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a b s t r a c t

We investigate the problem of optimal bidding for a firm that in each period procures items to meet a
random demand by participating in a finite sequence of auctions. We develop a new model for a firm
where its item valuation derives from the sale of the acquired items via their demand distribution, sale
price, acquisition cost, salvage value and lost sales. We establish monotonicity properties for the value
function and the optimal dynamic bid strategy and we present computations.
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1. Introduction

In this paper we study procurement auctions for firms that
use sequential auctions for incremental procurement of items or
services in order to meet a random demand at the end of the
procurement period. Specifically, we develop a new model for a
firm that in each period procures items by participating in auctions
and then it sells the acquired items by the end of the period. There
is a randomdemandwith knowndistribution and any unsold items
are salvaged. The objective of the firm is to have a bidding policy
thatmaximizes the expected value of its profit over a fixed number
of N auctions that take place within the period. In this new study
the firm’s valuations derive from the sale of the acquired items
via their demand distribution, sale price, acquisition cost, salvage
value and lost sales penalties. One can think of this model as the
‘‘Newsvendor Model’’ where items are acquired incrementally in
procurement auctions. To our knowledge this is the first study of
a newsvendor model where procurement is done by bidding in
auctions.

Incremental procurement of items to satisfy random demand is
one of the ways companies deal with very high demand scenarios,
examples are found in holiday sales and in the retail sector. Such
auctions have become a crucial part of the procurement process
for many firms and they are viewed as an efficient mechanism of
setting the price for a good or a service. Other examples where
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such a framework is used for procurement is in auctions for
agricultural commodities such as cattle, wheat, rice, coffee, etc.
(cf., [3,17,18,9]). In some instances items such as units of electricity,
(cf., [5,6]), and flowers (cf., [16,7]) are also acquired in a similar
fashion.

An introduction to the study of multiple auctions can be found
in the book by Milgrom [12]. Klemperer [10] has an introduction
to the theory of auctions which includes references to multiple
object auctions. The first paper in sequential auctions was by
Ortega-Reichert [15]. He considered a two-person two-auction
scenario. He proved that the optimal bids in the first auction for
the two auction scenariowould be less than a corresponding single
auction scenario, for the asymmetric Nash equilibrium sequence
of pure bidding strategies. Rothkopf and Oren [14] characterized
a sequential auction as a multi-stage control process where the
state represented the competitor’s strategy and state transitions
represented the competitors’ reaction to a strategy used by the
bidder. The control was the bidders strategy. They showed that a
bidder should bid less aggressively in initial auctions if he believes
this will lead his competitors to bid less aggressively in future
auctions. Milgrom andWeber [13] study amodel where k identical
objects are sold to n bidders where every bidder can only acquire
one item. Prior to the auctions each bidder receives a private signal
and after each auction the seller announces the winning bid. They
proved that in this case a bidder does not deceive and change his
bid. Further, Weber [19] considers models of sequential auctions
for which the winning bid price is a martingale that on average
does not increase or decrease with each auction. Engelbrecht-
Wiggans [4] showed that in the case of auctions of ‘‘stochastically
equivalent’’ objects where bidders have independent valuations,
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the winning bid price decreases with each auction if the individual
bidder valuations are bounded distributions. In [2] the authors give
an overview of current state research in procurement auctions
and also study a model of procurement auctions under general
conditions. In [11] the authors study a problem where a seller has
multiple items (k) to sell and offers to buy individual items arrive
sequentially. The seller either ‘‘marks’’ the item or rejects. Marking
a buyer’s offermeans that the sellerwill sell one of the items to that
buyer. Once k items have been marked the seller sells the items to
the buyers at the same cost which is the minimum of the kmarked
offers. There is also a cost c associated with rejecting an offer.

Most papers on sequential auctions are from the auctioneer’s
point of view. There are very few papers which deal with the
‘‘bidder’s’’ perspective. Also, most of the papers in the field of
multiple auctions restrict the demand of each bidder to one.
Herein, we consider the bidder’s point of viewwhen the bidder has
a multi-unit demand.

