
Selection of bi-level image compression method for reduction of

communication energy in wireless visual sensor networks

Khursheed Khursheed, Muhammad Imran, Naeem Ahmad, Mattias O’Nils

Department of Information Technology and Media, Division of Electronics Design, Mid

Sweden University Sundsvall, Sweden

{khursheed.khursheed,naeem.ahmad,muhammad.imran, mattias.onils}@miun.se

ABSTRACT

Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board

computation unit, communication component and energy source. Compared to the traditional wireless sensor

network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on

two dimensional data (images) which requires higher processing power and communication bandwidth.

Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget

in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited

availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server

should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and

requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be

effective in reducing communication cost in WVSN. In this paper, we have compared the compression

efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the

compression algorithms which can efficiently compress bi-level images and their computational complexity is

suitable for computational platform used in WVSNs. These results can be used as a road map for selection of

compression methods for different sets of constraints in WVSN.

Keywords: Wireless Visual Sensor Network, Communication Energy Consumption, Computational Complexity,

Visual Sensor Nodes, Image Compression.

1. INTRODUCTION

Wireless Visual Sensor Network (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the

field. Typically VSN in WVSN consists of an image sensor for acquiring images of the area of interest, a

processor for local image processing and a transceiver for communicating the results to the central base station.

WVSNs are most suitable for those applications which have a limited availability of power and in those cases

where it is inconvenient to modify the location of the VSN or to frequently change the batteries. Based on the

technological developments in image sensors, sensor networking, distributed processing, low power processing

and embedded systems, a VSN can perform its tasks using a suitable Field Programmable Gate Array

(FPGA)/Microcontroller, a wireless link and with limited storage. In order to be operational for a reasonable

lifetime, low power sensing, processing and communication hardware is required for the VSN. The VSN must

perform complex tasks (e.g. image compression, labeling and object features extraction) by using an embedded

processing unit and must transmit the results wirelessly, but, unfortunately, it possess very limited energy

resources. The energy consumption and bandwidth are major constraints in WVSN.

Both on board processing and communication influence the total energy consumption of the VSN. Transmitting

the results from VSN, without local processing, reduces the processing energy but, it results in higher

communication energy due to the transmission of large chunks of raw data. On the other hand, if all the

processing is performed locally at the VSN and only the final results are transmitted, then the communication

energy is reduced tremendously, however, this causes an increase in the processing energy because of increased

processing at the VSN.

A previous study on intelligence partitioning between the VSN and the server
1
 concludes that the selection of a

suitable intelligence partitioning strategy reduces the total energy consumption of the VSN. In addition, the

results in
3
 show that coding the binary image after preprocessing and segmentation is a good alternative in order

to achieve a general architecture for a WVSN. Based on this general architecture, the focus in this paper is on

selecting the most energy efficient bi-level image coding method for further reducing the communication energy

consumption.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357242786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mattias.onils%7D@miun.se

In a machine vision scenario, images contain a few objects located at random locations. Our focus in this work

is on the compression analysis of these kinds of images and in comparing different bi-level image compression

methods, based on various features of these images. The size, shape and locations of the objects in the images

could vary significantly. Thus, in order to analyse image compression methods based on these kinds of images,

a very rich set of statistically generated images is a mandatory requirement. The statistically generated images

must have objects consisting of a variety of features such as size, location, shape and number of objects in the

images. For this analysis, images have been randomly generated which include all these features, and these are

explained in detail in the results section.

Based on these statistically generated images, the requirement is to determine the behavior of different

compression methods from a variety of aspects. Specifically, the desire is to analyze the effect of an increase in

the number of objects, size of objects and shape of objects, on the compression efficiency and communication

energy for the different compression algorithms. Our aim is to discover a compression method that is resilient to

these different features in relation to the objects in the statistically generated images. Such a compression

method will be suitable for energy constrained embedded systems.

