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With the increasing complication, compaction, and automation of distribution network equipment, a small failure will cause an
outbreak chain reaction and lead to operational risk in the power distribution system, even in the whole power system. Therefore,
scientific assessment of power distribution equipment operation risk is significant to the security of power distribution system. In
order to get the satisfactory assessment conclusions from the complete and incomplete information and improve the assessment
level, an operational risk assessment model of distribution network equipment based on rough set and D-S evidence theory was
built. In this model, the rough set theory was used to simplify and optimize the operation risk assessment indexes of distribution
network equipment and the evidence D-S theory was adopted to combine the optimal indexes. At last, the equipment operational
risk level was obtained from the basic probability distribution decision. Taking the transformer as an example, this paper compared
the assessment result obtained from the method proposed in this paper with that from the ordinary Rogers ratio method and
discussed the application of the proposedmethod. It proved that themethodproposed in this paper is feasible, efficient, and provides
a new way to assess the distribution network equipment operational risk.

1. Introduction

As the basis part of the power system, the distribution net-
work has direct contact with the power user. The task of
distribution network is to assign the electrical energy to users,
and the safe and stable operation of the distribution network
equipment is closely related to the reliability of power supply.
The construction of smart grid leads to a wider application of
new distribution network equipment such as transformers,
SF6 circuit breakers, vacuum circuit breakers, and box-type
substations. With the increasing complication, compaction,
and automation of distribution network equipment, a small
fault somewhere in the equipment may outbreak chain
reaction, causing catastrophic damages to the distribution
network system, even in the entire power system, namely,
operational risk [1, 2]. Therefore, the operational risk assess-
ment of distribution network equipment is a very important
topic with high theoretical and practical significance.

In the basic theory of equipment risk assessment, a variety
of mathematical methods such as risk matrix method, Monte

Carlo method [3], failure mode and impact analysis [4], and
fault tree analysis [5] are used to describe the uncertainty
and adverse consequences of various risk events. The most
widely-used methods in equipment asset management are
risk matrix method and Monte Carlo method. With further
study of equipment risk assessment, new methods like AHP
and information fusion algorithm have been introduced.
Yang deeply analyzed the special equipment risk evaluation
system and used the Analytic Hierarchy Process (AHP)
to build a hierarchical mathematical model for the spe-
cial equipment risk assessment [6]. Based on the thought
of information fusion technology, and combined with the
reality of fault diagnosis, Yang developed a neural network
evidence fusion fault diagnosis system [7]. For the problem
that the single assessment method cannot make full use
of the various operational information of the secondary
equipment in 750 kV grid, Wang proposed a state assessment
method for secondary equipment in 750 kV grid based on
information fusion technology [8]. The methods above lay
a solid theoretical foundation for the study and practice



2 Journal of Applied Mathematics

of distribution network equipment risk assessment. As one
of the main equipment in the distribution network, the
research of transformer’s risk has attracted much attention.
Xiao adopted the BP neural network and genetic algorithm to
study the optimization method of index weights calculation
in the risk assessment of transformer, which provided more
accurate evidence for transformer risk management [9].
As traditional risk assessment methods have shortcomings
such as that the evaluation indexes are treated equally, the
assessment cannot be taken when the Risk Priority Number
(RPN) is equal, and the assessment result’s accuracy is
relative, Feng built a cloud model including the indexes of
occurrence, severity, and detectability and employed it to get
the maintenance decision of the transformer’s components
[10]. For real-time and objective measurement of in-service
transformer failure risks, Yu proposed a transformer risk
assessment method based on fuzzy AHP and artificial neural
network [11]. Based on Borda Number Theory, Wang put
forward a fuzzy comprehensive risk assessment model of
power transformer [12].