To benchmark our model we compare the expected total
reward for the newsvendor that follows this auction procedure
(the ‘‘auction-newsvendor’’) with that of a traditional newsvendor
(the ‘‘classic-newsvendor’’) that can acquire all items at a fixed
cost. It is shown that as the item acquisition cost c increases the
optimal expected total reward of the classic-newsvendor model
decreases and at some value of c the expected total reward
of the classic-newsvendor will become smaller than that of the
auction-newsvendor and it will stay smaller. Knowing this ‘‘cutoff
acquisition cost’’ is important in applications.

The paper is organized as follows. In Section 2 we define the
problem as a Markovian decision process. In Section 3 under
sensible assumptions, it is shown that the optimal bid is a
decreasing function of the number of remaining auctions, an
increasing function of the number of other auction participants
(‘‘opponents’’) and a decreasing function of the number of items
at hand. We also establish monotonicity properties for the value
function and present computations. In addition to their theory
value, thesemonotonicity properties can be used to obtain efficient
algorithms for calculating optimal biding policies.

In Section 4, we compare our auction model with the newsven-
dor problem with salvage. We present computational results to
show that the expected total reward of our model becomes higher
than the traditional newsvendor model as the cost price in the
newsvendor model increases. In the final Section 5, we present
concluding remarks.

2. Problem formulation

In each time period, the buyer procures items through a
sequence of N auctions which he then sells. The buyer’s demand
D is a random variable with a known discrete distribution. Let
fD(d) = P(D = d), FD(d) = P(D  d), and F̄D(d) = 1 � FD(d).
The sales price r is assumed to be known (where when the sales
price is a random variable R with a known distribution we take
r = E(R) < 1). As in a standard newsvendor model, excess
demand is lost with a penalty and unsold items at the end of the
period have the same salvage value. Let �(x) denote the penalty
associated with x units of excess demand and let s be the unit
salvage value. We assume that s < r.

In each auction the number of opposing bidders (opponents) m
is known and each of the 1 + m bidders submits a sealed bid. At
the end of each auction the winning bid is announced and one of
the highest bidders wins the auction. The objective of the buyer is
to maximize his expected profit.

It is assumed that the set of all bids available (to the buyer and
all opponents) is a finite set {a0, a1, . . . , ap} where a0 < a1 <
· · · < ap. For simplicity wewill use the same symbol a to represent
both the bid price and the action of the buyer bidding amount a.We
assume that a0 = 0 represents the action of not bidding.

Let pm(a) denote the known probability that the buyer wins an
auctionwhenhis bid is a and there arem opponents present,where
pm(a0) = 0. For convenience let p̄m(a) = 1 � pm(a).

Let Zn be the number of opponents participating in the nth
auction. It is assumed that Zn for n = 1, 2, . . . ,N is a discrete time
Markov chain with transition probabilities:

qmm0(n) = P(Zn+1 = m0|Zn = m),

and an initial distribution which is denoted for simplicity by:

qm(1) = P(Z1 = m).

It is assumed that whenever there is a tie in an auction involving
the buyer he loses. This assumption is made to simplify the
exposition. Other tie breaking procedures like deciding the winner
randomly will not change the analysis but would complicate the
exposition.

We model this problem as a Markov decision process below.
1. The set X = {(n,m, x), n = 0, . . . ,N,m = 1, . . . , x =

0, 1, . . .}, is the state space, where n represents the number
of remaining auctions, m represents the number of bidders
participating in the current auction, x � 0 represents the
inventory level at the beginning of the current, (N � n)th,
auction. Note that:
(i) If n = 0 thenm = 0.
(ii) State (0, 0, x) represents the state of the system when all

auctions are over.
(iii) Possible states prior to the start of theN auctions are of the

form (N,m, 0), for allm = 1, . . . .
2. In any state (n,m, x) the following action sets A(n,m, x) are

available.
(i) A(0, 0, x) = {a0}.
(ii) A(n,m, x) = {a0, . . . , ap} for n > 0.

