Module amenability and module biprojectivity of
 θ-Lau product of Banach algebras

D. Ebrahimi Bagha ${ }^{\text {a* }}$, H. Azaraien ${ }^{\text {b }}$
${ }^{\mathrm{a}, \mathrm{b}}$ Department of Mathematics, Islamic Azad university, Central Tehran Branch, Tehran, Iran.

Received 2 October 2014; Revised 20 December 2014; Accepted 29 December 2014.

Abstract

In this paper we study the relation between module amenability of θ - Lau product $A \times{ }_{\theta} B$ and that of Banach algebras A, B. We also discuss module biprojectivity of $A \times{ }_{\theta} B$. As a consequent we will see that for an inverse semigroup $S, l^{1}(S) \times{ }_{\theta} l^{1}(S)$ is module amenable if and only if S is amenable.

(C) 2014 IAUCTB. All rights reserved.

Keywords: Module amenability, module biprojectivity, θ-Lau product of Banach algebras, inverse semigroup.

1. Introduction

Lau product of Banach algebras, were introduced by A. T- M. Lau [6], for a special class of Banach algebras which are pre-duals of Von Numann algebras, such that the identity of the dual algebra is a multiplicative linear functional on the predual. The θ-Lau product was introduced by M. Sangani-Monfared in [7]. He defined θ-Lau product on $A \times B$ as

$$
(a, b)(m, n)=(a m+\theta(b) m+\theta(n) a, b n),
$$

where $\theta \in \sigma(B)$, and A, B are Banach algebras, and then studied amenability and weak amenability of this Banach algebra. The norm on this space is as $\|(a, b)\|=\|a\|+\|b\|$. The Banach algebra generated by above multiplication on $A \times B$, is denoted by $A \times{ }_{\theta} B$. In[4], it was studied some properties of $A \times_{\theta} B$, such as Character amenability, Gelfand space. M. Amini in [1] introduce the concept of module amenability. In this paper we

[^0]study the relation between module amenability and module biprojectivity, of θ - Lau product $A \times_{\theta} B$ and module amenability and module biprojectivity of Banach algebras A, B. By an example we will show that if $l^{1}(S)$ is unital then $l^{1}(S) \times{ }_{\theta} l^{1}(S)$ is module amenable if and only if S is amenable. We also show that $l^{1}\left(\mathbb{N}_{\vee}\right) \times_{\theta} l^{1}\left(\mathbb{N}_{\vee}\right)$ is module biprojective.

Let \mathfrak{U} be a Banach algebra and A be a Banach \mathfrak{U}-bimodule, with the compatible module actions

$$
\alpha \cdot(a m)=(\alpha \cdot a) m,(\alpha \beta) \cdot m=\alpha \cdot(\beta \cdot m),(\alpha, \beta \in \mathfrak{U}, a, m \in A)
$$

A bounded map $D: A \longrightarrow X$ with $D(a+b)=D(a)+D(b), D(a b)=D(a) \cdot b+a \cdot D(b)$ and $D(\alpha \cdot a)=\alpha \cdot D(a), D(a \cdot \alpha)=D(a) \cdot \alpha,(\alpha \in \mathfrak{U}, a, b \in A)$ is called a module derivation. If there exists $x \in X$ such that $D(a)=a \cdot x-x \cdot a=\delta_{x}(a),(a \in A)$ then D is called inner derivation. The set of all module derivations $D: A \longrightarrow X^{\prime}$ is denoted by $Z_{u}\left(A, X^{\prime}\right)$ and the notation $N_{u}\left(A, X^{\prime}\right)$ for those which are inner. The quotient $\frac{Z_{u}\left(A, X^{\prime}\right)}{N_{u}\left(A, X^{\prime}\right)}$ is denoted by $H_{u}\left(A, X^{\prime}\right)$.

A Banach algebra A is module amenable if and only if $H_{u}\left(A, X^{\prime}\right)=\{0\}$, for each A - \mathfrak{U}-module X. Note that X is called an $A-\mathfrak{U}$-module if X is a Banach algebra which is at the same time a Banach A-bimodule and a Banach \mathfrak{U}-bimodule with compatibility of actions

$$
(a \cdot x) \cdot \alpha=a \cdot(x \cdot \alpha), \alpha \cdot(a \cdot x)=(\alpha \cdot a) \cdot x,(\alpha \in \mathfrak{U}, a \in A, x \in X) .
$$

For such X, X^{\prime} is also Banach module over A and \mathfrak{U}, with compatible actions under canonical actions of $A, \mathfrak{U}, \alpha .(a . f)=(\alpha . a) . f,\left(a \in A, \alpha \in \mathfrak{U}, f \in X^{\prime}\right)$. In [2], it was defined module biprojectivity for a Banach algebra which is a Banach module over another Banach algebra.

Let X, Y be A - \mathfrak{U}-modules, module homomorphism from X to Y is a norm continous $\operatorname{map} \varphi: X \longrightarrow Y$ with $\varphi(x \pm y)=\varphi(x) \pm \varphi(y), \varphi(\alpha . x)=\alpha \cdot \varphi(x), \varphi(x . \alpha)=\varphi(x) . \alpha$, $\varphi(a \cdot x)=a \cdot \varphi(x), \varphi(x \cdot a)=\varphi(x) \cdot a,(x, y \in X, \alpha \in \mathfrak{U}, a \in A)$. If A is a commutative \mathfrak{U}-module and acts on itself by multiplication from both sides, then it is also a Banach A - - -module. Consider the projective tensor product $A \widehat{\otimes} A$. It is well known that $A \widehat{\otimes} A$ is a Banach algebra with respect to the canonical multiplication defined by $(a \otimes b)(c \otimes d)=$ $a c \otimes b d$ and extended by bi-linearity and continuity, [3]. Then $A \widehat{\otimes} A$ is a Banach $A-\mathfrak{U}$ module with canonical actions. Let I be the closed ideal of the projective tensor product $A \widehat{\otimes} A$ generated by elements of the form $\alpha . a \otimes b-a \otimes b . \alpha$ for $\alpha \in \mathfrak{U}, a, b \in A$. Consider the $\operatorname{map} \pi_{A}: A \widehat{\otimes} A \longrightarrow A$ defined by $\pi_{A}(a \otimes m)=a m$ and extended by linearity and continuity. Let J be the closed ideal of A generated by $\pi_{A}(I)$. Then the module projective tensor product $A \widehat{\otimes}_{u} A \cong A \widehat{\otimes} A / I$ and Banach algebra A / J are Banach \mathfrak{U}-module. The $\operatorname{map} \widetilde{\pi_{A}}: A \widehat{\otimes}_{u} A \longrightarrow A / J$ defined by $\widetilde{\pi_{A}}(a \otimes m+I)=a b+J$, extended to an \mathfrak{U}-module morphism. If $A \widehat{\otimes}_{u} A$ and A / J are commutative \mathfrak{U}-module, then $A \widehat{\otimes}_{u} A$ and A / J are A / J -\mathfrak{U}-module and $\widetilde{\pi_{A}}$ is A / J - \mathfrak{U}-module homomorphism. A Banach algebra A is called module biprojective (as \mathfrak{U}-module) if $\widetilde{\pi_{A}}$ has a bounded right inverse which is an A / J - \mathfrak{U}-module morphism[2].