In summary, most studies on equipment risk apply the
risk assessment theory to construct evaluation index system
and carried out corresponding assessment, and transformer
works were the main object to study the distribution network
equipment. Though these studies have solved the problem of
equipment risk assessment to some extent, there are still some
problems for further study. For example, there are multiple
indexes to describe the operational risk of a distribution
network device, but they play different roles in the operational
risk assessment. It is a critical issue to exclude the indexes
that are irrelevant or unimportant from the risk assessment
index system and get the accurate risk state of the equipment.
So, applying the attribute reduction function of rough set
and D-S evidence theory, this paper proposed an operational
risk assessment model of distribution network equipment
based on rough set and D-S evidence theory to further study
the operational risk management of distribution network
equipment. The rest of the paper is arranged as follows.
Part two introduced the rough set theory and D-S evidence
theory firstly and built an operational risk assessment model
of distribution network equipment. Taking the transformer
as an instance, part three makes a detailed description of
equipment operational risk assessment methods based on
rough set andD-S evidence theory and carries out an example
to discuss the assessment results and their application. Part
four gives the conclusion of this paper.

2. Operational Risk Assessment Model of
Distribution Network Equipment

2.1. Rough Set Theory. As a theory of data analysis and pro-
cessing, rough set theory was founded by Polish scientist
Z. Pawlak in 1982. It is a theoreticalmethod to study the repre-
sentation, learning, and induction of incomplete and uncer-
tain knowledge and data [13] and has been widely studied
and applied to the classification and knowledge acquisition of
imprecise, uncertain, and incomplete information. The main
purpose of rough set is to make use of knowledge reduction

to get the decision or classification rules of the problem
with the classification capacity unchanged. Currently, the
rough set theory has been widely used in the field of
information science, medicine, chemistry, machinery, and
management science [14–17] and has become an important
tool for knowledge discovery. Knowledge reduction is one
of the core contents in rough set theory. The knowledge
(attributes) in the knowledge base is not equal, and even some
of the knowledge is redundant. Knowledge reduction is to
delete irrelevant or unimportant knowledge redundancy to
simplify judgment rules with the classification capacity of
knowledge base unchanged.

The discernibility matrix proposed by a Polish math-
ematician, A. Skowron, is one of the efficient algorithms
for information system reduction, and it can calculate the
reduction easily [18].

Definition 1. Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be a decision table, where
𝐴 = 𝐶 ∪ 𝐷, 𝐶 ∩ 𝐷 = ⌀, 𝐶 is a condition attribute set, and 𝐷
is a decision attribute set. If 𝑎(𝑥) is the value of record 𝑥 on
attribute 𝑎, namely, 𝑎(𝑥) = 𝑓(𝑥, 𝑎) and 𝐶

𝑖𝑗
is the element of

discernibility matrix, then the discernibility matrix is defined
as

𝐶
𝑖𝑗
=

{{

{{

{

{𝑎 ∈ 𝐶, 𝑎 (𝑥
𝑖
) ̸= 𝑎 (𝑥

𝑗
)} , 𝐷 (𝑥

𝑖
) ̸=𝐷 (𝑥

𝑗
)

⌀, 𝐷 (𝑥
𝑖
) = 𝐷 (𝑥

𝑗
) .

(1)

If 𝐶
𝑖𝑗
= {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑘
} ̸=⌀, then specify a Boolean func-

tion 𝑎
1
∨ 𝑎
2
∨ ⋅ ⋅ ⋅ 𝑎

𝑘
and use ∑𝐶

𝑖𝑗
to represent it; if 𝐶

𝑖𝑗
= ⌀,

then let the Boolean constant be 1.The discernibility function
Δ is defined as

Δ = ∏∑𝐶
𝑖𝑗
. (2)

All the conjunctive expressions in the minimal disjunc-
tive form of function Δ are the reduction of attribute set A.
Thatmeans that the reduction isminimal attribute subset that
can distinguish all the objects.

2.2. D-S Evidence Theory. D-S evidence theory is a powerful
tool to deal with uncertain problems brought by cognition
limitations. D-S evidence theory was formally founded by
Shafer in 1976 [18]. In recent years, D-S evidence theory has
drawn increasing attention and made some achievements
in theory. Uncertain information from different sources
such as multiple sensors or experts should be considered
comprehensively to solve problems in the fields such as
medical diagnosis, target recognition, andmilitary [19, 20]. In
addition, D-S evidence theory has been successfully applied
in fault diagnosis, condition monitoring, information fusion,
pattern recognition, intelligent decision-making, and other
fields [21].