3. When an action a 2 A(n,m, x) is taken in state (n,m, x) the
following transitions are possible.
(i) If n = 0, then starting from state (0, 0, x) the next state is

(0, 0, x) with probability 1.
(ii) If n > 0 then depending on whether or not the buyer wins

the current auction the next state is (n � 1,m0, x + 1) with
probability pm(a) qmm0(N � n) or state (n � 1,m0, x) with
p̄m(a) qmm0(N � n).

4. When an action a 2 A(n,m, x) is taken in state (n,m, x) the
expected reward ra(n,m, x) is as follows.
(i) ra(0, 0, x) = Px

d=0(rd+s(x�d)) fD(d)+
P1

d=x+1(rx��(d�
x))fD(d)

(ii) ra(n,m, x) = �a pm(a) if n > 0.

Let a⇤
n,m,x denote the optimal action in the state (n,m, x).

Let v(n,m, x) denote the value function in state (n,m, x) and
w(n,m, x; a) denote the expected future reward when action a is
taken in state (n,m, x) and an optimal policy is followed thereafter.
Note that v(n,m, x) = w(n,m, x; a⇤

n,m,x).
For n � 1, let

u(n,m, x) = E(v(n, ZN�n, x)|ZN�(n+1) = m)

=
1X

m0=1

qmm0(N � n)v(n � 1,m0, x).

The dynamic programming equations are

v(n,m, x) = max
a2A

{w(n,m, x; a)} (1)

where for n � 1,

w(n,m, x; a) = ra(n,m, x) + pm(a)u(n � 1,m, x + 1)
+ p̄m(a)u(n � 1,m, x)

and

w(0, 0, x; a) = ra(0, 0, x).
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3. The structure of the optimal bidding policy

In this section we derive structural properties of the optimal
bidding policy under the following assumptions.

Assumption A. For any fixed m, pm(a) is an increasing function
of a.

Assumption B. For any fixed a, pm(a) is a decreasing function ofm.

Assumption C. There exists a function G with
P1

i=�1 G(i) = 1
such that:

qmm0(n) =

8
<

:

G(m0 � m) ifm0 > 1,
1X

k=m�1

G(k) ifm0 = 1. (2)

Assumption D. The penalty function �(x) is an increasing convex
function of x and �(x) = 0 if x  0.

We first state and prove the following.

Lemma 3.1. The expected reward function in state (0, 0, x), ra
(0, 0, x) is an increasing function of x i.e.

ra(0, 0, x)  ra(0, 0, x + 1). (3)

Proof. The proof is evident from the fact that the difference
ra(0, 0, x + 1) � ra(0, 0, x) can be simplified to
1X

x+1

rpD(d) +
xX

d=0

spD(d) +
1X

d=x+1

(�(d � x) � �(d � x � 1))pD(d),

which is non-negative because �(x) is an increasing function. ⇤

The following Theorems 3.1 and 3.2, contain the main results of
the paper.

Theorem 3.1. Under Assumptions A–C the following relationships
hold.

v(n,m, x)  v(n,m, x + 1) 8n � 0, (4)
v(n,m, x)  v(n + 1,m, x) 8n � 0, (5)
v(n,m, x) � v(n,m + 1, x) 8n > 0. (6)

Proof. The proof is by induction on n. We first show that Ineq.
(4) holds. For n = 0 the inequality v(0, 0, x)  v(0, 0, x + 1) is
true from the definition of v(0, 0, x) and Lemma 3.1. For n = 1
we show that v(1,m, x)  v(1,m, x + 1) by contradiction. If we
assume the contrary, i.e., v(1,m, x) > v(1,m, x+1), it implies that
v(1,m, x) > w(1,m, x + 1; a⇤

1,m,x). The last inequality simplifies
to

pm(a⇤
1,m,x)(v(0, 0, x + 2) � v(0, 0, x + 1))

+ p̄m(a⇤
1,m,x)(v(0, 0, x + 1) � v(0, 0, x)) < 0,

which contradicts the previous step of the induction. Now, we
assume that Ineq. (4) is true for n � 1 and show that it holds for n.
The induction assumption of Ineq. (4) implies that u(n�1,m, x) 
u(n�1,m, x). From this and the definition of w(n,m, x; a) we can
conclude that w(n,m, x; a)  w(n,m, x + 1; a) 8a, which in turn
implies the following:

v(n,m, x) = max
a2A

w(n,m, x; a)  max
a2A

w(n,m, x + 1; a)
= v(n,m, x + 1).