The remainder of the paper is organized as follows. In section 2, related work is provided. In section 3, a very

brief introduction to the computational complexity of all the considered compression methods is given. In

section 4, the results are presented based on the compression efficiency of all the compression methods. This is

followed by a discussion of the execution times and implementation details of all the considered compression

methods in section 5. Finally Section 6 concludes the paper.

2. RELATED Work

Although the work on image compression and communication over wireless networks is both widespread and

venerable, but the recent emergence of WVSN for large scale surveillance applications has imposed new

challenges because of the stringent limitations on memory, processing speed, communication bandwidth and

energy consumption in VSN. There are many bi-level image coding methods, however, presently there is no

analysis of which of them presents the best total energy characteristics for embedded wireless use. For instance,

the latest and most efficient standard for compressing bi-level images from Joint Bi-level Image Experts Group

(JBIG) is JBIG2
11

. However, the focus in the design of JBIG2 has been on the efficient storage of different kind

of images, which has been fulfilled. The problem associated with JBIG2 for embedded use is in relation to its

higher computational complexity, which thus causes a higher processing energy.

Few researchers have compared the image compression methods, but the problem with all of these is that the

focus is only in relation to an investigation of compression efficiency. One such comparison of international

standards for lossless still image compression has been conducted in
23

. They have thoroughly investigated the

compression efficiency of all the well-known compression methods available at that time. One problem

associated with
23

is the absence of the latest standard JBIG2 in their comparison. Another issue is the lack of

consideration of the execution time of the compression methods. Energy consumption of the embedded

implementation of an algorithm depends on its execution time, which has not been investigated in
23.

Even in
24

 where both the compression efficiency and execution time are investigated, the focus has not been on

the energy consumption of the embedded implementation of the compression methods. In addition, they have

investigated the efficiency of compression methods based on textual data, which is different in relation to the

images in a machine vision scenario.

Another study on the comparison of compression methods has been conducted in
25

. They have applied many

compression standards and some compression algorithms on different medical images. They have compared

both the compression efficiency and execution time of the compression techniques. However, it is still the case

that no consideration has been given to the energy consumption of the embedded implementation. They have

pointed out that the compression performance depends on the type of the images which means that these results

cannot be directly applied to machine vision applications because of the different types of images. In machine

vision applications, the images are quite different from scanned textual and medical images and a thorough

study for these kinds of images is required because the efficiency of bi-level image compression standards

varies from image to image.

This paper investigates different energy efficient bi-level image coding methods for machine vision embedded

applications. We have studied six well known bi-level image compression methods and analyzed the

communication energy consumption (based on compression efficiency) and computational complexity for each

method. The considered methods are JBIG2
11

, Gzip, Gzip_pack (for packed images), CCITT Group 3, CCITT

Group 4
22

 and one of the rectangular compression methods
9
. The scope of this paper is limited to the lossless

compression schemes.

http://en.wikipedia.org/wiki/Joint_Bi-level_Image_Experts_Group

3. BI-LEVEL COMPRESSION METHODS

A number of lossless data (image) compression algorithms exist, which can compress almost any kind of data.

The well-known algorithms are rectangular edge coding
4
, rectangular coding (REC)

5
, Modified Relative

Element Address Designate (READ) coding
6
, Ziv-Lempel algorithms

8
, Efficient Partitioning into Rectangular

Regions
9
, Arithmetic coding

10
 etc. These algorithms are lossless in the sense that the compressed images retain

all the information of the original data and an exact replica of the images can be reproduced at the receiver side.

JBIG2
11

 is a lossless image compression standard from JBIG. It is widely implemented in fax machines. The

JBIG2
11

 compression standard is based on a form of Arithmetic coding
13

 called MQ coder and can be both lossy

and lossless. The MQ coder used in JBIG2 is an adaptive binary arithmetic coder, which is characterized by a

multiplication free approximation and a renormalization-driven update of the probability estimator, and bit

stuffing introduced by a Q-coder
12

.