(1) The Composition of Two Belief Functions. Let Bel
1
, Bel
2

be two belief functions in the same recognition framework,
𝑚
1
, 𝑚
2
be the corresponding basic probability assignments,
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and the focal elements are𝐴
1
, . . . , 𝐴

𝐾
and𝐵

1
, . . . , 𝐵

𝐾
, respec-

tively. Let

∑

𝐴𝑖∩𝐵𝑗=⌀

𝑚
1
(𝐴
𝑖
)𝑚
2
(𝐵
𝑗
) < 1. (3)

Then the function 𝑚 : 2Θ → [0, 1] defined by (4) is the
composite basic probability assignment. Consider

𝑚(𝐴) =

{{{

{{{

{

0, 𝐴 = ⌀

∑
𝐴𝑖∩𝐵𝑗=𝐴

𝑚
1
(𝐴
𝑖
)𝑚
2
(𝐵
𝑗
)

1 − 𝐾
, 𝐴 ̸=⌀,

𝐾 = ∑

𝐴𝑖∩𝐵𝑗=⌀

𝑚
1
(𝐴
𝑖
)𝑚
2
(𝐵
𝑗
) .

(4)

(2) The Composition of Multiple Belief Functions. Let Bel
1
,

. . . ,Bel
𝑛
be the functions in the same recognition frame-

work and 𝑚
1
, . . . , 𝑚

𝑛
be the corresponding basic probability

assignments. If Bel
1
⊕⋅ ⋅ ⋅⊕Bel

𝑛
exists and the composite basic

probability assignment function is remembered as 𝑚, then
for all 𝐴 ⊂ Θ, 𝐴 ̸=⌀, 𝐴

1
, . . . , 𝐴

𝑛
⊂ Θ. The value of basic

probability assignment can be calculated by (5)

𝑚(𝐴) =

∑ 𝐴1,...,𝐴𝑛⊂Θ
𝐴1∩⋅⋅⋅∩𝐴𝑛=𝐴

𝑚
1
(𝐴
1
) ⋅ ⋅ ⋅ 𝑚

𝑛
(𝐵
𝑛
)

1 − 𝐾
,

𝐾 = ∑
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1
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𝑛
(𝐵
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(5)

(3) The Decision-Making Based on Basic Probability Assign-
ment. Let for all 𝐴

1
, 𝐴
2
⊂ Θ

𝑚 (𝐴
1
) = max {𝑚 (𝐴

𝑖
) , 𝐴
𝑖
⊂ Θ} ,

𝑚 (𝐴
2
) = max {𝑚 (𝐴

𝑖
) , 𝐴
𝑖
⊂ Θ and 𝐴

𝑖
̸= 𝐴
1
} ,

𝑚 (𝐴
1
) − 𝑚 (𝐴

2
) > 𝜀
1
,

𝑚 (Θ) < 𝜀2,

𝑚 (𝐴
1
) > 𝑚 (Θ) .

(6)

If all the conditions of (6) are satisfied, then 𝐴
1
is the

judgmental result, where 𝜀
1
and 𝜀
2
are preset thresholds. The

difference between the maximal basic probability assignment
and any other basic probability assignment should be larger
than 𝜀

1
. The basic probability assignment of the judgment’s

uncertainty should be smaller than 𝜀
2
. In addition, the basic

probability assignment of uncertainty should be smaller than
that of the judgmental result. Therefore, the larger 𝜀

1
and

the smaller 𝜀
2
is, the more accurate the judgmental result

will be.

2.3. Operational Risk Assessment Model Based on Rough Set
and D-S Evidence Theory. Combined with rough set theory
and D-S evidence theory, this paper built an operational
risk assessment model of distribution network equipment

operational risk assessment model, and the detailed steps are
as follows.