2. Module amenability

Throughout we assume that A, B are Banach \mathfrak{U}-bimodule with actions $A \times \mathfrak{U} \longrightarrow$ $A,(a, \alpha) \longmapsto a . \alpha, \mathfrak{U} \times A \longrightarrow A,(\alpha, a) \longmapsto \alpha \circ a, B \times \mathfrak{U} \longrightarrow B,(b, \alpha) \longmapsto b \star \alpha$,
$\mathfrak{U} \times B \longrightarrow B,(\alpha, b) \longmapsto \alpha * b$. and $\theta \in \sigma(B)$ is such that $\theta(\alpha \star b) a=\theta(b) \alpha \circ a$, $\theta(b * \alpha)=\theta(b) \alpha \circ a$. Let $M=A \times_{\theta} B$.

Proposition 2.1 Let \mathfrak{U} be a Banach algebra and A, B be Banach \mathfrak{U}-bimodule. for $\theta \in \sigma(B)$

1) $A \times{ }_{\theta} B$ is a Banach A-bimodule,
2) $A \times_{\theta} B$ is a Banach B-bimodule,
3) $A \times_{\theta} B$ is a Banach \mathfrak{U}-bimodule,
4) $A \times{ }_{\theta} B$ is a Banach B - \mathfrak{U}-module.

Proof. 1) We define the module actions as
$A \times\left(A \times_{\theta} B\right) \longrightarrow A \times_{\theta} B$ by $a .(m, n)=(a, 0)(m, n)=(a m+\theta(n) a, 0)$,
and $\left(A \times_{\theta} B\right) \times A \longrightarrow A \times_{\theta} B$ by $(m, n) \cdot a=(m, n)(a, 0)=(m a+\theta(n) a, 0)$. It is easy to see that, with above actions, $A \times_{\theta} B$ is an A-bimodule.
2)The module actions are defined as
$B \times\left(A \times_{\theta} B\right) \longrightarrow A \times_{\theta} B$ by $b .(m, n)=(0, b)(m, n)=(\theta(b) m, b n)$,
and $\left(A \times_{\theta} B\right) \times B \longrightarrow A \times_{\theta} B$ by $(m, n) \cdot b=(m, n)(0, b)=(\theta(b) m, n b)$. It is easy to see that properties are satiesfied.
3) The module actions are defined as
$\mathfrak{U} \times\left(A \times_{\theta} B\right) \longrightarrow A \times_{\theta} B$ by $\alpha .(a, b)=(\alpha \circ a, \alpha * b)$,
$\left(A \times_{\theta} B\right) \times \mathfrak{U} \longrightarrow A \times_{\theta} B$ by $(a, b) \cdot \alpha=(a . \alpha, b \star \alpha)$
4) By parts (2), (3), $A \times_{\theta} B$ is at the same time B-module and \mathfrak{U}-module, thus it is sufficient to check that actions are compatible.

$$
\begin{aligned}
& \alpha \cdot(b \cdot(a, n))=\alpha \cdot((0, b)(a, n))=\alpha \cdot(\theta(b) a, b n) \\
& =(\theta(b) \alpha \circ a, \alpha *(b n))=(\theta(b \star \alpha) a,(\alpha * b) n)=(\alpha * b) \cdot(a, n) . \\
& b \cdot(\alpha \cdot(m, n))=b \cdot(\alpha \circ m, \alpha * n) \\
& \\
& =(\theta(b)(\alpha \circ m), b(\alpha * n))=(\theta(b \star \alpha) m,(b * \alpha) n) \\
& \\
& =(b * \alpha) \cdot(m, n)
\end{aligned}
$$

Also

$$
\begin{aligned}
(\alpha \cdot(m, n)) \cdot b & =(\alpha \circ m, \alpha * n) \cdot b=(\alpha \circ m, \alpha * n)(0, b) \\
& =(\theta(b)(\alpha \circ m),(\alpha * n) b)=(\alpha \circ(\theta(b) m), \alpha *(b n)) \\
& =\alpha \cdot((m, n)(0, b))=\alpha \cdot((m, n) \cdot b)
\end{aligned}
$$

Proposition 2.2 Let \mathfrak{U} be a Banach algebra, A and B be Banach \mathfrak{U}-bimodules, and $\theta \in \sigma(B)$. If X is a Banach A - \mathfrak{U}-module and Y is a Banach B - \mathfrak{U}-module then $X \times Y$ is a Banach $A \times_{\theta} B$ - \mathfrak{U}-module.

Proof. Assume that module actions on X and Y, are as
$\mathfrak{U} \times X \longrightarrow X$ as $(\alpha, x) \longmapsto \alpha . x, X \times \mathfrak{U} \longrightarrow X$, as $(x, \alpha) \longmapsto x \circ \alpha, \mathfrak{U} \times Y \longrightarrow Y$ as $(\alpha, y) \longmapsto \alpha \Delta y, Y \times \mathfrak{U} \longrightarrow \mathfrak{U}$ as $(y, \alpha) \longmapsto y \nabla \alpha$. And $A \times X \longrightarrow X$ as $(a, x) \longmapsto a . x$, $X \times A \longrightarrow X$ as $(x, a) \longmapsto x \circ a, B \times Y \longrightarrow Y,(b, y) \longmapsto b \bullet y, y \times B \longrightarrow B$, as $(y, b) \longmapsto y \cdot b$. We define
$\mathfrak{U} \times(X \times Y) \longrightarrow X \times Y$ by $\alpha .(x, y)=(\alpha . x, \alpha \Delta y)$ and $(X \times Y) \times \mathfrak{U} \longrightarrow X \times Y$ by $(x, y) \cdot \alpha=(x \circ \alpha, y \nabla \alpha)$. Also $(X \times Y) \times\left(A \times_{\theta} B\right) \longrightarrow X \times Y$ by $(x, y) \cdot(a, b)=$ $(x \circ a+\theta(b) x, y \cdot b)$ and $\left(A \times{ }_{\theta} B\right) \times(X \times Y) \longrightarrow X \times Y$ By $(a, b) .(x, y)=(a . x+\theta(b) x, b \bullet y)$. We can see that by above actions $X \times Y$ is at the same time a Banach \mathfrak{U}-bimodule and a Banach $A \times{ }_{\theta} B$-bimodule. Only we prove that actions are compatible.