This completes the induction.

Next, we prove that Ineq. (5) holds. For n = 0 we show that the
opposite inequality

v(0, 0, x) > v(1,m, x), (7)

leads to a contradiction. Indeed, the dynamic programming
equations Eq. (1) imply that

v(1,m, x) = pm(a⇤
1,m,x)(v(0, 0, x + 1) + a⇤

1,m,x)

+ p̄m(a⇤
1,m,x)v(0, 0, x). (8)

Thus, v(1,m, x) is a convex combination of v(0, 0, x) and
v(0, 0, x + 1) + a⇤

1,m,x. From this and Ineq. (7) it follows that

v(0, 0, x) > v(0, 0, x + 1) + a⇤
1,m,x, (9)

which in turn implies that w(1,m, x; a0) = v(0, 0, x) � v(1,
m, x). The last inequality implies that a⇤

1,m,x = a0; this and Ineq. (9)
imply that v(0, 0, x) > v(0, 0, x + 1) which contradicts Ineq. (4),
for n = 0.

The induction assumption in this case is v(n � 2,m, x) 
v(n�1,m, x). From the induction assumption and Assumption C it
follows that u(n�2,m, x)  u(n�1,m, x). From this fact and the
definition ofw(n,m, x; a)wecan conclude thatw(n�1,m, x; a) 
w(n,m, x; a) 8a. The last inequality implies that

v(n,m, x) = max
a2A

w(n,m, x; a)  max
a2A

w(n � 1,m, x; a)
= v(n � 1,m, x),

which completes the induction.
We now show that Ineq. (6) holds. For n = 1 we show that

the opposite inequality v(1,m, x) < v(1,m + 1, x) leads to a con-
tradiction. The last inequality implies that w(1,m, x; a⇤

1,m+1,x) <
v(1,m + 1, x). From this and Ineq. (7) it follows that

v(0, 0, x) > v(0, 0, x + 1) + a⇤
1,m,x. (10)

The above implies that v(0, 0, x) > v(0, 0, x + 1) which contra-
dicts Ineq. (4), for n = 0.

We complete the induction of Ineq. (6) along similar lines.
We assume that it holds for n � 1 and show that it holds for
n. As above we show that the opposite inequality v(n,m, x) <
v(n,m + 1, x) leads to a contradiction. The last inequality implies
thatw(n,m, x; a⇤

n,m+1,x) < v(n,m+1, x). Simplifying the previous
inequality leads to

u(n,m, x + 1) + a⇤
n,m,x+1 < u(n,m, x). (11)

From the definition of v(n+1,m, x) the last inequality implies that

w(n,m, x; a0) = v(n,m, x) � v(n + 1,m, x). (12)

The last inequality implies that a⇤
n,m,x+1 = a0. This and Ineq. (11)

imply thatu(n,m, x+1) < u(n,m, x), which is a contradiction. ⇤

Theorem 3.2. Under Assumptions A–C the following relationships
hold.

a⇤
n,m,x � a⇤

n,m,x+1 for n � 0, (13)

a⇤
n,m,x � a⇤

n+1,m,x for n > 0, (14)

a⇤
n,m,x  a⇤

n,m+1,x for n � 0. (15)

Proof. The proof is by induction on n. First we prove Ineq. (13) are
true. For n = 0 the inequality is obviously true because a⇤

0,0,x = a0
for all x.