The Gzip (GNU zip) is a lossless universal standard used for document compression (could be images) and is

based on Ziv-Lempel algorithms
8
. We have used Gzip in two ways, namely the Gzip and the Gzip_pack. It is

the same implementation, however, for the Gzip standard black and white images (one byte per pixel) have been

used as the input whereas for the Gzip_pack, the first 8 pixels of the image have been packed into one byte after

which it has been compressed using Gzip command. The implementations for both the Gzip and Gzip_pack are

exactly similar (standard Gzip command in Linux) the only difference being in the input image data format.

The International Telegraph and Telephone Consultative Committee (CCITT) is a standard organization that has

developed a series of communications protocols for the facsimile transmission of black-and-white images over

telephone lines and data networks. These protocols are officially known as the CCITT T.4 and T.6 standards
22

and are more commonly referred to as CCITT Group3 and Group4 (also known as Fax3 and Fax4)

compressions, respectively.

3.1 CCITT Group 3 (2D) and Group 4

CCITT Group 3 2-Dimensional (2D) and Group 4 are based on the Huffman coding and are almost the same,

with only a few differences. Group 3 2D compresses k-1 (typical value for k is 2 or 4) lines in a 2D manner and

the kth line is coded in a 1-Dimensional (1D) manner. On the other hand, in Group 4 the image is always

compressed in a 2D manner. Another difference is that the Group 3 2D inserts the End Of Line (EOL) code after

the coding of each line of the image so as to prevent propagation errors. All other aspects are almost the same.

The complexity of these two methods depends on the following operations.

 Comparison for detecting Changing Picture Element (CPE)

 Calculating black and white runs based on CPE

 Calculating addresses for Huffman codes in memory (Involves shift right and subtraction operations)

 Accessing Huffman codes from memory and placing the codes in the output buffer

 Writing the header and the output buffer into the TIFF file

3.2 Efficient Partitioning into Rectangular Regions

The author in
9
 proposed a bi-level image compression method which does not involve any kind of codes (e.g.

Huffman codes) or any other probability estimation and statistical operations. They partitioned black regions of

the image into non-overlapping rectangular regions and encoded the locations of two vertices of each rectangle.

For encoding the location of the vertices, it is necessarily needed to find the number of bits required for its

binary representation. In addition, for each pixel of the input image, there is a comparison operation for

determining, whether or not this pixel forms part of a non-overlapping rectangle. After coding the vertices of

one non-overlapping rectangle, the search for finding the vertices of another non-overlapping rectangle is

started. In this way the whole images is coded. The computational complexity of the Rectangular compression

method is affected by the following operations.

 Comparisons for determining vertices of non-overlapping rectangles.

 Calculating the exact number of bits required for storing the locations of the vertices of non-

overlapping rectangles.

 Finding the binary value of the vertices and placing these values into the output buffer.

 At the end of each line a binary 1 is inserted in the output buffer.

http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Image_compression

3.3 The Gzip

The Gzip universal compression standard is based on LZ77
8
, which is a dictionary based lossless compression

scheme and is usually used for text compression. The Gzip uses a sliding window of size N where N could be of

any size. In the implementation of
18

, N is 32 Kilo Bytes (KB). When the next sequence of characters which are

to be compressed is identical to the one that can be found within the sliding window, the sequence of characters

is replaced by two numbers: a distance, representing how far back into the window the sequence starts, and a

length, representing the number of characters for which the sequence is identical. Thus long sequences are

replaced by only two binary numbers of a few bytes. In this way, the compression is achieved. The following

operations involved in the Gzip compression are the source for its computational complexity.

 Comparisons for detecting whether the current byte is present in the sliding window

 Detecting how many bytes next to the current byte in the input file are identical to the one present in

the sliding window

 Storing the address of an identical byte in the sliding window.

 Saving the information about how many bytes are identical from the current byte in the input file and

the sliding window.

