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Probabilistic methods are providing new explanatory

approaches to fundamental cognitive science questions

of howhumans structure, process and acquire language.

This review examines probabilistic models defined over

traditional symbolic structures. Language comprehen-

sion and production involve probabilistic inference in

such models; and acquisition involves choosing the best

model, given innate constraints and linguistic and other

input. Probabilistic models can account for the learning

and processing of language, while maintaining the

sophistication of symbolic models. A recent burgeoning

of theoretical developments and online corpus creation

has enabled large models to be tested, revealing

probabilistic constraints in processing, undermining

acquisition arguments based on a perceived poverty

of the stimulus, and suggesting fruitful links with

probabilistic theories of categorization and ambiguity

resolution in perception.
Probability in language

The processing and acquisition of language is a central
topic in cognitive science. Yet, perhaps surprisingly from
the perspective of this Special Issue (see also Conceptual
Foundations Editorial), the first steps towards a cognitive
science of language involved driving out, rather than
building on, probability. Whereas structural linguistics
focussed on finding regularities in language corpora, the
Chomskyan revolution focussed on the abstract rules
governing linguistic ‘competence’, based on judgements of
linguistic acceptability [1]. Whereas behaviourism viewed
language as a stochastic process determined by principles
of reinforcement between stimuli and responses, the new
psycholinguistics viewed language processing as governed
by internally represented linguistic rules [2]. And interest
in statistical and information-theoretic properties of
language [3] was replaced by the mathematical machinery
of formal grammar.

Thus, probability has suffered a bad press in the
cognitive science of language. The focus on complex
linguistic representations (feature matrices, trees, logical
representations), and rules defined over them, has
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crowded out probabilistic notions. And the impression
that probabilistic ideas are incompatible with the
Chomskyan approach to linguistics has been reinforced
by debates that appear to pitch probabilistic and related
quantitative/connectionist approaches against the sym-
bolic approach to language [4–7].

The development of sophisticated probabilistic models,
such as described in this Special Issue, casts these issues
in a different light. Such probabilistic models may be
specified in terms of symbolic rules and representations,
rather than being in opposition to them. Thus, gramma-
tical rules may be associated with probabilities of use,
capturing what is linguistically likely, not just what is
linguistically possible. From this viewpoint, probabilistic
ideas augment symbolic models of language [8,9].

Yet this complementarity does not imply that probabil-
istic methods merely add to symbolic work, without
modification. On the contrary, the ‘probabilistic turn’,
broadly characterized, has led to some radical re-thinking
in the cognitive science of language, on several levels (see
Table 1).

In linguistics, there has been renewed interest in
phenomena that seem inherently graded and/or stochas-
tic, from phonology to syntax [10–12] – this linguistic work
is complementary to the focus of Chomskyan linguistics
(Table 1, first row). There have also been ‘revisionist’
perspectives on the strict symbolic rules thought to
underlie language (Table 1, second row). Although
inspired by a type of probabilistic connectionist network,
standard optimality theory attempts to define a middle
ground of ranked, violable linguistic constraints, used
particularly to explain phonological regularities [13].
However, it has also been extended into increasingly rich
probabilistic variants. And in morphology, there is debate
over whether ‘ruleCexception’ regularities (e.g. English
past tense, German plural) are better explained by a
single stochastic process [14].

Although it touches on these issues, this review
explores a narrower perspective: the idea that language
is represented by a probabilistic model [9], that language
processing involves generating or interpreting using this
model, and that language acquisition involves learning
probabilistic models (Table 1, rows 3 and 4). (Another
interesting line of work that we do not review assumes
instead that language processing is based on memory for
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Table 1. Applications of probability in language

Type of explanation Probabilistic perspective Examples Non-probabilistic alternative

Probabilistic linguistics Complementary: Describing

language variability

Phonetic variation. [61]

Corpus counts of different

syntactic structures.

Sociolinguistic variation [62].

Proper scope of linguistics is

competence; assign probability

to performance [1]

Revisionist: Probabilistic versus

rigid linguistic rules

Status of rules / subrules /

exceptions in morphology [7,14]

Gradedness of grammaticality

judgements [11,12]

To restrict linguistics to core

competence grammar, where

intuitions are clear [35].