To complete the induction of Ineq. (13) we assume that
a⇤
n�1,m,x � a⇤

n�1,m,x+1 and prove that a⇤
n,m,x � a⇤

n,m,x+1. To prove
the last inequality we assume that a⇤

n,m,x+1 > a⇤
n,m,x and show that

this produces a contradiction. From the definitions of v(n,m, x)
and w(n,m, x; a) we have v(n,m, x) < w(n,m, x; a⇤

n,m,x+1) and
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v(n,m, x+1) < w(n,m, x+1; a⇤
n,m,x). Simplifying and combining

the results of the last two inequalities we obtain

u(n � 1,m, x + 1) � u(n � 1,m, x)
> u(n � 1,m, x + 2) � u(n � 1,m, x + 1).

This can be rewritten as
X

m0
qmm0 [2v(n � 1,m0, x + 1) � v(n � 1,m0, x)

�v(n � 1,m0, x + 2)] > 0.

The above inequality implies the following:
X

m0
qmm0 [v(n � 1,m0, x + 1) � w(n � 1,m0, x; a⇤

n�1,m0,x+1)]

>
X

m0
qmm0 [w(n � 1,m0, x + 2; a⇤

n�1,m0,x+1)

� v(n � 1,m0, x + 1)]. (16)

Notice that the induction assumption implies the following for all
m � 1

u(n � 2,m, x) + u(n � 2,m, x + 2) > 2u(n � 2,m, x + 1). (17)

Simplifying Ineq. (16) using Assumption C and Ineq. (17) leads to
the inequality
X

m0
qmm0 [u(n � 2,m0, x + 1) � u(n � 2,m0, x + 2)]

>
X

m0
qmm0 [u(n � 2,m0, x + 1) � u(n � 2,m0, x + 2)]

which is a contradiction because both sides of the strict inequality
are identical.

We next show that Ineq. (14) holds. For n = 1we need to prove
that a⇤

1,m,x � a⇤
2,m,x. To prove this we assume a⇤

1,m,x < a⇤
2,m,x and

show that it produces a contradiction. We know that v(1,m, x) >
w(1,m, x; a⇤

2,m,x) and v(2,m, x) > w(2,m, x; a⇤
1,m,x). Simplifying

the inequalities and combining the results leads to v(0, 0, x+1)�
v(0, 0, x) < u(1,m, x + 1) � u(1,m, x) or equivalently

v(0, 0, x + 1) � v(0, 0, x)
<

X

m0
qmm0 [v(1,m0, x + 1) � v(1,m0, x)].

The above inequality implies that

v(0, 0, x + 1) � v(0, 0, x)
<

X

m0
qmm0 [v(1,m0, x + 1) � w(1,m0, x; a⇤

1,m0,x+1)].

The above inequality simplifies to

v(0, 0, x + 1) � v(0, 0, x) < v(0, 0, x + 1) � v(0, 0, x)

which is a contradiction. For the next step in the induction
we assume that a⇤

n�1,m,x  a⇤
n,m,x and prove that a⇤

n,m,x+1 
a⇤
n+1,m,x. To prove the last inequality we assume that a⇤

n,m,x+1 >
a⇤
n+1,m,x and show that it produces a contradiction. From the

definitions of v(n,m, x) and w(n,m, x; a) we have v(n,m, x) >
w(n,m, x; a⇤

n+1,m,x) and v(n + 1,m, x) > w(n + 1,m, x; a⇤
n,m,x).

Simplifying and combining the results of the last two inequalities
we obtain

u(n,m, x + 1) � u(n,m, x) < u(n � 1,m, x + 1)
� u(n � 1,m, x).

The above inequality is equivalent to the following inequality
X

m0
qmm0 [v(n,m0, x + 1) � v(n,m0, x)]

<
X

m0
qmm0 [v(n � 1,m0, x + 1) � v(n � 1,m0, x)].

The above inequality implies the following:
X

m0
qmm0 [w(n,m0, x + 1; a⇤

1) � v(n,m0, x)]

<
X

m0
qmm0 [v(n � 1,m0, x + 1) � w(n � 1,m0, x; a⇤

2)]

where a⇤
1 = a⇤

n,m0,x and a⇤
2 = a⇤

n�1,m0,x+1.