3.4 The JBIG2

The compression algorithm employed in JBIG2 is arithmetic coding
10

. The most important advantages of

arithmetic coding are its flexibility and optimality. It is flexible in the sense that it can be used in conjunction

with any probability model, which can provide a sequence of event probabilities. The main disadvantage of

arithmetic coding is its high encoding time. In order to achieve full precision, an arithmetic operation requires

one multiplication for every event in the input file. The focus of some research has been on the approximation of

the multiplication operation in arithmetic coding
19-20

. Due to these alternate solutions for this mathematical

operation and the present availability of fast hardware, arithmetic operations no longer limit the performance of

arithmetic coding. Thus, in order to analyze the computational complexity of arithmetic coding, it is necessary

to consider all the other operations involved in arithmetic coding.

Amir Said
14

 extensively analyzed the computational complexity of arithmetic coding and identified the

following sources of computational complexity in relation to arithmetic coding.

 Interval update and arithmetic operations.

 Symbol decoding

 Interval renormalization

 Carry propagation and bit moves

 Probability estimation

 Support for non-binary symbol alphabets

4. EVALUATION OF CODING PERFORMANCE

The aim of all compression schemes is to transform an image into a compressed form. The main objective is to

preserve the information content and to reduce the data as much as possible. The principal parameter of a

compression technique is the compression efficiency. It is simple to design a compression algorithm having a

low bit rate, but the real challenge is to also preserve the quality of the reconstructed image. Thus, the two main

criterions in relation to measuring the performance of an image compression algorithm are the compression

efficiency and distortion, caused by the compression algorithm. As the scope of this paper is limited to the

analysis of bi-level lossless compression techniques only, the distortion part of performance will not be

discussed. Another performance measurement criterion is the speed of the compression and decompression

process, which is covered in section 5.

The compression efficiency of bi-level image compression algorithms is highly dependent on the transitions

from the black to white pixels and from the white to black pixels in the input images. In order to determine the

performance of the compression algorithms under observation in this paper, random images of size 640x400

have been created with random features of the objects in a black background. In one set of randomly generated

images, the number of objects in the images has been increased. Similarly, in another set of images, the number

of objects has remained fixed but there has been an increase in their sizes. Both of these sets of images contain

objects of various shapes such as circles, semi-circles, quarters of circles, ellipses, semi-ellipses, quarters of

ellipses, rectangles and curves. Our goal is to determine the compression behavior of the compression methods,

for various kinds of changes (fully random) in the input images such as the number, shape and the size of the

objects.

4.1 Increasing number of objects in the images

For each shape of a white object, such as the circles, ellipses, rectangles etc, 10 images have been randomly

generated by using Matlab script and there has been a 10% increase in the number of objects in each successive

image. Five sample images with one shape i.e. a quarter of an ellipse are shown in Figure 1. The randomness in

the placement and the increase in the number of objects in the images is obvious in Figure 1.

 (a)

 (b)

 (c)

 (d)

 (e)

Figure 1: Images with random placement and increased number of objects from (a) to (e).

The compression efficiency of the considered algorithms has been analyzed for eight different object shapes in

the images. For each shape, 10 images have been compressed with a 10 % increase in the number of objects in

each successive image. The trend of compressing 10 randomly generated images, for a quarter of an ellipse, for

all six compression algorithms is shown in Figure 2. The vertical-axis in Figure 2 shows the compressed file

size in Bytes while the horizontal-axis shows the number of objects in the image. The number of objects is

increasing from left to right and from 1 to 10.

It is obvious in Figure 2 that the compressed file size is increasing by increasing the number of objects in the

images, for all the compression methods. In addition, the size of the compressed file from the Rectangular

compression method is lower than that of the JBIG2 for an image with one object and is higher than that of the

JBIG2 for all other images having more than one object. Similarly, the size of the compressed file from the

Rectangular method is lower than that of the CCITT Group 4 for an image with 1 to 4 objects and is higher for

an image having 5 or more objects. These trends show that some methods are more sensitive to the increase in

the number of objects than is the case for others. Thus, in order to analyze the effect of increasing the number of

objects for the eight different shapes, a sensitivity measure must be defined which can be used for both a quick

and accurate analysis.