Probabilistic models of

cognitive processes

Language processing Stochastic phrase-structure

grammars and related methods

[29]

Assume that structural

principles guide processing, e.g.

minimal attachment [18]

Connectionist models [42]

Language acquisition Probabilistic algorithms for

grammar learning [46,47]

Trigger-based acquisition

models [54]

Theoretical learnability results

[38,39]

Identification in the limit [36]

Bayesian word learning [17]
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past instances and not via the construction of a model of
the language [15]). Moreover, for reasons of space, we shall
focus mainly on parsing and learning grammar, rather
than, for example, exploring probabilistic models of how
words are recognized [16] or learned [17]. We will see that
a probabilistic perspective adds to, but also substantially
modifies, current theories of the rules, representations
and processes underlying language.
From grammar to probabilistic models

To see the contribution of probability, let us begin without
it. According to early Chomskyan linguistics, language is
internally representedasagrammar: a systemof rules that
specifies all and only allowable sentences. Thus, parsing is
viewed as the problem of inferring an underlying linguistic
tree, t2T, from the observed strings of words, s2S. Yet
natural language is notoriously ambiguous – there are
many ways in which local chunks can be parsed, and
exponentially many ways in which these parses can be
stitched together to produce a global parse. Searching
these possibilities is hugely challenging; and there are
often many globally possible parses (many t, for a single s).
The problem gets dramatically easier if the cognitive
system knows that the bracketing [the [old [man]]] is
muchmore likely than [[the old]man] (although this latter
reading is possible, as in the old man the boats). This helps
locally prune the search space; and helps decide between
interpretations for globally ambiguous sentences. In
particular,Bayesianmethods specify a framework showing
how information about the probability of generating
different grammatical structures, and their associated
word strings, can be used to infer grammatical structure
from a string of words. This Bayesian framework is
analogous to probabilistic models of vision, inference and
learning; what is distinctive is the specific structures (e.g.
trees, dependency diagrams) relevant for language.

In computational linguistics, the practical challenge of
parsing and interpreting corpora of real language (typi-
cally text, sometimes speech) has led to a strong focus on
probabilistic methods (Table 2). However, computational
linguistics often parts company from standard linguistic
www.sciencedirect.com
theory, which focuses on much more complex grammatical
frameworks, where probabilistic and other computational
methods cannot readily be applied (see Box 1 for
discussion). But computational linguistics does, we
suggest, provide a valuable source of hypotheses for the
cognitive science of language.

Formally, probabilistic parsing involves estimating
Prm(tjs) – estimating the likelihood of different trees, t,
given a sentence, s, and given a probabilistic model Prm of
the language (see the online article by Griffiths and Yuille
for Technical Introduction: Supplementary material
online). This quantity can be evaluated by using Bayes’
theorem:

PrmðtjsÞZ
Prmðt; sÞP

t
0

Prmðt
0; sÞ

The probabilistic model can take as many forms as
there are linguistic theories (and linguistic structures, t,
may equally be trees, attribute-value matrices, depen-
dency diagrams, etc.). For simplicity, suppose that our
grammar is a context-free phrase-structure grammar,
defined by rules such as those in Figure 1a. The bracketed
numbers indicate the probabilities of expanding each node
using a given rule. The product of probabilities in a
derivation gives the overall probability of that tree
(Figures 1b and 1c).

This grammar fragment encodes a syntactic ambiguity
concerning prepositional phrase attachment that has been
much studied in psycholinguistics. The parser has to
decide: does the prepositional phrase (e.g. ‘with the
telescope’) modify the verb phrase describing the girl’s
action (i.e. she saw-with-a-telescope the boy); or the noun
phrase the boy (i.e. she saw the-boy-with-a-telescope)?
This question is a useful starting point for discussing the
role of probability in the cognitive science of language.
Principles, probability and plausibility in parsing

Classical proposals in psycholinguistics assumed that
disambiguation occurs using structural features of the
trees. For example, the principle of minimal attachment
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Table 2. Computational models of language using probabilistic and statistical methodsa

Representation Model Primary objective Learning method

Speech recognition

[63]

Phonemes Hidden Markov

Models

Mapping acoustic input to word level EM algorithm

Computational

phonology [64]