$$
\begin{aligned}
\alpha \cdot((a, b) \cdot(x, y)) & =\alpha \cdot(a \cdot x+\theta(b) x, b \bullet y) \\
& =(\alpha \cdot(a \cdot x+\theta(b) \alpha \cdot x), \alpha \Delta(b \bullet y)) \\
& =((\alpha \circ a) \cdot x+\theta(\alpha * b) x,(\alpha * b) \bullet y)=(\alpha \cdot(a, b)) \cdot(x, y) . \\
(a, b) \cdot(\alpha \cdot(x, y)) & =(a, b) \cdot(\alpha \cdot x, \alpha \Delta y) \\
& =(a \cdot(\alpha \cdot x)+\theta(b)(\alpha \cdot x), b \bullet(\alpha \Delta y)) \\
& =((a \cdot \alpha) \cdot x+\theta(b \star \alpha) x,(b \star \alpha) \bullet y)=((a, b) \cdot \alpha) \cdot(x, y) .
\end{aligned}
$$

Also

$$
\begin{aligned}
(\alpha \cdot(x, y)) \cdot(a, b) & =(\alpha \cdot x, \alpha \Delta y) \cdot(a, b) \\
& =((\alpha \cdot x) \circ a+\theta(b)(\alpha \cdot x),(\alpha \Delta y) \cdot b) \\
& =(\alpha \cdot(x \circ a)+\theta(b) \alpha \cdot x, \alpha \Delta(y \cdot b)) \\
& =\alpha \cdot(x \circ a+\theta(b) x, y \bullet b) \\
& =\alpha \cdot((x, y) \cdot(a, b))
\end{aligned}
$$

So $X \times Y$ is a $A \times{ }_{\theta} B$ - \mathfrak{U}-module.
Proposition 2.3 Let \mathfrak{U} be a Banach algebra and A, B be Banach \mathfrak{U}-bimodules, and let X be a Banach A - \mathfrak{U}-module and Y be a Banach B - \mathfrak{U}-module then $D \in Z_{u}\left(A \times_{\theta} B, X^{\prime} \times Y^{\prime}\right)$ if and only if $\exists D_{1} \in Z_{u}\left(A, X^{\prime}\right), D_{2} \in Z_{u}\left(B, Y^{\prime}\right), D_{3} \in Z_{u}\left(B, X^{\prime}\right)$ and a bounded linear $\operatorname{map} R: A \longrightarrow Y^{\prime}$ with $R(\alpha \circ a)=\alpha \cdot R(a),(\alpha \in \mathfrak{U})$ such that

1) $D(a, b)=\left(D_{1}(a)+D_{3}(b), R(a)+D_{2}(b)\right)$,
2) $D_{1}(\theta(b) m)=D_{1}(m) \odot \theta(b)+D_{3}(b) \cdot m$,
3) $D_{1}(\theta(n) c)=D_{1}(c) \odot \theta(n)+c . D_{3}(n)$,
4) $D_{3}(b n)=D_{3}(b) \odot \theta(n)+D_{3}(n) \odot \theta(b)$, where $\left(D_{1}(a) \odot \theta(b)\right)(x)=D_{1}(a)(\theta(b) x)$.
5) $R(\theta(b) m)=b \cdot R(m)$,
6) $b \cdot R(m)=R(m) \cdot b$,
7) $R(a m)=0$.

Proof. Choose $D \in Z_{u}\left(A \times_{\theta} B, X^{\prime} \times Y^{\prime}\right)$ so there are $d_{1}: A \times_{\theta} B \longrightarrow X^{\prime}, d_{2}: A \times_{\theta} B \longrightarrow$
Y^{\prime} such that $\mathrm{D}=\left(d_{1}, d_{2}\right)$, Set
$D_{1}: A \longrightarrow X^{\prime}$ as $D_{1}(a)=d_{1}(a, 0), D_{2}: B \longrightarrow Y^{\prime}$ as $D_{2}(b)=d_{2}(0, b)$,
$D_{3}: B \longrightarrow X^{\prime}$ as $D_{3}(b)=d_{1}(0, b), R: A \longrightarrow Y^{\prime}$ as $R(a)=d_{2}(a, 0)$, Now

$$
\begin{aligned}
D(a, b) & =\left(d_{1}, d_{2}\right)((a, 0)+(0, b)) \\
& =\left(d_{1}, d_{2}\right)(a, 0)+\left(d_{1}, d_{2}\right)(0, b) \\
& =\left(d_{1}(a, 0), d_{2}(a, 0)\right)+\left(\left(d_{1}(0, b), d_{2}(0, b)\right)\right. \\
& =\left(d_{1}(a, 0)+d_{1}(0, b)\right)+\left(d_{2}(a, 0)+d_{2}(0, b)\right) \\
& =\left(D_{1}(a)+D_{3}(b), R(a)+D_{2}(b)\right) . \quad \text { Since }
\end{aligned}
$$

$$
\begin{aligned}
D((a, b)(m, n)) & =D(a m+\theta(n) a+\theta(b) m, b n) \\
& =\left(D_{1}(a m)+D_{1}(\theta(n) a)+D_{1}(\theta(b) m)\right. \\
& \left.+D_{3}(b n), R(a m)+R(\theta(n) a)+R(\theta(b) m)+D_{2}(b n)\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
& (a, b) \cdot D(m, n)+D(a, b) \cdot(m, n)=(a, b) \cdot\left(D_{1}(m)+D_{3}(n), R(m)+D_{2}(n)\right) \\
& +\left(D_{1}(a)+D_{3}(b), R(a)+D_{2}(b)\right) \cdot(m, n) \\
& =\left(a \cdot D_{1}(m)+a \cdot D_{3}(n)+D_{1}(m) \odot \theta(b)+D_{3}(n) \odot \theta(b), b \cdot R(m)+b \cdot D_{2}(n)\right) \\
& +\left(D_{1}(a) \cdot m+D_{3}(b) \cdot m+D_{1}(a) \odot \theta(n)+D_{3}(b) \odot \theta(n), R(a) \cdot n+D_{2}(b) \cdot n\right) \\
& =\left(a \cdot D_{1}(m)+D_{1}(a) \cdot m+a \cdot D_{3}(n)+D_{3}(b) \cdot m+D_{1}(a) \odot \theta(n)+D_{1}(m) \odot \theta(b)\right. \\
& \left.+D_{3}(n) \odot \theta(b)+D_{3}(b) \odot \theta(n), R(a) \cdot n+b \cdot R(m)+b \cdot D_{2}(n)+D_{2}(b) \cdot n\right) \cdot
\end{aligned}
$$