 Figure 2: Effect of increasing number of objects on compression efficiency of six methods.

The topmost curve (CCITT Group 3) has been approximated by a line and, in addition, an equation has been

shown for that line in Figure 2. The slope of the line shows the sensitivity of this compression method to the

increase in the number of objects in the images. A higher slope value means a higher sensitivity to the increase

in the number of objects. The slope of the lines has been analyzed for all the algorithms and for all the different

shaped objects in the images. Instead of showing graphs by means of lines and their equations for all the object

shapes, this information has been displayed in a compact form in Table 1.

The mean and standard deviation in relation to both the compressed file size and the sensitivity (slope) for all

the considered compression methods for compressing 10 randomly generated images with a 10% increase in the

number of objects in successive images is shown in Table 1. The mean sensitivity is calculated by taking the

average of the slope of the curves for all the images with different shapes and for the increase in the number of

objects. Similarly, the mean compressed file size is determined by calculating the average of the compressed file

sizes for all the images with different shapes and with an increasing number of objects. The standard deviation is

a self-explanatory term and is calculated for both the mean compressed file size and sensitivity.

 Table 1: Mean and standard deviation of compressed file size and sensitivity for all methods

Compression

Methods

Mean

sensitivity (k)

Standard

Deviation (σk)

Mean Compressed

File Size (d)

Standard

Deviation (σd)

Gzip 122 42 2092 224

Gzip_pack 86 35 576 196

Group 4 31 14 421 74

Group 3 109 42 2193 234

JBIG2 21 9 287 53

Rectangular 98 47 628 266

It must be noted in Table 1 that the mean sensitivity for both the JBIG2 and CCITT Group 4 is lower than for all

the other compression methods. The standard deviation in sensitivity for both the JBIG2 and CCITT Group 4 is

also lower than for all the other compression methods. It must also be observed, in the same table, that the mean

compressed file size and its standard deviation for both the JBIG2 and CCITT Group 4 are lower than for all the

other compression methods. Based on the observation in Table 1, the conclusion is that both the JBIG2 and

CCITT Group 4 are comparatively less sensitive to the increase in number of objects of different shapes in the

images.

4.2 Increasing the size of the objects in the images

For each shape of the white object, such as curves, semi-circles, ellipses, rectangles etc, 10 images have been

generated by using Matlab script and the size of the objects has been increased by 10%, in each successive

image. Five sample images with one shape i.e. full circle are shown in Figure 3. The randomness in the

placement of the objects and the gradual increase in the size of the objects is obvious in the figure.

 (a)

 (b)

 (c)

 (d)

 (e)

Figure 3: Images with random placement and increased size of objects from (a) to (e).

 Table 2: Mean and standard deviation in file size and sensitivity for all methods

Compression

Methods

Mean

sensitivity (k)

Standard

Deviation (σk)

Mean Compressed

File Size (d in Bytes)

Standard Deviation

(σd in Bytes)

Gzip 115 61 2152 396

Gzip_pack 86 57 619 356

Group 4 33 32 488 256

Group 3 110 46 2198 273

JBIG2 23 18 315 103

Rectangular 104 85 777 690

The mean and the standard deviation of the compressed file size and the sensitivity of compressing the 10

generated images with a 10% increase in the sizes of objects in successive images, for all shapes, using all the

six compression algorithms under study is shown in Table 2. It must be noted in Table 2 that the mean

sensitivity and its associated standard deviation for the both JBIG2 and CCITT Group 4 are lower than for all

the other compression methods. It must also be observed, in the same table, that the mean compressed file size

and its standard deviation for both the JBIG2 and CCITT Group 4 are also lower than for all the other

compression methods. Based on the observation in Table 2, it can be concluded that both the JBIG2 and CCITT

Group 4 are comparatively less sensitive to the increase in the size of objects of different shapes in images.