Series of phonemes;

Levels of

autosegmental

phonology

Bigrams; Finite state

models, with multiple

levels

Describing phonological principles across

languages; phonotactics

Simulated annealing

search; minimum

description length

Morphology

[56,65,66]

Letter strings Language as a

sequence of letter

strings

Learning morphological structure from lists

of words; relevance across languages

Minimum

description length

Syntax [22,43,47,67] Syntactic categories

for words; either ‘flat’

or hierarchical

syntactic structure

Context-free

phrase-structure

grammar, and

variants;

Broad coverage parsing; syntactic tagging;

basis for machine translation, semantic

analysis etc; automated discovery of

syntactic categories

EM algorithm;

correlating context

‘vectors’ and

clustering

n-gram based models

Corpus based lexical

semantics [57,68,69]

Word and ‘bag’ of

surrounding words

Bayesian mixture Automated discovery of semantic relations Markov Chain Monte

Carlo;

Singular value

decomposition
aRecent work has especially favoured the use of statistical methods for which a clear Bayesian analysis can be given, i.e. the inferential assumptions are specified by an

explicit probabilisticmodel; and inference involves Bayesian updating over themodel. Connectionistmodels of psycholinguistic phenomena (see [42]) havemany features in

common with probabilistic models, although the probabilistic assumptions they impose are not explicit.
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would prefer the first reading, because it has one less node
[18]. The spirit of this proposal could, however, be recast
probabilistically: the probability of a tree is the product of
the probabilities at each node; andhence, other things being
equal, fewer nodes imply higher probability. This is
illustrated using the (arbitrary) probabilities in Figure 1:
thekeystructural difference ishighlighted to the right of the
trees – all other structure, and its probability, is shared.

Structural principles in parsing have come under
threat from the variety of parsing preferences observed
within and across languages. But a stochastic grammar
can capture parsing-preference variation across
languages, because the probability of different structures
may differ across languages. A structure with fewer nodes,
but using highly improbable rules (estimated from a
corpus) will be dispreferred. Psycholinguists are increas-
ingly exploring corpus statistics across languages, and
Box 1. Linguistics, computational linguistics and cognitive scienc

The driving force in the development of many of the probabilistic

methods discussed in this article has been the creation of practical

computational systems for language processing – for recognizing

speech, analysing or retrieving information in texts, question-

answering, and machine translation. The goal here is getting systems

to work, rather than modelling human language processing.

Computational linguistics has typically taken a fairly cavalier

approach to existing linguistic theory. The explanatory goals of

linguistics, attempting to account for linguistic patterns across

languages, with speaker judgments as primary data, has yielded

complex representations and principles, which are difficult to work

with computationally. Computational linguists have instead focussed

on simpler languagemodels, based on finite state, or phrase-structure

grammars and variants. Computationally, the emphasis on simple

formalisms is guided by the need to parse, produce, learn and

construct semantic representations robustly on real corpora. ‘Broad

coverage’ grammars have tried to cope with real language use, while

of necessity riding rough-shod over many linguistic subtleties. Yet the

need to tackle ‘real language’ has also led to insights that might

www.sciencedirect.com
parsing preferences seem to fit the probabilities evident in
each language [19,20].

A second problem for structural parsing principles is
the influence of lexical information. Thus, the preference
for the structurally analogous ‘the girl saw the boy with a
book’ appears to reverse, because books, unlike telescopes,
are not aids to sight. The pattern flips back with a change
of verb: ‘the girl hit the boy with a book’, because books can
be aids to hitting. The probabilistic approach seems useful
here because it is important to integrate the constraint
that ‘seeing-with-telescopes’ is much more likely than
‘seeing-with-books’. But our particular stochastic gram-
mar above does not help, because each node is expanded
independently – the grammar is ‘context free’.

One way to capture these constraints aims to capture
statistical (or even rigid) regularities between head words
of phrases. For example, ‘lexicalized’ grammars, which
e

transfer more naturally to models of cognitive processes for robustly

dealing with language, than do insights from traditional

linguistic theory.