(1) Apply reduction function of rough set to the index
reduction of distribution network equipment opera-
tional risk (the selection of original indexes depends
on the specific equipment). After index reduction, one
or multiple indexes may be left.

(2) For the reduction of multiple indexes, use the col-
lection rule of D-S evidence theory to combine
the reduced indexes and get the basic probability
assignment of various index combination results.

(3) After the basic probability assignment of each reduc-
tion is obtained, there is no need to assess the
operational risk of distribution network equipment
by a single reduction. Use the collection rule of D-
S evidence theory to combine the reductions and get
the results of all the combinations. Then by adopting
the decision-making method based on basic belief
assignment and the combination results above, the
operational risk level of distribution network can be
evaluated.

3. Numerical Example

As one of the main equipment in distribution network,
the operational risk of transformer is an important part of
distribution network operational risk. So, the transformer is
chosen to make an analysis of the numerical example in this
paper. The basic data of transformer operation came from
article [22], and 15 representative samples were chosen for
this research. For each category of operational risk indexes,
the risk level was represented by numbers 1–5, and the
sample data was shown in Table 1. When a problem occurs
inside the transformer, insulating oil will decompose major
characteristic gases such as H

2
, CH
4
, C
2
H
2
, C
2
H
4
, and C

2
H
6
.

The volume fraction of the characteristic gas is closely related
to the operational risk level, but there is no clear mapping
relation.

3.1. Attribute Reduction Based on Discernibility Matrix. The
index reduction based on rough set theory is built on the
basis of discrete data, so the continuous attributes should be
discretized firstly. The discretization of continuous attribute
is usually determined by the intervals given by experts’
experience or the system’s automatic division of the input
data according to a certain principle. For the data in Table 1,
the rules for data discretizing were established as shown in
Table 2.

In order to facilitate the operation process, we use
symbols 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻 to represent the operational
risk of C

2
H
2
/C
2
H
4
, C
2
H
4
/C
2
H
6
, C
2
H
6
/C
2
H
4
, CH
4
/C
2
H
4
,

C
2
H
2
/CH
4
, C
2
H
2
/C
2
H
6
, H
2
/(H
2
+ hydrocarbon), and oper-

ational risk level, respectively, where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 are
condition attributes and H is the decision attribute. Use the
discretization rules in Table 2 to discretize the operational
risk assessment data in Table 1 and merge the duplicate data,
then build the discernibility matrix according to (1). The
results are shown in Table 3.
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Table 1: Operational risk assessment data of a transformer in a certain working condition.

ID C
2
H
2
/C
2
H
4

C
2
H
4
/C
2
H
6

C
2
H
6
/C
2
H
4

CH
4
/C
2
H
4

C
2
H
2
/CH
4

C
2
H
2
/C
2
H
6

H
2
/(H2 + hydrocarbon) Risk level

1 1.231 0.765 0.596 2.192 0.561 0.941 0.355 1
2 0.055 6.455 1.100 0.141 0.390 0.355 0.065 1
3 0.074 0.257 2.763 1.407 0.053 0.019 0.461 2
4 0.000 0.588 0.642 2.650 0.000 0.000 0.837 2
5 1.141 1.873 0.245 2.179 0.524 2.136 0.580 2
6 0.348 12.760 0.183 0.428 0.813 4.444 0.269 3
7 1.189 7.944 0.269 0.469 2.537 9.444 0.457 3
8 1.455 14.000 0.103 0.695 2.093 0.364 0.204 3
9 0.000 1.059 0.611 1.544 0.000 0.000 0.010 4
10 0.007 2.545 0.266 1.476 0.005 0.018 0.332 4
11 0.003 1.500 0.467 1.429 0.002 0.005 0.122 4
12 0.017 18.218 0.146 0.375 0.045 0.309 0.159 5
13 0.000 5.739 0.110 1.500 0.000 0.000 0.303 5
14 0.029 11.429 0.124 0.708 0.041 0.333 0.201 5
15 0.049 4.727 0.515 0.411 0.113 0.219 0.113 5

Table 2: Discretization rules of the transformer operational risk assessment data.