Simplifying the above inequality using Assumption C and the
induction assumption leads to the inequality
X

m0
qmm0 [u(n � 2,m0, x + 1) � u(n � 2,m0, x)]

<
X

m0
qmm0 [u(n � 2,m0, x + 1) � u(n � 2,m0, x)],

which is a contradiction because both sides of the strict inequality
are identical.

We next prove Ineq. (15). For n = 0 the inequality is obviously
true because a⇤

0,0,x = a0 for all x. For n = 1, we assume that
a⇤
1,m,x > a⇤

1,m+1,x and show that it leads to a contradiction. The
last inequality implies that v(1,m, x) > w(1,m, x; a⇤

1,m+1,x) and
v(1,m+1, x) > w(1,m+1, x; a⇤

1,m,x). Simplifying the inequalities
we obtain v(0, 0, x + 1) � v(0, 0, x) > T1,m and v(0, 0, x + 1) �
v(0, 0, x) < T1,m+1 where

Tn,m = a⇤
n,m,xpm(a⇤

n,m,x) � a⇤
n,m+1,xpm(a⇤

n,m+1,x)

pm(a⇤
n,m,x) � pm(a⇤

n,m+1,x)
.

This is a contradiction because we have T1,m � T1,m+1, from
Assumption B together with a⇤

1,m,x > a⇤
1,m+1,x.

To complete the induction of Ineq. (15) assume it holds for n�1.
To prove it holds for n, assume that a⇤

n,m+1,x < a⇤
n,m,x and show that

this produces a contradiction. Since a⇤
n,m,x is the optimal action in

state (n,m, x) we have that v(n,m, x) > w(n,m, x, a⇤
n,m+1,x). This

simplifies to:

u(n � 1,m, x + 1) � u(n � 1,m, x) > Tn,m. (18)

Similarly in state (n,m+ 1, x) we have v(n,m+ 1, x) > w(n,m+
1, x, a⇤

n,m,x) which simplifies to

u(n � 1,m + 1, x + 1) � u(n � 1,m + 1, x) < Tn,m+1. (19)

We next show that the following inequality is true

Tn,m+1 < Tn,m. (20)

Indeed, from the definitions of Tn,m and Tn,m+1 Ineq. (20) simplifies
to the following inequality

pm(a⇤
n,m,x)pm(a⇤

n,m�1,x)

< pm�1(a⇤
n,m,x)pm�1(a⇤

n,m�1,x),

which is true under Assumption B and the assumption a⇤
n,m,x >

a⇤
n,m+1,x.

Now, inequalities (18)–(20) together imply that

u(n � 1,m + 1, x + 1) � u(n � 1,m + 1, x)
< u(n � 1,m, x + 1) � u(n � 1,m, x).
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This implies that
1X

i=�m+1

{G(i)[v(n � 1,m + i + 1, x + 1)

� v(n � 1,m + i + 1, x)]}
+G(�m)(v(n � 1, 1, x + 1) � v(n � 1, 1, x))

<
1X

i=�m+1

{G(i)[v(n � 1,m + i, x + 1) � v(n � 1,m + i, x)]}.

From Theorem 3.1 we have v(n� 1, 1, x+ 1)� v(n� 1, 1, x) � 0.
Hence, the above inequality implies that
1X

m0=1

qmm0 [v(n � 1,m0 + 1, x + 1) � v(n � 1,m0 + 1, x)]

<
1X

m0=1

qmm0 [v(n � 1,m0, x + 1) � v(n � 1,m0, x)].

From the above inequality we obtain the following
1X

m0=1

qmm0 [w(n � 1,m0 + 1, x + 1; a⇤
1) � v(n � 1,m0, x + 1)]

<
1X

m0=1

qmm0 [v(n � 1,m0 + 1, x) � w(n � 1,m0, x; a⇤
2)], (21)

where a⇤
1 = a⇤

n�1,m0,x+1 and a⇤
2 = a⇤

n�1,m0+1,x.