Early computational linguistic methods focussed primarily on

capturing rigid linguistic constraints, but recent probabilistic methods

have had a revolutionary impact [75]. In parsing, for example,

probability helps resolve the massive local syntactic ambiguity of

natural language, by focussing on the relatively small number of

potential parses with significant probability (given what is known

about the frequency of different structures across a corpus). Similarly,

probabilistic methods in learning dramatically narrow the infinite set

of grammatical rules that could generate a given set of sentences or

structures. Probabilistic methods are increasingly widespread in the

psychology of language acquisition and processing, and in linguistics

[10,74], and human abilities to pick up probabilistic constraints have

been extensively studied experimentally [76]. The practical success of

probabilistic methods in computational linguistics suggests that

human processing and acquisition might also exploit

probabilistic information.

http://www.sciencedirect.com


S→ NP VP
VP → V NP
VP → V NP PP
NP → Det Noun
NP → NP PP
PP → P NP

(1)
(.75)
(.25)
(.7)
(.3)
(1)  

V→ saw
V → prodded
N → telescope
N → stick
N → girl
N → boy  

(.8)
(.2
(.2)
(.3)
(.3)
(.1) 

N→ cat
Det → the
P → with  

(.1)
(1)
(1)

(a)

S:1

NP:.7 VP:.25

P:1

N:.3Det:1

the girl 
V:.8

saw 

with

NP:.7

N:.1 Det:1

boy 

PP:1

NP:.7

N:.2 Det:1 

the telescope

VP:.25 

V NP PP

Pr(tree) = 1 x .7 x 1 x .3 x .25 x .8 x .7 x
1 x .1 x 1 x 1 x .7 x 1 x .2    0.00041

Pr = .25

(b)

S:1

NP:.7 VP:.75 

P(1) 

N:.3 Det:.1

girl 

saw

with

NP:.7

boy 

PP(1) 

NP:.7

N:.2 Det:1

telescope 

NP:.3

VP:.75

V 

NP

NP:.3

Pr =.75x.3=.21

(c)

Pr(tree) = 1 x .7 x 1 x .3 x .75 x .8 x .3 x .7 x 1
x .1 x 1 x 1 x .7 x 1 x .2    0.00037 

PP 

the

the
V:.8

N:.1Det:1

the

the
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~~

Figure 1. Ambiguity resolution in probabilistic parsing. (a) A simple stochastic phrase-structure grammar fragment – note that each symbol (e.g. NP) expands into one or

more symbol sequences (Det Noun; NP PP) whose probabilities sum to 1. From a start symbol, here S, the application of a sequence of rules replaces the initial S with a

sequence of words, and in doing so, generates a tree, such as those shown in (b) and (c). The probability of a tree is just the product of the probabilities of the rules required to

generate that tree. Syntactic ambiguity arises because different trees can generate the same string of words, as (b) and (c) illustrate. According to a probabilistic approach to

ambiguity resolution, the processor should prefer the parse with the highest probability. The alternative parses of the girl saw the boy with the telescope in (b) and (c) differ in

whether the prepositional phrase (with a telescope) attaches to the verb phrase (the seeing is done with a telescope), or the object noun phrase (the boy has the telescope).

The points at which the trees differ are shown to the right of the trees. Notice that the flatter structure for the first reading, which contains one less node (and hence one less

syntactic rule), and has a higher probability.
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Table 3. Probabilistic methods applied across a wide range of domains in the cognitive science of language

Theoretical framework Sub-topics Empirical data

Speech processing and word

recognition

Connectionist models [70]

Probabilistic phonetics [71]

Feature integration ‘soft’ integration of features

analysis by synthesis [78]

Incremental on-line word

recognition

Probabilistic phonology Stochastic optimality theory [72] Stochastic optimality theory Graded linguistic judgements

N-gramsCfinite state models [64] Probabilistic phonotactics

Exemplar models

Morphology Connectionism [14]

Exemplar models [66]

Regularities/subregularities/

exceptions

Data on acceptability

Linguistic data

Level of morphological

generalizations

Syntax Probabilistic parsing [28]

Identifying linguistic classes [44]

Integration of information

resolving local ambiguity

Graded linguistic judgements

Eye-tracking data

Recursion

Connectionism [42] Reading times [30,73]

Lexical semantics Distributional analysis [57]

Bayesian networks [45]

Finding word classes from

corpora

Acquisition data

Semantic priming

Relating words to ‘world’

Acquisition Learnability

VC dimension; Minimum description

length [17,55,74]

Learning parameters, grammar,

word meanings

Corpus data; experimental

data; linguistic data
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carry information about what material co-occurs with
specific words, substantially improve computational par-
sing performance [21,22].