Item Original data scope Discretized data Original data scope Discretized data Original data scope Discretized data
A 0.000∼0.500 0 0.501∼1.000 1 1.001∼1.500 2
B 0.000∼5.000 0 5.001∼10.000 1 10.001∼20.000 2
C 0.000∼0.500 0 0.501∼1.000 1 1.001∼3.000 2
D 0.000∼0.900 0 0.901∼1.800 1 1.001∼2.700 2
E 0.000∼0.500 0 0.501∼1.500 1 1.501∼3.000 2
F 0.000∼0.500 0 0.501∼1.000 1 1.001∼10.000 2
G 0.000∼0.300 0 0.301∼0.600 1 0.601∼0.900 2

Table 3: Discernibility matrix of the transformer.

Order 1 2 3 4 5
1 ⌀

2 𝐴,𝐶,𝐷, 𝐸, 𝐹 ⌀

3 𝐴, 𝐵, 𝐶,𝐷, 𝐹, 𝐺 𝐵, 𝐶,𝐷, 𝐸, 𝐹, 𝐺 ⌀

4 𝐴,𝐷, 𝐸, 𝐹, 𝐺 𝐶, 𝐺 𝐵, 𝐶,𝐷, 𝐸, 𝐹 ⌀

5 𝐴, 𝐵, 𝐶,𝐷, 𝐸, 𝐹 𝐵, 𝐶 𝐵,𝐷, 𝐸, 𝐹, 𝐺 𝐵, 𝐶, 𝐺 ⌀

According to (2), the discernibility function of the trans-
former’s risk level is shown as

Δ = (𝐴 ∨ 𝐶 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹) ⋅ (𝐴 ∨ 𝐵 ∨ 𝐶 ∨ 𝐷 ∨ 𝐹 ∨ 𝐺)

⋅ (𝐴 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹 ∨ 𝐺) ⋅ (𝐴 ∨ 𝐵 ∨ 𝐶 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹)

⋅ (𝐵 ∨ 𝐶 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹 ∨ 𝐺) ⋅ (𝐶 ∨ 𝐺) ⋅ (𝐵 ∨ 𝐶)

⋅ (𝐵 ∨ 𝐶 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹) ⋅ (𝐵 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹 ∨ 𝐺)

⋅ (𝐵 ∨ 𝐶 ∨ 𝐺) = 𝐶 ∨ 𝐷𝐹.

(7)

It can be concluded that there are two reductions, namely,
{𝐶} and {𝐷, 𝐹}.

3.2. Index Combination Based on D-S Evidence Theory.
The two attribute reductions to assess the operational risk

Table 4: Basic probability assignment of risk status.

Class 1 Class 2 Class 3 Class 4 Class 5 ⌀

C
2
H
6
/C
2
H
4

0.32 0.14 0.24 0 0.20 0.1
CH
4
/C
2
H
4

0.24 0.34 0.15 0 0.17 0.1
C
2
H
2
/CH
4

0.12 0.25 0.20 0 0.33 0.1

status of the transformer are {C
2
H
6
/C
2
H
4
} and {CH

4
/

C
2
H
4
,C
2
H
2
/CH
4
}. For a record of status information, if

the results of operational risk status obtained from the
assessment of the two attribute reductions, respectively, are
consistent, then there is no need to conduct any auxiliary
judgment; if the results of operational risk status are incon-
sistent, which one prevails? At this time, the result from
the two reductions should be handled by the use of D-S
combination rule, and the one with the largest confidence
is the final risk status result. For example, if the evidence
value of C

2
H
6
/C
2
H
4
is 0.501, the operational risk status of the

transformer is 3, 4, or 5, and we cannot simply judge it to be
3. From the perspective of evidence theory, the confidences
of the operational risk status belonging to 3, 4, or 5 are
1/3, respectively. Therefore, we need to define the calculation
method for the basic probability assignment of the index
reduction and use the decision-making approach based on
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Table 5: Combination results of CH4/C2H4 and C
2
H
2
/CH
4
.

