∈ R2 for each partition p by concatenating the DBC computed for that par-
tition and its radial distance from the transducer; (iv) classify each partition as blood
or non-blood according to the prediction of a classifier; (v) use the confidence of the
classification results as the a-priori term in the Bayesian optimization function; and
(vi) minimize the cost function that guides the position and shape of the lumen contour
using a line-search method.

In this work, we chose to use a Support Vector Machines (SVM) classifier in order
to take advantage of its ability of mapping the data to a higher dimensional space on
which the problem becomes linearly separable. The training and deployment steps for
the SVM model are described next.
Training: In the training step, the user to provides examples of lumen and non-lumen
regions by manual annotations of these regions on the first frame B-mode reconstruction
of the sequence to be segmented (Figs. 1(b) and 1(c)). Next, the DBC of the scatterers
that generate the signal of each partition corresponding to the regions provided as ex-
amples is computed. A two-dimensional feature vector vp ∈ R2 is constructed for each
partition. A training set is defined by associating each vector with its corresponding
class and then used to generate an SVM model that is trained using a Gaussian kernel.
The optimal parameters c and γ for the SVM model are computed using grid search and
5-fold cross validation.
Deployment: For each of the frames to be segmented, the DBC of the scatterers for
each partition of every A-line is computed, and the feature vector is constructed in the
same way as in the training step. The classification of each partition is performed using
the SVM model giving as a result a class and an associated confidence Ps (Fig. 1(e)).
This classification confidence is then used as the likelihood for blood and non-blood as
vl(r, θ) = Ps(r, θ) and vn(r, θ) = 1− Ps(r, θ), respectively. Finally, the segmentation
is performed by the minimization of the cost function of Eq. (1) using the steepest
descent method.

3 Results

We use the proposed method to perform segmentation on selected frames from eight
40 MHz IVUS sequences, four were acquired from rabbits and the other four from
pigs. For each sequence, we selected five groups of seven consecutive frames from
different periods of time for a total of 35 frames per sequence. The parameters used
for the computation of the DBC are σ = 5.3e−8 for the width of the envelope of the
impulse function, µ = 0.08276 dB/mm corresponding to the attenuation coefficient of
blood, c = 1, 540× 103 mm/s corresponding to the speed of sound in biological tissue,
4P = 0.05 mm for the size of partition, D = 400 scatterers/mm−2 for the scatterer
density, and δ = 3 for the cardinality of neighbors according to [9]. The number of
coefficients used for the contour parameterization was Nk = 5. The parameter for the
probabilistic segmentation was experimentally set to λ = 0.4. The initial point for the
steepest descent optimization was empirically set to a0 = 1, ai = 0.1 and bi = 0.1
∀ i > 0. The method was implemented in MATLAB and the average time for training
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(a) (b) (c)

(d) (e)

Fig. 1. Example depicting (a) the first frame of a sequence in Cartesian B-mode representation
using logarithmic dynamic range compression, (b) the same frame using linear dynamic range
compression with a compression factor of 0.4, (c) the corresponding user annotation for blood
and non-blood (red and blue, respectively), (d) the polar B-mode representation of the frame,
and (e) the probability of each partition to belong to blood according to the SVM model in polar
representation (color figure).

the SVM for each sequence was 12 s and the segmentation time per frame was 5.4 s on
an Intel i7 at 2.67 GHz 12GB RAM.

We evaluated the performance of our method by comparing our segmentation re-
sults (A) with the manual segmentation from two expert observers (O1 and O2). We
computed the Dice similarity coefficient for the comparison of segmentations of (O1

vs. O2), (O1 vs. A), and (O2 vs. A) for each frame. Figure 2 depicts the results of this
analysis for each sequence and for the total number of frames. Note that our segmen-
tation results are similar to the segmentation provided by the two expert observers. In
addition, we evaluated the agreement between the areas defined by each segmentation
by computing the coefficient of determination and using linear regressions (Fig. 3). Al-
though there exists a good agreement between the areas, a tendency of our method to
under-segment the areas can be observed. Finally, Figure 4 depicts examples of the seg-
mentation results along with the manual segmentations from the two expert observers.
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(a) (b)

Fig. 2. Mean Dice similarity coefficient for (a) each sequence, and (b) the total number of frames.

(a) (b) (c)

Fig. 3. Linear regression and coefficient of determination for the comparisons of (a) (O1 vs. O2),
(b) (O1 vs. A), and (c) (O2 vs. A).

4 Discussion

The main advantage of our method when compared with other existing IVUS segmenta-
tion methods is that our method is not affected by the B-mode reconstruction parameters
since it is based on the use of the RF signal. While there may be a concern regarding
the availability of such data, note that recent IVUS systems available in the clinic are
capable of providing the RF signal. The selected dataset included frames with moderate
guidewire artifacts and did not include frames with strong guidewire artifacts, plaque,
stents and side branches as this is subject for future work. In this work, we do not eval-
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Fig. 4. Examples of segmentation results (yellow) and their qualitative comparison with manual
segmentations.

uate the accuracy of the classification method in the classification of a frame since this
data is not used as a direct result of the segmentation method but instead as a likeli-
hood of a pixel to belong to a certain class. The final class assigned to each pixel is
determined by the segmentation curve. Real-time segmentation may be achieved by an
implementation in a lower level language and by segmenting frames in parallel. Addi-
tionally, the proposed method may be fully automated by creating an SVM model using
samples from a large dataset of sequences instead of training for each sequence. The
main limitation of our method is the requirement of user initialization. Additionally,
our method may provide an incorrect segmentation in the presence of side branches for
which expert knowledge is required. Improvements on the classification performance,
the use of other classification methods, different parameterizations of the lumen curve,
exploration of additional features, including additional classes apart from blood and
non-blood (e.g., guidewire, shadow, plaque.), segmentation of the media/adventitia in-
terface, the use of temporal information (i.e., 3D-approach), and comparison with other
existing methods are subjects of future research.

5 Conclusion

We have presented a novel approach for the segmentation of the luminal border using
IVUS RF data. Our results indicate the feasibility of our method for the segmentation
of lumen in real time applications.
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