5. EVALUATION OF THE IMPLEMENTATION

The Rectangular compression algorithm explained in
9
 is implemented using C language and is compiled and

executed on the Ubuntu Operating System (OS) (Linux) running in VMware in a computer machine having

Intel ® Core™2 Duo CPU with 1.86 GHz and 3 Giga Bytes (GB) Random Access Memory (RAM). For CCITT

Group 3 and Group 4, the Libtiff library has been used
15

.

Gzip compression is performed using the gzip command of the Ubuntu OS. JBIG2 is downloaded and built

using the instructions on
16

 and is executed in the Ubuntu OS. Following this, all these compression methods are

used to compress many bi-level images which contain different features of the objects in the images. Each

image is compressed using six compression methods and the time command of Ubuntu OS is used for

determining the execution time. In order to achieve a high degree of accuracy, each image has been compressed

600 times and then the total execution time has been divided by 600 in order to determine the average value.

The results are shown in the second column of Table 3.

The mean compressed file size in Table 3 is the average of the compressed file sizes of the images which have

objects containing different features such as increasing size, increasing number and different shapes. Similarly

the execution time is also the average value. It must be noted in Table 3 that the standard deviations for the

Rectangular, Gzip, Gzip_pack and CCITT Group 3 are larger compared to the three other methods. A larger

standard deviation means that these three methods are highly sensitive to different features such as the size,

shape and number of objects in the input images. A high sensitivity in compressed file size of compression

methods means that there is a high degree of uncertainty in the communication energy, which is an undesirable

characteristic. On the other hand, the JBIG2 and CCITT Group 4 have the lowest standard deviations, which

show their resilience to the variety of object features.

 Table 3: Data and execution time characteristics of the compression methods

Method
T_Ubunto

(ms)

Mean Compressed

File Size (Bytes)

Standard Deviation

in Data Size (σd Bytes)

Gzip 0.8 2123 311

Gzip_pack 0.3 598 276

Group 4 1.2 455 166

Group 3 2.0 2196 254

JBIG2 3.1 302 79

Rectangular 5.0 703 478

Figure 4 shows the complexity vs. the mean file size for the analyzed compression methods. The small circles in

Figure 4 show the mean compressed file size for each method on the horizontal axis and the complexity

(average execution time in ms on Ubuntu OS) on the vertical axis. The lines in Figure 4 show the standard

deviation in the compressed file size for each method. It is clear from Figure 4 that the mean file sizes from

Gzip and Group 3 are high compared to all the other methods. It is also evident from the same figure that the

complexity is high for the Rectangular, CCITT Group 3 as well as for the JBIG2 in comparison to the other

three methods. It can be stated that the Gzip_pack and Group 4 are possibly good candidates for use in energy

constrained embedded systems. However, the communication energy consumption characteristics of all the

methods must also be analyzed, which can then provide a more solid conclusion.

 Figure 4: Complexity vs. mean compressed file size.

The communication energy consumption is dependent on the number of bytes that are required to be

transmitted. The IEEE802.15.4 is considered for communicating the compressed images from VSN to the

server, which has been used in the SENTIO32
17

 for transmitting the results. T_IEEE in Table 4 represents the

transmission time of IEEE802.15.4 and is calculated using Equation (1). T_IEEE in Table 4 is undeniably

dependent on the number of bytes (Mean compressed file size from Table 3) that must be transmitted. The

standard deviation in T_IEEE is calculated by using the standard deviation in the data size from Table 3.

E_IEEE and the standard deviations in the E_IEEE in Table 4 are the energy consumption characteristics of the

IEEE802.15.4 based on transmitting a specific amount of data. The power consumption of radio transceiver is

72 mW which is calculated using the current and voltage characteristics from its data sheet.