Since D is a derivation by taking $a=n=0$ we get $D_{1}(\theta(b) m)=D_{3}(b) \cdot m+D_{1}(m) \odot \theta(b)$ and $R(\theta(b) m)=b . R(m)$. Take $b=m=0$ then $D_{1}(\theta(n) a)=a \cdot D_{3}(n)+D_{1}(a) \odot \theta(n)$ and $R(\theta(b) a)=R(a) . n$. Take $a=m=0$ then $\left(D_{3}(b n)=D_{3}(n) \odot \theta(b)+D_{3}(b) \odot \theta(n)\right.$ and $D_{2}(b n)=b . D_{2}(n)+D_{2}(b) . n$ so $D_{2} \in Z\left(B, Y^{\prime}\right), D_{3} \in Z\left(B, X^{\prime}\right)$. Take $b=n=0$ to get $D_{1}(a m)=D_{1}(a) \cdot m+a \cdot D_{1}(m)$ and $R(a m)=0$. Also

$$
D_{1}(\alpha \circ a)=d_{1}(\alpha \circ a, 0)=d_{1}(\alpha \cdot(a, 0))=\alpha \cdot d_{1}(a, 0)=\alpha \cdot D_{1}(a)
$$

In the same way $D_{2}(\alpha * b)=\alpha . D_{2}(b), D_{3}(\alpha * b)=\alpha . D_{3}(b)$.
Note that since $D \in Z_{u}\left(A \times_{\theta} B, X^{\prime} \times Y^{\prime}\right)$ so
$D((a, b)+(m, n))=D(a, b)+D(m, n)$ and $D(\alpha \cdot(a, b))=\alpha \cdot D(a, b)$ thus

$$
\begin{aligned}
D(\alpha \cdot(a, b)) & =D(\alpha \circ a, \alpha * b)=\left(d_{1}, d_{2}\right)(\alpha \circ a, \alpha * b) \\
& =\left(d_{1}(\alpha \circ a, \alpha * b), d_{2}(\alpha \circ a, \alpha * b)\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\alpha \cdot D(a, b) & =\alpha \cdot\left(\left(d_{1}, d_{2}\right)(a, b)\right)=\alpha \cdot\left(d_{1}(a, b), d_{2}(a, b)\right) \\
& =\left(\alpha \cdot d_{1}(a, b), \alpha \cdot d_{2}(a, b)\right) .
\end{aligned}
$$

So $d_{1}(\alpha \circ a, \alpha * b)=\alpha \cdot d_{1}(a, b)$, and $d_{2}(\alpha \circ a, \alpha * b)=\alpha \cdot d_{2}(a, b)$.
Also we can prove that $d_{1}((a, b)+(m, n))=d_{1}(a, b)+d_{1}(m, n)$ and $d_{2}((a, b)+(m, n))=$ $d_{2}(a, b)+d_{2}(m, n)$. So

$$
\begin{aligned}
D_{1}(a+m) & =d_{1}(a+m, 0)=d_{1}((a, 0)+(m, 0)) \\
& =d_{1}(a, 0)+d_{1}(m, 0)=D_{1}(a)+D_{1}(m)
\end{aligned}
$$

Similarly $D_{2}(b+n)=D_{2}(b)+D_{2}(n)$ and $D_{3}(b+d)=D_{3}(b)+D_{3}(d)$.
Consequently $D_{1} \in Z_{u}\left(A, X^{\prime}\right), D_{2} \in Z_{u}\left(B, Y^{\prime}\right), D_{3} \in Z_{u}\left(B, X^{\prime}\right)$ and properties of proposition are satisfied.
Let $D_{1} \in Z_{u}\left(A, X^{\prime}\right), D_{2} \in Z_{u}\left(B, Y^{\prime}\right), D_{3} \in Z_{u}\left(B, X^{\prime}\right)$ and bounded linear mapping R be such that the statement of proposition are satisfy, then

$$
\begin{aligned}
D((a, b)(m, n)) & =D(a m+\theta(n) a+\theta(b) m, b n) \\
& =\left(D_{1}(a m)+D_{1}(\theta(n) a)+D_{1}(\theta(b) m)\right. \\
& \left.+D_{3}(b n), R(a m)+R(\theta(n) a)+R(\theta(b) m)+D_{2}(b n)\right) \\
& =\left(a \cdot D_{1}(m)+D_{1}(a) \cdot m+D_{1}(a) \odot \theta(n)\right. \\
& +a \cdot D_{3}(n)+D_{3}(b) \cdot m+D_{1}(m) \odot \theta(b) \\
& +D_{3}(n) \odot \theta(b)+D_{3}(b) \odot \theta(n), n \cdot R(a)+R(m) \cdot b \\
& \left.+b \cdot D_{2}(n)+D_{2}(b) \cdot n\right)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& (a, b) \cdot D(m, n)+D(a, b) \cdot(m, n) \\
& =(a, b) \cdot\left(D_{1}(m)+D_{3}(n), R(m)+D_{2}(n)\right) \\
& +\left(D_{1}(a)+D_{3}(b), R(a)+D_{2}(b)\right) \cdot(m, n) \\
& =\left(a \cdot D_{1}(m)+a \cdot D_{3}(n)+\theta(b) \odot D_{1}(m)+\theta(b) \odot D_{3}(n), b \cdot R(m)+b \cdot D_{2}(n)\right) \\
& +\left(D_{1}(a) \cdot m+D_{3}(b) \cdot m+D_{1}(a) \odot \theta(n)+D_{3}(b) \odot \theta(n), R(a) \cdot n+D_{2}(b) \cdot n\right) \\
& =\left(a \cdot D_{1}(m)+D_{1}(a) \cdot m+\theta(n) \odot D_{1}(a)+a \cdot D_{3}(n)+\theta(n) \odot D_{3}(b)\right. \\
& \left.+D_{3}(b) \cdot m+\theta(b) \odot D_{1}(m)+\theta(b) \odot D_{3}(n), b \cdot R(m)+R(a) \cdot n+b \cdot D_{2}(n)+D_{2}(b) \cdot n\right) .
\end{aligned}
$$

So $D((a, b)(m, n))=D(a, b) \cdot(m, n)+(a, b) \cdot D(m, n)$,
for all $(a, b),(m, n) \in A \times{ }_{\theta} B$ thus $D \in Z\left(A \times{ }_{\theta} B, X^{\prime} \times Y^{\prime}\right)$.