Plausibility and statistics

Statistical constraints between words provide, however, a
crude estimate of which sentences are plausible. In an off-
line judgement task, we use world knowledge, under-
standing of the social and environmental context, prag-
matic principles, and much more, to determine what
people might plausibly say or mean. Determining whether
a statement is plausible may involve determining how
likely it is to be true; but also whether, given the present
context, it might plausibly be said. The first issue requires
a probabilistic model of general knowledge ([23] and
Tenenbaum et al., this issue [24]). The second issue
requires engaging ‘theory of mind’ (inferring the other’s
mental states), and invoking principles of pragmatics.
Computational models of these processes, probabilistic or
otherwise are very preliminary [25].

A fundamental theoretical debate is whether plausi-
bility is used on-line in parsing decisions. Are statistical
dependencies between words used as a computationally
cheap surrogate for plausibility? Or are both statistics and
plausibility deployed on-line, perhaps in separate
mechanisms? Eye-tracking paradigms [26,27] have been
used to suggest that both factors are used on-line,
although the interpretation of the data is controversial.
Recent work indicates that probabilistic grammar models
often predict the time course of processing [28–30],
although parsing preferences also appear to be influenced
by additional factors, including the linear distance
between the incoming word and the prior words to which
it has a dependency relation [31].

Is the most likely parse favoured?

In the probabilistic framework, it is typically assumed
that on-line ambiguity resolution favours the most
www.sciencedirect.com
probable parse. Yet Chater, Crocker and Pickering [32]
suggest that, for a serial parser, whose chance of ‘recovery’
is highest if the ‘mistake’ is discovered soon, this is
oversimple. In particular, they suggest that because
parsing decisions are made on-line [26], there should be
a bias to choose interpretations which make specific
predictions, that might rapidly be falsified. For example,
after ‘John realized his.’ the more probable interpre-
tation is that realized introduces a reduced relative clause
(i.e. ‘John realized (that) his.’). On this interpretation,
the rest of the noun phrase after his is unconstrained. By
contrast, the less probable transitive reading (‘John
realized his goals/potential/objectives’) places very strong
constraints on the subsequent noun phrase. Perhaps,
then, the parser should favour the more specific reading,
because if wrong, it may rapidly and successfully be
corrected. Chater et al. [32] provide a Bayesian analysis of
‘optimal ambiguity resolution’ capturing such cases. The
empirical issue of whether the human parser follows this
analysis [33], and even the correct probabilistic analysis of
sentences of this type [34], is not fully resolved.

Beyond parsing

We have here focussed on parsing. But the ‘probabilistic
turn’ applies across language processing, from modelling
lexical semantics to modelling processing difficulty (see
Table 3). Note, though, that integrating these diverse
approaches into a unified model of language is extremely
challenging; and many of the theoretical issues that have
traditionally concerned psycholinguists are re-framed
rather than resolved by a probabilistic approach (e.g. the
relation between understanding and production becomes:
how far are the relevant probabilistic models shared? (see
Box 2); the issue of the degree of modularity between
separate processes becomes: how far are cognitive models
of different levels of linguistic analysis probabilistically
independent?). Probability might prove important as a
unifying theoretical framework for understanding how

http://dx.doi.org/doi:10.1016/j.tics.2006.05.009
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Box 2. Probabilistic models, Bayes and the ‘reversibility’ of language processing

If the cognitive system uses a probabilistic model in language

processing, then it can infer the probability of a word (or

parse/interpretation) from speech input. It does this from the

reverse probability: the probability of that linguistic input, given

the parse, together with the prior probability of each possible parse

(see Figure I).