 T_IEEE802.15.4 = (X+19)*0.000032 +0.000192 (1)

In Equation (1) X is the number of bytes transmitted and 19 is the overhead involved due to the inclusion of

header information in each packet. Factor 0.000032 in Equation (1) is the processing time of one packet while

0.000192 is the settling time of the transceiver.

Table 4: Transmission time and communication energy of the compression methods

Method T_IEEE

(ms)

E_IEEE

(mJ)

Standard Deviation

in T_IEEE (ms)

Standard Deviation

In E_IEEE (mJ)

Gzip 82 5.9 14 1.0

Gzip_pack 25 1.8 13 0.9

Group 4 19 1.4 8 0.6

Group 3 85 6.1 12 0.8

JBIG2 14 1.0 5 0.4

Rectangular 29 2.1 20 1.5

Figure 5 shows the communication energy consumption and its standard deviation for all the considered

compression methods. It must be observed in Figure 5 that the standard deviation in the communication energy

consumption for both the JBIG2 and CCITT Group 4 are the lowest amongst all the analyzed compression

methods. It is also clear from Figure 5 that the communication energy consumption for both Gzip and CCITT

Group 3 are higher when compared to all the other methods. JBIG2 and CCITT Group 4 have many good

features such as resilience to the increase in the number of objects, increase in the size of the objects and to the

different shapes of the objects. Based on these observations, it is possible to generalize that CCITT Group4,

JBIG2 and Gzip_pack are good candidates for use in embedded applications of WVSN.

 Figure 5: Communication energy consumption for six compression methods.

6. CONCLUSION

In this paper, we have analysed the effect of various features, such as the shape, size and number of objects in

the bi-level images, on the compression efficiency of six different compression methods. The effect of

increasing the size and number of objects in the input images was explored and the result is an increase in the

size of the compressed file for all the compression methods. Some methods showed extreme level sensitivity for

these features such as the Rectangular compression method. The sizes of the compressed files from Gzip,

Rectangular and CCITT Group 3 compression methods are larger than those for the other three methods and

because of this their communication energy consumptions are high. Additionally, the Rectangular compression

method is extremely sensitive to the different features of the objects and its execution time is the highest of the

analysed methods. Due to these characteristics the Rectangular compression method is not a suitable choice for

remote applications of WVSN. CCITT Group 3 and Gzip are also out of race because of their high

communication energies and poor resilience to the varying object features. The size of the compressed files from

JBIG2 is lower than for all the other methods and it is highly resilient to different variations in the features of

the objects. The processing time of JBIG2 is high for the software implementation but its communication energy

consumption is the lowest of all the considered compression methods. The hardware implementation of JBIG2

could be faster. Although the Gzip_pack is moderately resilient to different variations in the objects features

such as size, number and shape, its compression efficiency is high and its execution time is low. Hence, the

conclusion drawn is that CCITT Group 4, JBIG2 and Gzip_pack are the most suitable bi-level compression

methods for remote applications of WVSN.

REFERENCES

[1] K. Khursheed, M. Imran, M. O’Nils and N. Lawal, "Exploration of Local and Central Processing for a

Wireless Camera Based Sensor Node," IEEE Int’l. Conf. Signal Elec. Syst., Gliwice, Poland, Sept. 7-10, 2010.

[2] K. Khursheed, M. Imran, M. O’Nils and N. Lawal, 2010. “Exploration of Target Architecture for a

Wireless Camera Based Sensor Node,” 28th Norchip Conference 15-16 November, Tampere, FINLAND.

[3] K. Khursheed, M. Imran, A.W. Malik, M. O’Nils, N. Lawal, T. Benny, 2011. “Exploration of Tasks

Partitioning Between Hardware Software and Locality for a Wireless Camera Based Vision Sensor Node,” Proc.

of the Int’l Symp. on Parallel Computing in Electrical Engineering (PARELEC'2011).