$$
\begin{aligned}
D(\alpha \cdot(a, b)) & =D(\alpha \circ a, \alpha * b)=\left(D_{1}(\alpha \circ a)+D_{3}(\alpha * b), R(\alpha \circ a)+D_{2}(\alpha * b)\right) \\
& =\left(\alpha \cdot D_{1}(a)+\alpha \cdot D_{3}(b), \alpha \cdot R(a)+\alpha \cdot D_{2}(b)\right) \\
& =\alpha \cdot\left(D_{1}(a)+D_{3}(b), R(a)+D_{2}(b)\right)=\alpha \cdot D(a, b) .
\end{aligned}
$$

And

$$
\begin{aligned}
D((a, b)+(m, n)) & =D(a+m, b+n) \\
& =\left(D_{1}(a+m)+D_{3}(b+n), R(a+m)+D_{2}(b+n)\right) \\
& =\left(D_{1}(a)+D_{1}(m)+D_{3}(b)+D_{3}(n), R(a)+R(m)+D_{2}(b)+D_{2}(n)\right) \\
& =\left(D_{1}(a)+D_{3}(b), R(a)+D_{2}(b)\right)+\left(D_{1}(m)+D_{3}(n), R(m)+D_{2}(n)\right) \\
& =D(a, b)+D(m, n) .
\end{aligned}
$$

Hence $D \in Z_{u}\left(A \times_{\theta} B, X^{\prime} \times Y^{\prime}\right)$
Corollary 2.4 By assumption of previous proposition, $D=\delta_{(\varphi, \psi)}\left(\varphi \in X^{\prime}, \psi \in Y^{\prime}\right)$ if and only if ($D_{1}=\delta_{\varphi}, D_{2}=\delta_{\psi}, D_{3}=0, R(a)=0$, for all $a \in A$.)

Proof. Let $D=\delta_{(\varphi, \psi)}$ so for each $a \in A$ and $b \in B$ we have

$$
\begin{aligned}
D(a, b) & =\delta_{(\varphi, \psi)}(a, b) \\
& =(\varphi, \psi) \cdot(a, b)-(a, b) \cdot(\varphi, \psi) \\
& =(\varphi \cdot a+\varphi \odot \theta(b), \psi \cdot b)-(a \cdot \varphi+\theta(b) \odot \varphi, b \cdot \psi) \\
& =(\varphi \cdot a+\varphi \odot \theta(b)-a \cdot \varphi-\theta(b) \odot \varphi, \psi \cdot b-b \cdot \psi) .
\end{aligned}
$$

Take $a=0$, so $D_{3}(b)=\varphi \odot \theta(b)-\theta(b) \odot \varphi=0, D_{2}(b)=\psi \cdot b-b \cdot \psi=\delta_{\psi}(b)$. Take $b=0$, so $D_{1}(a)=\varphi \cdot a-a . \varphi=\delta_{\varphi}(a)$ and $R(a)=0$.
For the converse let $D_{1}=\delta_{\varphi}, D_{2}=\delta_{\psi}, D_{3}=0, R=0$, so

$$
\begin{aligned}
D(a, b) & =\left(D_{1}(a)+D_{3}(b), R(a)+D_{2}(b)\right) \\
& =(a \cdot \varphi-\varphi \cdot a+\varphi \odot \theta(b)-a \cdot \varphi-\theta(b) \odot \varphi, \psi \cdot b-b \cdot \psi) \\
& =\delta_{(\varphi, \psi)}(a, b) .
\end{aligned}
$$

Theorem 2.5 Let \mathfrak{U} be a Banach algebra and A, B be Banach \mathfrak{U}-bimodules. If A is unital Banach algebra then $A \times_{\theta} B$ is module amenable if and only if both A, B are module amenable.

Proof. Assume that X is a Banach A - \mathfrak{U}-module and Y is a Banach B - \mathfrak{U}-module, by proposition 2.2, $X \times Y$ is a Banach $A \times_{\theta} B$ - \mathfrak{U}-module, and let $D_{1} \in Z_{u}\left(A, X^{\prime}\right), D_{2} \in$
$Z_{u}\left(B, Y^{\prime}\right)$. Define $D_{3}: B \longrightarrow X^{\prime}$ by $D_{3}(b)=D_{1}(\theta(b) 1)$ then

$$
\begin{aligned}
D_{3}(b n) & =D_{1}(\theta(b n) 1)=D_{1}(\theta(b) \theta(n) 1) \\
& =D_{3}(b) \cdot(\theta(n) 1)+D_{1}(\theta(n) 1) \odot \theta(b) \\
& =D_{3}(b) \odot \theta(n)+D_{3}(n) \odot \theta(b) .
\end{aligned}
$$

Also

$$
\begin{aligned}
D_{1}(\theta(n) a) & =D_{1}((\theta(n) 1) a)=D_{1}(\theta(n) 1) \cdot a+(\theta(n) 1) \cdot D_{1}(a) \\
& =D_{3}(n) \cdot a+D_{1}(a) \odot \theta(n) . \\
D_{1}(\theta(b) m) & \left.=D_{1}(\theta(b) 1) m\right)=D_{1}(\theta(b) 1) \cdot m+(\theta(b) 1) \cdot D_{1}(m) \\
& =D_{3}(b) \cdot m+D_{1}(m) \odot \theta(b) .
\end{aligned}
$$