This pattern is an instance of the more general principle that

Bayesian approaches to recognition typically involve analysis-

by-synthesis (see Yuille and Kersten, this issue) [77]. That is, the

mapping from low- to high-level representation (e.g. from acoustic to

word-level) is computed using the reverse mapping, from high- to

low-level representation. This pattern is standard in Bayesian models

of perception, but it also has the interesting additional feature that the

structure being modelled (the production of speech, rather than the

production of natural acoustic or visual stimuli) is typically part of a

person’s cognitive equipment. Indeed, not only do people produce

speech, but as with other motor outputs, it is likely that they can

compute a ‘forward model’ for predicting the acoustic consequences

of their own speech, before the motor output is given. This forward

model is presumed to be useful in feedforward control of the speech

apparatus (see Körding andWolpert, this issue [78], for a discussion of

the general motor control case); and the phenomenology of ‘inner

voices’, whether in normal imagery or mental illness, might arise from

its functioning. This perspective is a return to the motor theory of

speech perception. Analysis-by-synthesis also opens up a possible

mechanism for top-down influences on speech perception, although

empirical evidence that such effects occur on-line is mixed [79].

Details aside, the Bayesian approach raises the possibility that there

may be substantial sharing of information between producing and

understanding speech. Indeed, there is substantial behavioural and

neuropsychological evidence that the levels of processing in compre-

hension and production are intricately linked (e.g. [80]). For example,

despite superficial asymmetries between reception and production of

language, it seems that people are roughly able to understand the

linguistic forms they can generate. The apparent asymmetry is

explicable because ‘guessing’ using background knowledge can

successfully recover meaning, but guessing is unlikely to yield

linguistically correct output (although see [81]) In summary, we see

that what might be a deep inter-relationship between language

understanding and production is, at a more general level, a natural

consequence of the more general idea that the cognitive system

constructs a probabilistic model of the language.

Meaning

Syntactic rep’n

Word string

Speech signal

Pr(acoustics|words)

Pr(words|syntax)

Pr(syntax|meaning)

Pr(words|acoustics)

Pr(syntax|words)

Pr(meaning|syntax)

TRENDS in Cognitive Sciences 

Figure I. The reversibility of language processing. See text for explanation.
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the cognitive system makes the uncertain inference from
speech signal to message, and vice versa. As we now see, it
may also help understand how, and to what extent,
learners infer language structure from linguistic input.

Probabilistic perspectives on language acquisition

Probabilistic language processing presupposes a probabil-
istic model of the language; and uses that model to infer,
for example, how sentences should be parsed, or ambig-
uous words interpreted. But how is such a model, or for
that matter a traditional non-probabilistic grammar,
acquired? Chomsky [1] frames the problem as follows:
the child has a hypothesis-space of candidate grammars;
and must choose, on the basis of (primarily linguistic)
experience one of these grammars. From a Bayesian
standpoint, each candidate grammar is associated with a
prior probability; and these probabilities will be modified
by experience using Bayesian updating (see Griffiths and
Yuille Technical Introduction: Supplementary material
online). The learner will presumably choose a language
with high, and perhaps the highest, posterior probability.

The poverty of the stimulus?

Chomsky [1] influentially argued that the learning
problem is unsolvable without strong prior constraints
on the language, given the ‘poverty’ (i.e. partiality and
errorfulness) of the linguistic stimulus. Indeed, Chomsky
[35] argued that almost all syntactic structure, aside from
a finite number of binary parameters, must be innate.
Separate mathematical work by Gold [36] indicated that,
www.sciencedirect.com
under certain assumptions, learners provably cannot
converge on a language even ‘in the limit’ as the corpus
becomes indefinitely large (see [37], for discussion).

A probabilistic standpoint yields more positive learn-
ability results. For example, Horning [38] proved that
phrase-structure grammars are learnable (with high
probability) to within a statistical tolerance, if sentences
are sampled as independent, identically distributed data.
Chater and Vitányi generalize to a language that is
generated by any computable process (i.e. sentences can
be interdependent, and generated by any computable
grammar; see [39] for a brief summary), and show that
prediction, grammaticality and semantics are learnable,
to a statistical tolerance. These results are ‘ideal’ however;
that is, they consider what would be learned if the learner
could find the shortest representation of linguistic data. In
practice, the learner will find a short code, not the
shortest, and theoretical results are not available for
this case. Nonetheless, from a probabilistic standpoint,
learning looks more tractable – partly because learning
need only succeed with high probability; and to an
approximation (speakers might learn slightly different
idiolects).
Computational models of language learning