Class 1 Class 2 Class 3 Class 4 Class 5 ⌀

{CH4/C2H4, C2H2/CH4} 0.1083 0.6278 0.1093 0 0.1188 0.0358

Table 6: Combination results of C
2
H
6
/C
2
H
4
, CH
4
/C
2
H
4
, and C

2
H
2
/CH
4
.

Class 1 Class 2 Class 3 Class 4 Class 5 ⌀

{C
2
H
6
/C
2
H
4
,CH
4
/C
2
H
4
,C
2
H
2
/CH
4
} 0.0234 0.9013 0.0323 0 0.04111 0.00189

Table 7: Correspondence between gas ratio range and code using Rogers ratio method.

CH4/H2
Ratio range >0.1, <1.0 ≥1.0, <3.0 ≥3.0 ≤0.1

Code 0 1 2 3

C2H6/CH4
Ratio range <1.0 ≥1.0

Code 0 1

C2H4/C2H6
Ratio range <1.0 ≥1.0, <3.0 ≥3.0

Code 0 1 2

C2H2/C2H4
Ratio range <0.5 ≥0.5, <3.0 ≥3

Code 0 1 2

the basic probability assignment to assess the risk status after
the index combination.

Let the operational risk status of the transformer be 5
categories, namely, Class 1, Class 2, Class 3, Class 4, and
Class 5. Use 𝑚(1), 𝑚(2), 𝑚(3), 𝑚(4), and 𝑚(5) to represent
the basic probability assignment of the risk status belonging
to Class 1, Class 2, Class 3, Class 4, and Class 5, respectively.
𝑚(⌀) represents the basic probability assignment of the
uncertainty.

Assume the transformer’s values of C
2
H
6
/C
2
H
4
, CH
4
/

C
2
H
4
, and C

2
H
2
/CH
4
monitored at a certain time are

0.953, 1.345, and 0.452, respectively; then the calculated basic
probability assignments are shown in Table 4.

According to the combination rule of D-S evidence
theory, the combination results of CH

4
/C
2
H
4
andC

2
H
2
/CH
4

are calculated, as shown in Table 5.
Combine the combination results of CH

4
/C
2
H
4
and

C
2
H
2
/CH
4
in Table 5 with the evidence of C

2
H
6
/C
2
H
4
in

Table 4; the results are shown in Table 6.
It can be obtained from the combination results in Table 4

that the basic probability of each evidence’s uncertainty is
greater than or equal to 0.1 when single evidence is used for
the judgment. Through evidence combination, uncertainty
dropped substantially from 0.1 to 0.00189, and the basic prob-
abilities of transformer’s operational risk status are 0.0234,
0.9014, 0.323, 0, and 0.0411 for each class. Among them, the
basic probability assignment of Class 2 is the largest. Let the
thresholds be 𝜀

1
= 0.1 and 𝜀

2
= 0.01; then the final assessment

result of the transformer’s risk status obtained from the
decision-making approach based on the basic probability
assignment is Class 2, and the uncertainty of the assessment
result is 0.00189.

3.3. Result Discussion. As the gases produced by oil and solid
insulation materials under different temperatures and dis-
charge modes differ in type and volume, the ratios among gas

volume can be used to judge the operational fault properties
of a device. In general, Rogers ratio method is widely used
to judge the operational status of a transformer (shown in
Tables 7 and 8). For this method, we should monitor the
ratios of each gas volume with another in the transformer
and compare them with Rogers ratios; then the risk status of
the transformer can be determined. However, the conditions
of each transformer are different, so the type and volume of
gases needed for detecting are also different. Furthermore,
there is no direct relationship between the monitoring ratios
among some gas volumes and the final assessment result;
thus inoperative ratios should be eliminated to simplify the
evaluation process. Choosing the key indexes of ratios among
gas volume to monitor is the future development trend of
transformer operational risk assessment.