Since $D_{1} \in Z_{u}\left(A, X^{\prime}\right)$ so $D_{3} \in Z_{u}\left(B, X^{\prime}\right)$. Now define D: $A \times{ }_{\theta} B \longrightarrow X^{\prime} \times Y^{\prime}$ as $D(a, b)=$ $\left(D_{1}(a)+D_{3}(b), D_{2}(b)\right)$. So by above proposition $D \in Z_{u}\left(A \times{ }_{\theta} B, X^{\prime} \times Y^{\prime}\right)$. Since $A \times{ }_{\theta} B$ is module amenable, D is inner so $\exists(\varphi, \psi) \in X^{\prime} \times Y^{\prime}$ such that $D=\delta_{(\varphi, \psi)}$ thus by corollary $D_{1}=\delta_{\varphi}, D_{2}=\delta_{\psi}$, this means that A, B are module amenable. For the converse let A, B are module amenable. Let $X \times Y$ be a Banach $A \times_{\theta} B$ - \mathfrak{U}-module and $D \in Z_{u}\left(A \times_{\theta} B\right.$, $X^{\prime} \times Y^{\prime}$).
Define $q_{X}: X \times Y \longrightarrow X$, by $q_{X}(x, y)=x$, and $q_{Y}: X \times Y \longrightarrow Y$, by $q_{Y}(x, y)=y$. It is easy to check that X is a Banach A - \mathfrak{U}-module and Y is B - \mathfrak{U}-module with module multiplications
$X \times A \longrightarrow X$ defined by $x \cdot a=q_{X}((\mathrm{x}, 0) \cdot(\mathrm{a}, 0))$,
$A \times X \longrightarrow X$ defined by $a \cdot x=q_{X}((\mathrm{a}, 0) \cdot(\mathrm{x}, 0))$,
$Y \times B \longrightarrow Y$ defined by $y . b=q_{Y}((0, \mathrm{y}) \cdot(0, \mathrm{~b}))$,
$B \times Y \longrightarrow Y$ defined by $b . y=q_{Y}((0, \mathrm{~b}) .(0, \mathrm{y}))$, and
$X \times \mathfrak{U} \longrightarrow X$ with $x \circ \alpha=q_{X}((x, 0) \cdot \alpha), \mathfrak{U} \times X \longrightarrow X$ with $\alpha \cdot x=q_{X}(\alpha \cdot(x, 0))$,
$Y \times \mathfrak{U} \longrightarrow Y$ with $y \nabla \alpha=q_{Y}((0, y) \cdot \alpha), \mathfrak{U} \times Y \longrightarrow Y$ with $\alpha \Delta y=q_{Y}(\alpha .(0, y))$ with compatible actions.
Now Since $D \in Z_{u}\left(A \times_{\theta} B, X^{\prime} \times Y^{\prime}\right)$, by proposition 2.3, there are $D_{1} \in Z_{u}\left(A, X^{\prime}\right)$, $D_{3} \in Z_{u}\left(B, X^{\prime}\right), D_{2} \in Z_{u}\left(B, Y^{\prime}\right)$ and $R: A \longrightarrow Y^{\prime}$, such that $D(a, b)=\left(D_{1}(a)+\right.$ $\left.D_{3}(b), R(a)+D_{2}(b)\right)$.
Since $D_{1} \in Z_{u}\left(A, X^{\prime}\right)$ and A is module amenable so $\exists \varphi \in X^{\prime}$ such that $D_{1}=\delta_{\varphi}$, also since $D_{2} \in Z_{u}\left(B, Y^{\prime}\right)$ and B is module amenable so $\exists \psi \in Y^{\prime}$ such that $D_{2}=\delta_{\psi}$. Since $D_{1}(\theta(b) 1)=D_{1}(1) \odot \theta(b)+D_{3}(b) .1$, then $D_{3}(b) .1=D_{1}(\theta(b) 1)$ for all $b \in B$, so

$$
D_{3}(b) \cdot 1=\delta_{\varphi}(\theta(b) 1)=\varphi \cdot(\theta(b) 1)-(\theta(b) 1) \cdot \varphi=(\varphi \odot \theta(b)) \cdot 1-(\theta(b) \odot \varphi) \cdot 1=0 .
$$

Thus $D_{3}=0$. Also since $R(a m)=0$, let $m=1$, so $R(a)=0$, for all $a \in A$. Hence by corollarly $A \times_{\theta} B$ is module amenable.

Example 2.6 Let S be an amenable inverse semigroup with idempotent E, such that $l^{1}(S)$ be unital. Since $l^{1}(S)$ is $l^{1}(E)$-bimodule with the multiplication, right action and trivial left action by [1, theorem 3.1], $l^{1}(S)$ is module amenable if and only if S is amenable so $l^{1}(S) \times{ }_{\theta} l^{1}(S)$ is module amenable if and only if $l^{1}(S)$ is module amenable if and only if S is amenable, $\left(\theta \in \sigma\left(l^{1}(S)\right)\right.$.

3. Module biprojectivity

From now on we use the following maps:
$P_{A}: A \longrightarrow M$, with $P_{A}(a)=(a, 0), q_{A}: M \longrightarrow A$, as $q_{A}(a, b)=a, r_{A}: M \longrightarrow A$, $r_{A}(a, b)=a+\theta(b) 1, S_{B}: B \longrightarrow M, S_{B}(b)=(-\theta(b) 1, b)$ where 1 is the unit of A. and $P_{B}: B \longrightarrow M, b \longmapsto(0, b), q_{B}: M \longrightarrow B,(a, b) \longmapsto b, S_{B} \otimes S_{B}\left(b \otimes n+I_{2}\right)=$ $(-\theta(b) 1, b) \otimes(-\theta(n) 1, n)+I, P_{A} \otimes P_{A}\left(a \otimes m+I_{1}\right)=(a, 0) \otimes(m, 0)+I, q_{B} \otimes q_{B}((a, b) \otimes$ $(m, n)+I)=b \otimes n+I_{2}$, where I, I_{1} and I_{2} are introduce bellow.

Let A and B are commutative Banach \mathfrak{U}-bimodules. Let I be the closed ideal of the projective tensor product $M \widehat{\otimes} M$ generated by elements of the form $\alpha .(a, b) \otimes(m, n)-$ $(a, b) \otimes(m, n) \cdot \alpha,(\alpha \in \mathfrak{U},(a, b),(m, n) \in M)$. And J be the closed ideal of M generated by $\pi_{M}(I)$. Let I_{1} be the closed ideal of the projective tensor product $A \widehat{\otimes} A$ generated by elements of the form $\alpha \circ a \otimes m-a \otimes m . \alpha$ for $\alpha \in \mathfrak{U}, a, m \in A$, and I_{2} be the closed ideal of the projective tensor product $B \widehat{\otimes} B$ generated by elements of the form $\alpha * b \otimes n-b \otimes n \star \alpha$ for $\alpha \in \mathfrak{U}, b, n \in B$ and j_{1}, j_{2} be the closed ideals of A, B (respectively) generated by $\pi_{A}\left(I_{1}\right)$ and $\pi_{B}\left(I_{2}\right)$. Let A and B be commutative \mathfrak{U}-bimodules then

$$
\begin{aligned}
& \pi_{M}(\alpha \cdot(a, b) \otimes(m, n)-(a, b) \otimes(m, n) \cdot \alpha) \\
& =\pi_{M}((\alpha \circ a, \alpha * b) \otimes(m, n)-(a, b) \otimes(m \cdot \alpha, n \star \alpha)) \\
& =((\alpha \circ a) m+\theta(b) \alpha \circ m+\theta(n) \alpha \circ a,(\alpha * b) n) \\
& -(a(m \cdot \alpha)+\theta(b)(m \cdot \alpha)+\theta(n) \alpha \circ a, b(n \star \alpha))=(0,0)
\end{aligned}
$$

So $\pi_{M}(I)=\{(0,0)\}$ thus $J=\{(0,0)\}$. In a same way $j_{1}=\{0\}$ and $j_{2}=\{0\}$.