[4] N. S. Jayant and P. Noll, “Digital Coding of Waveforms,” Englewood Cliffs, NJ: Prentice-Hall, 1984.

[5] M. Aoki, “Rectangular region coding for binary image data compression,’’ Pattern Recognition, vol. 11, pp.

297-312, 1979.

[6] R. Hunter and A. Robinson, “International digital facsimile coding standards,” proc, IEEE, vol, 68, pp,

856867, July 1980.

[7] I. Song and S. A. Kassam, “A new noiseless coding technique for binary images,” IEEE Trans. Acoust.,

Speech, Signal Processing. vol. 34, pp. 944-951, Aug. 1986.

[8] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. on Information

Theory, vol. IT-23, no. 3, May 1977.

[9] S. A. Mohamed and M. M. Fahmy, “Binary Image Compression Using Efficient Partitioning into

Rectangular Regions,” IEEE Trans. on Comm., vol. 43, no. 5, May 1995.

[10] J. Rissanen and G. G. Longdon, “Arithmetic coding,” IBM J. Res. Develop vol 23, pp 149-162, 1979.

[11] F. Ono, W. Rucklidge, R. Arps and C. Constantinescu. “ JBIG2- The ultimate bi-level image coding

standard,” 0-7803-6297-7/00/$10.00 0 2000 IEEE.

[12] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, Jr. and R. B. Arps, “An overview of the basic principle

of the Q-Coder adaptive binary arithmetic coder,” IBM 1. Res. and Develop. Vol. 32 no. 6 page 717, November

1988.

[13] G. G. Langdon Jr. and J.,J. Rissanen, “Compression of black-white images with arithmetic coding," IEEE

Trans. Communications, vol. 29(6), pp. 858-867, June 1981.

[14] A. Said, “Comparative Analysis of Arithmetic Coding Computational Complexity,” Results of this paper

were presented as a poster at IEEE Data Compression Conference, 23-25 March 2004, Snowbird, Utah, USA.

[15] http://www.libtiff.org/libtiff.html

[16] http://tpgit.github.com/UnOfficialLeptDocs/leptonica/index.html

[17] F. Linnarsson, C. Peng and B. Oelmann, “Analysis of IEEE 802.15.4 standard for a wireless closed loop

control system for heavy duty cranes”, In IEEE 2nd Int’l Symp. On Industrial Embedded Systems. - SIES'2007.

[18] http://www.gzip.org/

[19] G.G. Langdon, ” Probabilistic and Q-Coder algorithms for binary source adaptation,” In Proc. Data

Compression Conference, J.A Storer and J.H. Reif eds., Snowbird, Uttah, Apr. 8-11,1991,13-22.

[20]. G.G. Langdon and J., Rissanen, “ Compression of black and white images with arithmetic coding,” IEEE

Trans. Comm. COM-29(1981), 858-867.

[21] P.G. Howard and J. Vitter, “Arithmetic coding for data compression,” Proc. of IEEE, vol 82, no 6, 1994.

[22] http://www.itu.int/itu-t/recommendations/index.aspx?ser=T

[23] R.B. Arps, T.K. Truong, “Comparison of international standards for lossless still image compression,”

Proceedings of the IEEE, vol 82, no 6, June 1994, 889 - 899.

[24]S.R. Kodituwakku, U.S., Amarasinghe, “Comparison of lossless data compression algorithms. for text,”

Indian journal of computer science and engineering vol 1, no 4, 416-425.

[25] J. Kivijärvi, T., Ojala, T., Kaukoranta, A., Kuba, L., Nyul, O., Nevalainen, ”A comparison of lossless

compression methods for medical images,” Computerized medical imaging graphics 1998; 22: 323-339.

http://www.libtiff.org/libtiff.html
http://tpgit.github.com/UnOfficialLeptDocs/leptonica/index.html
http://www.gzip.org/
http://www.itu.int/itu-t/recommendations/index.aspx?ser=T
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5

