
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Estimating the Impact of Variables in Bayesian Belief Networks

van Gosliga, S.P.; Groen, F.C.A.

Published in:
Tenth Tbilisi Symposium on Language, Logic and Computation: Gudauri, Georgia, 23-27 September 2013

Link to publication

Citation for published version (APA):
van Gosliga, S. P., & Groen, F. (2013). Estimating the Impact of Variables in Bayesian Belief Networks. In Tenth
Tbilisi Symposium on Language, Logic and Computation: Gudauri, Georgia, 23-27 September 2013 (pp. 87-90).
Tbilisi: Centre for Language, Logic and Speech, and Razmadze Mathematical Institute, Tbilisi State University.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 01 Jul 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357242763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dare.uva.nl/personal/pure/en/publications/estimating-the-impact-of-variables-in-bayesian-belief-networks(cfe57c2c-4ca4-41bc-8b39-4a4213ce3b66).html


Tenth Tbilisi Symposium on Language,
Logic and Computation

Gudauri, Georgia
23–27 September 2013

Centre for Language, Logic and Speech

and

Razmadze Mathematical Institute at the
Tbilisi State University

Institute for Logic, Language and Computation



[14] Tomer Libal. Cut Elimination in Inductive Proofs of Weakly Quantified Theorems. Master’s
thesis, Vienna University of Technology, 2008.

[15] Raymond McDowell and Dale Miller. Cut-Elimination for a Logic with Definitions and
Induction. Theoretical Computer Science, 232(1–2):91–119, 2000.

[16] Mikheil Rukhaia. CERES in Proof Schemata. PhD thesis, Vienna University of Technology,
2012.

[17] Gaisi Takeuti. Proof Theory. North Holland, second edition, 1987.

Estimating the Impact of Variables in Bayesian Belief
Networks
Sicco Pier van Gosliga and Frans Groen

Introduction

Bayesian belief networks (BBNs) are often designed to aid decision making. A BBN models
uncertainty and enables to compute posterior probabilities given prior information and current
observations [8]. In this paper we focus on a solution to two practical problems that arise with
the application of BBNs: First, in real world applications observations are associated with costs.
To keep these costs within acceptable limits we would like to prioritize observations most relevant
to our decision. Second, models can grow too large for feasible computations [2]. Rather than
restricting the design of a BBN for decision making, we pursue an ad-hoc sub-model tailored to
its relevance for the decision maker. For these reasons, we propose an efficient approximation
algorithm to compute the maximum impact of observing a variable in respect to the posteriors of
other variables in a BBN. The algorithm is guaranteed to never underestimate the real impact.
First the impact of the variables within the markov blanket of a variable are calculated, followed
by a message passing algorithm to include other variables in the network. The method is closely
related the field of sensitivity analysis [3][5], which mostly focuses on aiding the design of a BBN.

Methodology

Distance measure. To quantify belief changes in posterior probability distributions we will
use the maximum absolute distance as defined by the Chebyshev distance function DChpP, Qq
which takes the largest difference between pairs of probability values in two discrete probability
distributions P and Q:

DChpP,Qq “ max
i

´

ˇ

ˇpi ´ qi
ˇ

ˇ

¯

(1)

Distance functions to quantify differences in probability distributions are often based on entropy
[1][6][7]. Entropy based distance functions are relative distance measures. As a result, small
absolute differences can be valued equally important as a large difference when both span an
equal order of magnitude. Also, entropy based distance functions evaluate the general difference
between two discrete probability distributions, while the Chebyshev distance focuses on the
maximum difference. Since decisions are based upon the absolute posterior probability of a
specific outcome, the Chebyshev distance is the measure that directly relates to the decision
making. Van Engelen [9] introduced a method to compute an absolute upper bound for the
maximum absolute error based on the K-L divergence. However, its reliance on computing prior
marginals in advance limits its applicability for pruning BBNs. We base our method directly on
the Chebyshev distance and local prior conditional distributions rather than prior marginals.
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Aim. We aim to get a safe estimate of the real maximum impact. Given a BBN G containing
variables V1 and V2 we first define, in Eq. 2, the real maximum impact of V2 on V1 in the context
of evidence e. We then define, in Eq. 3, the generalized real maximum impact of V2 on V1 as the
maximum absolute difference that two different instantiations of V2 can cause in the posterior
probability for any state of V1 given any possible combination of evidence e for other variables
in G, where set E holds all evidence configurations for G.

δepV1|V2q “ max
v2iPV2;v2jPV2

DCh

´

P pV1|v2i, eq, P pV1|v2j , eq
¯

(2)

δpV1|V2q “ max
ePE

´

δepV1|V2q

¯

(3)

Algorithm

First Phase. We first calculate the maximum impact a variable may potentially have on other
variables within its markov blanket, if the BBN beyond the markov blanket could take any form.
Figure 1 shows V1’s markov blanket, a subgraph of G that contains V1’s parents, children and
parents of children. Suppose e is a set of evidence, and we want to compute the posteriors for V1

given this evidence set: P pV1|eq. Each edge to V1 can be considered to partition G in subgraphs:
edge V2 Ñ V1 divides G in an upper subgraph G´V2

and a lower subgraph G`V2
. Let e´V2

be the

subset of e that concerns the variables in G´V2
. Likewise, edges V3Ñ V1, V1Ñ V4 and V1Ñ V5

create the following subgraphs end evidence sets: G´V3
with e´V3

, G`V4
with e`V4

and G`V5
with e`V5

.
Applying Bayes’ rule, the posterior probability distribution for V1 given e can then be computed
as follows:

P pV1|eq “ P pV1|e
´
V2
, e´V3

, e`V4
, e`V5

q (4)

“ η P pV1|e
´
V2
, e´V3

qP pe`V4
|V1qP pe

`
V5
|V1q

“ η
`

ÿ

V2V3

P pV1|V2, V3qP pV2|e
´
V2
qP pV3|e

´
V3
q
˘

λpV1q (5)

In Eq. 4 and 5, η is a normalizing constant and λpV1q “ P pe`V4
|V1qP pe

`
V5
|V1q. The posteriors

of V1 are computed by combining prior information P pV1|V2, V3q and current observations in
evidence set e. Each parent and child variable of V1 contributes a parameter conditioned by
a subset of e. The maximizing causal parameters for V1’s parents can be derived from the
conditional probability table P pV1|V2, V3q. For computing the local potential maximum impact
of V2 on V1, ∆V1pV1|V2q, we set these as p “ P pv1k|v2i, v3cq and q “ P pv1k|v2j , v3cq. For the
diagnostic parameters of V1’s children, we set λ “ λpv1kq. The λ value that maximizes ∆V1

pV1|V2q

can be calculated in closed form with Eq. 7. The value ∆V1
pV1|V2q can then be computed with

Eq. 6.

∆V1
pV1|V2q “ max

i,j,k,c

ˇ

ˇ

ˇ

ˇ

1

2λ p´ λ´ p` 1
λ p´

1

2λ q ´ λ´ q ` 1
λ q

ˇ

ˇ

ˇ

ˇ

unless p or q is 0, or p or q is 1, then ∆V1pV1|V2q “ 1 (6)

λ “

b

`

p´ 1
˘

p
`

q2 ´ q
˘

` p
`

´ q
˘

` p` q ´ 1

p` q ´ 1

unless p` q ´ 1 “ 0 , then: λ “
1

2
(7)
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Second Phase. The second phase assesses the maximum potential impact between nodes further
apart. A propagation algorithm is used to investigate all d-connecting paths between each pair
of nodes. Multiple d-connecting paths may exist between a pair of variables, and are likely to
partly overlap. For a single path segment, we take the product of all local potential impact values
along intermediate edges as a safe overestimate of the real maximum impact. When parallel path
segments converge we take their sum to approximate their joint influence.

Experiments

To assess the quality of our approximation of the real maximum impact values, the algorithm was
tested on randomly generated BBNs. The BBNs were generated by using an algorithm designed
and implemented by [4]. The ∆pVa|Vbq values were compared to the corresponding δpVa|Vbq
values, based on simulated evidence. In each BBN, all possible constellations of evidence were
taken into account to discover the real maximum impact. In total 48000 pairs of variables were
evaluated in singly connected graphs, and 90000 pairs of variables in multiply connected graphs.
The experiments show that accuracy of the ∆pVa|Vbq values decreases with the number of states
a variable may have, the maximum degree of the graph, and the number of edges between Va
and Vb. The algorithm never returned an underestimate of the real maximum impact. Figure 2
gives the estimated impact as function of the real impact in these experiments.

Discussion

The method was successfully used to estimate the impact of variables in a BBN. Instead of getting
an optimally accurate assessment of the real maximum impact, we have chosen an approach that
is guaranteed never to return an underestimate of the real impact. Not underestimating a
variable’s impact in the context of decision making can be crucial. To improve the method’s
accuracy and applicability, it could be extended to respect existing evidence and to get the joint
impact of multiple variables to a single goal variable.
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A syntactic characterisation of the Gabbay–de Jongh log-
ics
Jeroen Goudsmit

[11] introduced refutation systems as a formal means of reasoning non-derivability. One can
think of a refutation system as a proof system for non-derivability. The “proofs” in this system
are formal inferences of the refutability of a given formula φ, written % φ, and these inferences
are called refutations. When every refutable formula is non-derivable the refutation system is
sound, and when the converse holds it is said to be complete.

[12] proposed a refutation system for intuitionistic propositional logic (IPC), which consisted
of the rules listed below for L “ IPC. In stating that this system is sound and complete for IPC
he, in essence, conjectured that IPC is the sole intermediate logic with the disjunction property.
The situation however turned out more subtle, see [2] for a survey.

Ax
% p

% σpφq
Subs

% φ

% ψ φ $L ψ
MT

% φ

% φ % ψ
DP

% φ_ ψ

The axiom Ax states that no propositional variable is derivable, which is a valid statement for
any intermediate logic. The reverse substitution rule Subs is also sound for any intermediate logic,
and the same goes for modes tollens, MT. Finally, the rule DP is basically the counter-positive
of the disjunction property, which states that if φ _ ψ is derivable, then one amongst φ and ψ
must be derivable. To summarise, Ax, Subs and MT form a sounds refutation system for each
intermediate logic L. When we let L be CPC, classical propositional logic, it is complete. The
latter is clear when one realises that a counter model of a formula φ gives rise to a substitution
σ such that σpφq ” K. Note that, although each refutation system can be sound for many logics,
there is but one for which it is both sound and complete. It is in this sense that a refutation
system syntactically characterises a logic.

[13] proved that replacing the rule DP by the rules GDPn for all n ě 2 as below suffices to
refute all non-theorems of IPC. That is to say, the refutation system containing Ax, Subs, MT and
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