Proposition 3.1 For Banach \mathfrak{U}-bimodule $M=A \times_{\theta} B, M \widehat{\otimes}_{u} M$ is a commutative \mathfrak{U}-module.

Proof. Since $\alpha .(a, b) \otimes(m, n)-(a, b) \otimes(m, n) . \alpha \in I$, so for $x=\sum_{i=1}^{n}\left(a_{i}, b_{i}\right) \otimes\left(m_{i}, n_{i}\right)$ we have $\alpha . x-x . \alpha \in I$ so $\alpha . x+I=x . \alpha+I$, that is $M \widehat{\otimes}_{u} M$ is always a commutative \mathfrak{U}-module.

Lemma 3.2 With the above notations, the following statements hold.

1) $\left(q_{B} \otimes q_{B}\right)(\alpha \cdot(a, b) \otimes(m, n))=\alpha \cdot\left(q_{B} \otimes q_{B}\right)((a, b) \otimes(m, n))$
2) $\widetilde{\pi_{M}} \circ\left(P_{A} \otimes P_{A}\right)=P_{A} \circ \widetilde{\pi_{A}}$,
3) $\widetilde{\pi_{B}} \circ\left(q_{B} \otimes q_{B}\right)=q_{B} \circ \widetilde{\pi_{M}}$,
4) $P_{A} \otimes P_{A}\left(\alpha . a \otimes m+I_{1}\right)=\alpha \cdot P_{A} \otimes P_{A}\left(a \otimes m+I_{1}\right)$,
5) $q_{B} \otimes q_{B}((a, b) .(m, n) \otimes(c, d))=b \cdot q_{B} \otimes q_{B}((m, n) \otimes(c, d))$, when A is unital with unit 1 then
6) $\widetilde{\pi_{M}} \circ\left(S_{B} \otimes S_{B}\right)=S_{B} \circ \widetilde{\pi_{B}}$,
7) $(a, b) . P_{A} \otimes P_{A}\left(m \otimes c+I_{1}\right)=P_{A} \otimes P_{A}\left((a+\theta(b) 1) m \otimes c+I_{1}\right)$,
8) $P_{A} \otimes P_{A}\left(m \otimes c+I_{1}\right) \cdot(a, b)=P_{A} \otimes P_{A}\left(m \otimes c(a+\theta(b) 1)+I_{1}\right)$,
9) $(a, b) \cdot\left(S_{B} \otimes S_{B}\right)\left(d \otimes n+I_{2}\right)=\left(S_{B} \otimes S_{B}\right)\left(b d \otimes n+I_{2}\right)$,
10) $\left(S_{B} \otimes S_{B}\right)\left(d \otimes n+I_{2}\right) \cdot(a, b)=\left(S_{B} \otimes S_{B}\right)\left(d \otimes n b+I_{2}\right)$,
11) $S_{B} \otimes S_{B}\left(\alpha . b \otimes n+I_{2}\right)=\alpha . S_{B} \otimes S_{B}\left(b \otimes n+I_{2}\right)$.

Proof. We only prove 2, 9. The others are in a similar way.

$$
\text { 2) } \begin{aligned}
\widetilde{\pi_{M}} \circ\left(P_{A} \otimes P_{A}\right)\left(a \otimes m+I_{1}\right) & =\widetilde{\pi_{M}}((a, 0) \otimes(m, 0)+I) \\
& =(a, 0)(m, 0)=(a m, 0) \\
& =P_{A}(a m)=P_{A}\left(\widetilde{\pi_{A}}\left(a \otimes m+I_{1}\right)\right) \\
& =P_{A} \circ \widetilde{\pi_{A}}\left(a \otimes m+I_{1}\right)
\end{aligned}
$$

$$
\text { 6) } \begin{aligned}
(a, b) \cdot\left(S_{B} \otimes S_{B}\right)\left(d \otimes n+I_{2}\right) & =(a, b) \cdot((-\theta(d) 1, d) \otimes(-\theta(n) 1, n)+I) \\
& =(-\theta(d) a-\theta(b) \theta(d) 1+\theta(d) a, b d) \otimes(-\theta(n) 1, n)+I \\
& =(-\theta(b d) 1, b d) \otimes(-\theta(n) 1, n)+I \\
& =\left(S_{B} \otimes S_{B}\right)\left(b d \otimes n+I_{2}\right)
\end{aligned}
$$

Theorem 3.3 Let A and B be commutative \mathfrak{U}-bimodules. Then module biprojectivity of $M=A \times{ }_{\theta} B$ implies module biprojectivity of B.

Proof. Suppose that M be module biprojective and I, I_{2}, J and j_{2}, be as above. Since M is module biprojective, so for $\widetilde{\pi_{M}}$ there exist $\omega_{M}: M \longrightarrow M \widehat{\otimes} M$ such that $\widetilde{\pi_{M}} \circ \omega_{M}=$ $I d_{M}$.

$$
\text { Consider } B \xrightarrow{P_{B}} M \xrightarrow{\omega_{M}} M \widehat{\otimes} M \xrightarrow{q_{B} \otimes q_{B}} B \widehat{\otimes} B .
$$

Now set $\omega_{B}=\left(q_{B} \otimes q_{B}\right) \circ \omega_{M} \circ P_{B}$, then

$$
\begin{aligned}
\widetilde{\pi_{B}} \circ \omega_{B}(b) & =\widetilde{\pi_{B}} \circ\left(q_{B} \otimes q_{B}\right) \circ \omega_{M} \circ P_{B}(b) \\
& =q_{B} \circ \widetilde{\pi_{M}} \circ \omega_{M}(0, b) \\
& =q_{B}(0, b)=b .
\end{aligned}
$$

Also

$$
\begin{aligned}
\omega_{B}(\alpha * b) & =\left(q_{B} \otimes q_{B}\right) \circ \omega_{M} \circ P_{B}(\alpha * b) \\
& =\left(q_{B} \otimes q_{B}\right) \circ \omega_{M}(0, \alpha * b) \\
& =\left(q_{B} \otimes q_{B}\right) \circ \omega_{M}(\alpha \cdot(0, b)) \\
& =\left(q_{B} \otimes q_{B}\right)\left(\alpha \cdot \omega_{M}(0, b)\right. \\
& \left.=\alpha \cdot\left(q_{B} \otimes q_{B}\right)\left(\omega_{M}(0, b) \quad \text { by } \quad \text { lemma }, \text { part } 1\right)\right) \\
& =\alpha \cdot\left(q_{B} \otimes q_{B}\right) \circ \omega_{M} \circ P_{B}(b) \\
& =\alpha \cdot \omega_{B}(b)
\end{aligned}
$$

And

$$
\begin{aligned}
\omega_{B}(b d) & =\left(q_{B} \otimes q_{B}\right) \circ \omega_{M} \circ P_{B}(b d) \\
& =\left(q_{B} \otimes q_{B}\right) \circ \omega_{M}(0, b d) \\
& =\left(q_{B} \otimes q_{B}\right) \circ \omega_{M}((0, b)(0, d)) \\
& =\left(q_{B} \otimes q_{B}\right)\left((0, b) \omega_{M}(0, d)\right) \\
& =b \cdot \omega_{B}(d) . \quad \text { by }(\text { lemma }, \text { part } 5)
\end{aligned}
$$

Similar for right side. So ω_{B} is a right inverse for $\widetilde{\pi_{B}}: B \widehat{\otimes} B \longrightarrow B / j_{2}=B$ which is an $B / j_{2}-\mathfrak{U}$-module. Hence B is module biprojective.