Simplifying the induction assumption, as above, we obtain the
following

u(n � 2,m + 1, x + 1) � u(n � 2,m, x + 1)
> u(n � 2,m + 1, x) � u(n � 2,m, x). (22)

From Assumption B we have pm(a) � pm+1(a), so, let pm(a⇤
1) =

pm+1(a⇤
1)+ ✏1 and pm(a⇤

2) = pm+1(a⇤
2)+ ✏2, for some non-negative

✏1, ✏2.
Simplifying Ineq. (21) using Assumption C and Ineq. (22) leads

to the inequality
1X

m0=1

qmm0 [u(n � 2,m0 + 1, x + 1) � u(n � 2,m0, x + 1)]

+ ✏1[�a⇤
1 + u(n � 2,m0 + 1, x + 1) � u(n � 2,m0 + 1, x)]

+ ✏2[�a⇤
2 + u(n � 2,m0, x + 2) � u(n � 2,m0, x + 1)]

<
1X

m0=1

qmm0 [u(n � 2,m0 + 1, x + 1) � u(n � 2,m0, x + 1)].

From the proof of Ineq. (6) we know that the terms multiplying ✏1
and ✏2 are positive. Hence the above inequality implies
1X

m0=1

qmm0 [u(n � 2,m0 + 1, x + 1) � u(n � 2,m0, x + 1)]

<
1X

m0=1

qmm0 [u(n � 2,m0 + 1, x + 1) � u(n � 2,m0, x + 1)],

which is a contradiction because both sides of the strict inequality
are identical. ⇤

4. Comparison with traditional newsvendor model

In this section we compare the expected total reward of
the newsvendor auction model with that of the traditional
newsvendor model when in the latter the acquisition cost c
changes. As the value of c increases the optimal order quantity

Fig. 1. Cutoff cost vs the sales price.

of the traditional newsvendor model will decrease and with it
the expected total reward will also decrease. At some value of c
the expected total reward of the classic-newsvendor will become
smaller than that of the auction-newsvendor and it will stay
smaller. We call this the cutoff price. Next we present a graph
detailing the above results.

In Fig. 1 we present a graph of the values of the cost at which
the total expected reward of the newsvendor auction models and
traditional newsvendor model are the same (i.e., the cutoff price),
for increasing values of the sales price r. For both the newsvendor
auction model and the traditional newsvendor the salvage value is
chosen to be a fifth of the expected sales price i.e., s = r/5, the
demand distribution is fD(d) = 1/9, for d = {0, 1, . . . , 8} and the
penalty for lost sales �(x) = x. For the auction model we assume
N = 10 and A = {1 · · · 10}. The number of opponents in each
auction is assumed to be four, i.e., m = 4. We also assume that the
probability of winning p4(a) = 1/10.

The graph presented in Fig. 1 is that of a concave functionwhich
becomes linear as the value of r increases. This is apparent from
the structure of the newsvendor model because the total expected
reward is a convex decreasing function of the cost of acquiring the
item and a linear increasing function of the reward. Further, as the
value of r increases the cutoff point curve becomes linear because
the expected revenue dominates the expected cost.

5. Discussion

This model can be extended in several ways and we are
currently studying the following cases:
(i) One could consider the multi-period or an infinite horizon

with the objective of maximization of expected discounted
profit over the horizon. The dynamic programming equations
in this case would be as follows:
v(n,m, x) = max

a2A
{w(n,m, x; a)} (23)

where for n � 1
w(n,m, x; a) = ra(n,m, x) + pm(a)u(n � 1,m, x + 1)

+ p̄m(a)u(n � 1,m, x)

and
w(0, 0, x; a) = ra(0, 0, x) + �

X

m

qm(1)v(N,m, 0),

where � is the discount factor.
(ii) Items can be sold after each auction.
(iii) The condition that the probability pm(a) of winning, for fixed

m and a, is constant through all the auctions can be relaxed.
(iv) Further, the case in which the probability of winning pm(a)

is not known but it can be estimated during auctions using
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methods such those used by Burnetas and Katehakis [1] and
Katehakis and Robbins [8].
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