As assumed above, C
2
H
6
/C
2
H
4
= 0.953, CH

4
/C
2
H
4
=

1.345, and C
2
H
2
/CH
4
= 0.452 of a transformer were moni-

tored at a certain time. Using the traditional method to per-
form operational risk evaluation, these values were translated
into Rogers ratios which were shown as C

2
H
6
/CH
4
= 0.709,

C
2
H
4
/C
2
H
6
= 1.049, and C

2
H
2
/C
2
H
4
= 0.608. Based on the

correspondence in Table 7 and diagnosis results in Table 8,
the ratio of CH

4
/H
2
should be further monitored to obtain

the accurate risk assessment result. If 0.1 < CH
4
/H
2
<

1.0, then the operational risk status of this transformer is
judged as arc discharge-perfoliate discharge; else, we cannot
get the assessment result from the existing fault diagnosis
using Rogers ratio method.

Using the method proposed in this paper, the key oper-
ational risk measurement indexes are {C

2
H
6
/C
2
H
4
,CH
4
/

C
2
H
4
,C
2
H
2
/CH
4
}, the ratio of CH

4
/H
2
needs no detection,

and the basic probabilities of transformer’s operational risk
status for 5 class is {0.0234, 0.9014, 0.323, 0, 0.0411}. Accord-
ing to the principle of maximum membership degree, the
transformer’s risk level is Class 2. Based on the correspon-
dence between risk assessment level and operational status
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Table 8: Fault diagnosis using Rogers ratio method.

CH4/H2 C2H6/CH4 C2H4/C2H6 C2H2/C2H4 Diagnosis
0 0 0 0 Normal aging
3 0 0 0 Partial discharge (corona)
1∼2 0 0 0 Overheating (≤150∘C)
1∼2 1 0 0 Overheating (150∘C∼200∘C)
0 1 0 0 Overheating (200∘C∼300∘C)
0 0 1 0 Metal superheating
1 0 1 0 Circular current in coil
1 0 2 0 Circular current in iron core and shell or joint overload
0 0 0 1 Arc discharge-no perfoliate discharge
0 0 1∼2 1 Arc discharge-perfoliate discharge
0 0 2 2 Continuous discharge breakdowns
3 0 0 1∼2 Partial discharge-corona (sign of creepage)

Table 9: Correspondence between operational risk level and status.

Risk level of the transformer Corresponding status
1 Normal
2 Low-energy discharge
3 High-energy discharge
4 Low-temperature overheating
5 High-temperature overheating

(shown in Table 9), the transformer is in a state of low-
energy discharge, which means there is a certain degree
of operational risk and some measures should be taken.
For the operational risk status of low-energy discharge,
this paper proposed risk handling measures from three
aspects: adopting insulating paper and cardboard with low
dielectric constant to improve the field-intensity distribution,
removing the paint film of the connection parts in the earthed
metal, and controlling feeding channel of the insulation to
avoid metal foreign bodies in the insulation parts.

As the corresponding relationships in Tables 8 and 9
are subject to different characteristics standards and the risk
status descriptions are inconsistent, we got the different risk
status judgments. But with the proposed method in this
paper, we got a more certain assessment result with reduced
risk indexes. As for the classification and description of fault
diagnosis, much more research has to be done based on data
mining technology, expert experience, and so on.

4. Conclusion

As the equipment of distribution network becomes more
complex, compact, and automated, a small fault inside the
equipmentmay lead to the operational risk of the distribution
network or even the whole power system as a result of chain
reaction. So it is of great theoretical and practical significance
to evaluate the operational risk of the distribution network
scientifically. Based on the study of rough set theory and
D-S evidence theory, this paper proposed an operational
risk assessment method of distribution network equipment.

Taking the transformer as an instance, and obtaining its’
operational monitoring data, this paper used the reduction
function of the rough set to reduce the operational risk
indexes of the transformer. Then the D-S evidence theory
was adopted to combine the optimized indexes and further
improve the accuracy of transformer’s risk assessment. With
method comparasion and application discussion, results
showed that the method proposed in this paper is not only
able to get the risk assessment indexes of the distribution
network equipment more exactly, but is also able to deal with
the uncertainty of the evidence efficiently. It provides helpful
thoughts for the quantitative risk assessment of distribution
network equipment.
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