Theorem 3.4 Let A and B be commutative \mathfrak{U}-bimodules. If both A and B are module biprojective and A is unital, then $M=A \times_{\theta} B$ is module biprojective.

Proof. Since A, B are module biprojective so there exists ω_{A} and ω_{B} such that $\widetilde{\pi_{A}} \circ \omega_{A}=$ $I d_{A}$ and $\widetilde{\pi_{B}} \circ \omega_{B}=I d_{B}$. Define

$$
\omega_{M}=P_{A} \otimes P_{A} \circ \omega_{A} \circ r_{A}+S_{B} \otimes S_{B} \circ \omega_{B} \circ q_{B} \text { since }
$$

$$
\begin{aligned}
\widetilde{\pi_{M}} \circ \omega_{M}(a, b) & =P_{A} \otimes P_{A} \circ \omega_{A} \circ r_{A}(a, b)+S_{B} \otimes S_{B} \circ \omega_{B} \circ q_{B}(a, b) \\
& =\widetilde{\pi_{M}} \circ P_{A} \otimes P_{A} \circ \omega_{A}(a+\theta(b) 1)+\widetilde{\pi_{M}} \circ S_{B} \otimes S_{B} \circ \omega_{B}(b) \\
& =P_{A} \circ \widetilde{\pi_{A}} \circ \omega_{A}(a+\theta(b) 1)+S_{B} \circ \widetilde{\pi_{B}} \circ \omega_{B}(b) \\
& =(a+\theta(b) 1,0)+(-\theta(b) 1, b)=(a, b)
\end{aligned}
$$

Also

$$
\begin{aligned}
\omega_{M}(\alpha .(a, b)) & =\omega_{M}(\alpha \circ a, \alpha * b) \\
& =P_{A} \otimes P_{A} \circ \omega_{A} \circ r_{A}(\alpha \circ a, \alpha * b)+S_{B} \otimes S_{B} \circ \omega_{B} \circ q_{B}(\alpha \circ a, \alpha * b) \\
& =P_{A} \otimes P_{A} \circ \omega_{A}(\alpha \circ a+\theta(\alpha * b) 1)+S_{B} \otimes S_{B} \circ \omega_{B}(\alpha * b) \\
& =P_{A} \otimes P_{A} \circ \omega_{A}(\alpha \circ a+\theta(b) \alpha \circ 1)+S_{B} \otimes S_{B} \circ \omega_{B}(\alpha * b) \\
& =\alpha \cdot P_{A} \otimes P_{A} \circ \omega_{A}(a+\theta(b) 1)+\alpha \cdot S_{B} \otimes S_{B} \circ \omega_{B}(b) \\
& =\alpha \cdot \omega_{M}(a, b)
\end{aligned}
$$

And

$$
\begin{aligned}
\omega_{M}((a, b)(m, n)) & =P_{A} \otimes P_{A} \circ \omega_{A} \circ r_{A}((a, b)(m, n))+S_{B} \otimes S_{B} \circ \omega_{B} \circ q_{B}((a, b)(m, n)) \\
& =P_{A} \otimes P_{A} \circ \omega_{A}((a+\theta(b) 1)(m+\theta(n) 1))+S_{B} \otimes S_{B} \circ \omega_{B}(b n) \\
& =(a, b) \cdot P_{A} \otimes P_{A} \circ \omega_{A}(m+\theta(n) 1)+(a, b) \cdot S_{B} \otimes S_{B} \circ \omega_{B}(n) \\
& =(a, b) \cdot\left(P_{A} \otimes P_{A} \circ \omega_{A} \circ r_{A}(m, n)+S_{B} \otimes S_{B} \circ \omega_{B} \circ q_{B}(m, n)\right) \\
& =(a, b) \cdot \omega_{M}(m, n)
\end{aligned}
$$

Similarly for right actions. So $\omega_{M}: M / J=M \longrightarrow M \widehat{\otimes} M$ is a right inverse for $\widetilde{\pi_{M}}$: $M \widehat{\otimes} M \longrightarrow M / J=M$, thus M is module biprojective.

Example 3.5 Let $S=\mathbb{N}$ with product $\mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ as $(m, n) \longmapsto m \vee n=\max \{m, n\}$, then S is a countable, abelian inverse semigroup with the identity 1. Clearly $E_{S}=S$. This semigroup is denoted by $\mathbb{N}_{\vee} \cdot l^{1}\left(\mathbb{N}_{\vee}\right)$ is unital with unit δ_{1} and is module biprojective(as an $\left.l^{1}\left(\mathbb{N}_{\vee}\right)\right)$ thus $l^{1}\left(\mathbb{N}_{\vee}\right) \times_{\theta} l^{1}\left(\mathbb{N}_{\vee}\right),\left(\theta \in \sigma\left(l^{1}\left(\mathbb{N}_{\vee}\right)\right)\right)$ is module biprojective.

Acknowledgement

This research was supported by Islamic Azad University Central Tehran Branch and the authors acknowledge it with thanks.

References

[1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004), 243-254.
[2] A. Bodaghi and M. Amini, Module biprojective and module biflat Banach algebras, U. P. B. Sci. Bull. Series A, Vol. 75, Iss.3, (2013)
[3] H. G. Dales, Banach algebras and Automatic continuty, London Mathematical Society Monographs new series, 24 Oxford university Press, Oxford, (2000)
[4] H. R. Ebrahimi Vishki and A. R. Khodami, Character inner amenability of certain Banach algebras, Colloq. Math. 122 (2011), 225-232.
[5] B. E. Johson, cohomology in Banach algebras, Memoirs Amer. Math. Soc. 127 (1972).
[6] A. T. M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161-175.
[7] M. Sangani-Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (3) (2007), 277-294.

[^0]: *Corresponding author.
 E-mail address: dav.ebrahimi-Bagha@iauctb.ac.ir (D. Ebrahimi Bagha).