Yet the question of learnability, and the potential need for
innate constraints, remains. Machine learning methods
have successfully learned small artificial context-free
languages (e.g., [40]), but profound difficulties in extend-
ing these results to real language corpora have led

http://dx.doi.org/doi:10.1016/j.tics.2006.05.006
http://dx.doi.org/doi:10.1016/j.tics.2006.05.006
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(a)

(b)

                  Target words

Context words 

… red hen …

the   *********
***

 +1 
*** little ____ 

____ 
***  +1 

***   ***  ____ hen  *** +1 
***   ***  ____ ***  said  +1 
…  
little *** ____ ***  *** +1 
***  red  ____ ***  ***  +1 
***  ***   ____ said ***  +1 
***  ***   ____  ***    I  +1 
…  

…the hen said I…

…the said I…little

(c)

red hen

little red

Figure 2. Clusteringwords into syntactic classes by context. (a) shows themodification to a table of co-occurrences as amovingwindow (b) passes over the text, centred on a

target word. Here, separate counts are made for context words in four different locations – two slots before and after the target word. Each target word is then associatedwith

a ‘context vector’ consisting of the counts for an entire corpus, corresponding to columns in the table in (a). Target words are then clustered based on the similarity of theses

vectors, leading to an overall clustering into syntactic categories, and a rich fine-grained structure showing a mixture of syntactic and semantic factors. An adjective

subcluster is illustrated in (c). This method is used in [44], from which (c) is reproduced with permission.
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computational linguists to focus on learning from parsed
trees [21,22] – presumably not available to the child.
Connectionism is no panacea here; indeed, connectionist
simulations of language learning typically use small
artificial languages [41,42], and, despite having consider-
able psychological interest, they often scale poorly.

By contrast, many simple but important aspects of
language structure have successfully been learned from
linguistic corpora by distributional methods. For example,
good approximations to syntactic categories and semantic
classes have been learned by clustering words based on
their linear distributional contexts (e.g. the distribution
over the word that precedes and follows each token of a
type) or broad topical contexts (e.g. [43,44]) (see Figure 2).
factory seppayrolls fell in

NP PP
VP

S

payrollsfell in september
ContextContent

factory payrolls fell in september

(a)

Figure 3. Unsupervised grammar induction. The task of grammar induction can be t

modification or dependency relationships between words. Klein and Manning’s gramm

Distributional word clustering techniques are extended to phrasal constituents by perform

putative constituents (the upper example is a constituent, but the lower example is

directionality, distance and count of dependents. Both these models are learnt using

probabilistic model of grammar induction.
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One can even simultaneously cluster words exploiting
local syntactic and topical similarity [45].

Recently, however, Klein and Manning [46,47] have
made significant progress in solving the problem of
learning syntactic constituency from corpora of unparsed
sentences. Klein andManning [46] extended the success of
distributional clustering methods for learning word
classes by using the left and right word context of a
putative constituent and its content as the basis of
similarity calculations. Such a model better realizes
ideas from traditional linguistic constituency tests which
emphasize (i) the external context of a phrase (‘something
is a noun phrase if it appears in noun phrase contexts’) at
least as much as its internal structure, and (ii) proform
t factory payrolls fell in september

(b)

TRENDS in Cognitive Sciences 

hought of as two correlated tasks: learning the constituents in text and learning

ar induction system [47] exploits two representations focussed on these tasks. (a)

ing clustering over a representation that focuses on the content and context of both

not). (b) The model over word dependency structures. The model includes the

the expectation-maximization algorithm, and are then combined to give a unified
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tests (testing replacing a large constituent with a single
word member of the same category). Klein and Manning
[47] extended this work by combining such a distribu-
tional phrase clustering model with a dependency-
grammar-based model (see Figure 3). The dependency
model uses data on word co-occurrence to bootstrap word-
word dependency probabilities, but the work crucially
shows that more is needed than simply a model based on
word co-occurrence. One appears to need two types of prior
constraint: one making dependencies more likely between
nearby words than far away words, and the other making
it more likely for a word to have few rather than many
dependents. Both of Klein and Manning’s models capture
a few core features of language structure, while still being
simple enough to support learning. The resulting com-
bined model is better than either model individually,
suggesting a certain complementarity of knowledge
sources. Klein andManning show that high-quality parses
can be learned from surprisingly little text, from a range of
languages, with no labeled examples and no language-
specific biases. The resulting model provides good results,
building binary trees which are correct on over 80% of the
constituency decisions in hand-parsed English text.

This work is a promising demonstration of empirical
language learning, but most linguistic theories use richer
structures than surface phrase structure trees; and a
particularly important objective is finding models that
map to meaning representations. This remains very much
an area of ongoing research, but inter alia, there is work
on probabilistic parsing with richer formalized grammar
models based on learning from parsed data [48,49], some
work on mapping to meaning representations of simple
datasets [50], and work on unsupervised learning of
a mapping from surface text to semantic role
representations [51].
Poverty of the stimulus, again.
The status of Chomsky’s poverty of the stimulus argument
remains unclear, beginning with the question of whether
children really do face a poverty of linguistic data (see the
debate between [52] and [53]). Perhaps no large and
complex grammar can be learned from the child’s input; or
perhaps certain specific linguistic patterns (e.g. those
encoded in an innate universal grammar) are in principle
unlearnable. Probabilistic methods provide a potential
way of assessing such questions. Oversimplifying some-
what, suppose that a learner wonders whether to include
constraint C in her grammar. C happens, perhaps
coincidentally, to fit all the data so far encountered. If
Box 3. Open questions

† Are the same probabilistic model and computational processes used

in language comprehension and production? (see also Box 2). How

does the picture change for comprehension based on pragmatics,

world knowledge and ‘theory of mind?’

† Is local ambiguity handled by using a single underspecified

representation; or by pursuing distinct parses in parallel or in

sequence?

† Over what levels of representation (words, word classes,

structures) is frequency information represented by the language

processor?
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the learner does not assume C, the probability that each
sentence will happen to fit C by chance is p. Thus, each
sentence obeying C is 1/p times more probable, if the
constraint is true than if it is not (if we simply rescale the
probability of all sentences obeying the constraint). Thus,
after n sentences, the probability of the corpus, is 1/pn

greater, if the constraint is included. Yet, a more complex
grammar will typically have a lower prior probability. If
the ratio of priors for grammars with/without the
constraint is greater than 1/pn, then, by Bayes’ theorem,
the constraint is unlearnable in n items.

Presently, theorists using probabilistic methods diverge
widely on the severity of the prior ‘innate’ constraints they
assume. Some theorists focus on applying probability to
learning parameters of Chomskyan Universal Grammar
[54,55]; others focus on learning relatively simple aspects
of language, such as syntactic or semantic categories, or
approximate morphological decomposition, with relatively
weak prior assumptions [44,56,57]. Probabilistic methods
should be viewed as a framework for building and
evaluating theories of language acquisition, and for
concretely formulating questions concerning the poverty
of the stimulus, rather than as embodying any particular
theoretical viewpoint. This point arises throughout
cognition; although probability provides natural models
of learning, it is an open question whether initial structure
is crucial in facilitating such learning. For example,
Tenenbaum et al. [24] argue that prior structure over
Bayesian networks is crucial to support learning.
Language acquisition and language structure

How far do probabilistic perspectives on language
structure and language acquisition interact? Some theor-
ists argue that language should not best be described as
rules and exceptions, but as a system of graded ‘quasi-
regular’ mappings (this is ‘revisionist’ probabilistic
linguistics; Table 1). Notable examples of such mappings
including the English past-tense, the German plural, and
spelling-to-sound correspondences in English; but a
closely related viewpoint has been advocated for syntax
[58,59] and aspects of semantics [60]. Some theorists
argue [13] that such mappings are better learned using
statistical or connectionist methods, which learn accor-
ding to probabilistic principles. By contrast, traditional
rule-and-exception views are typically associated with
non-probabilistic hypothesis generation and testing.
Nonetheless, we see no necessary connection between
these debates on the structure of language and models
of acquisition.
† How far is speech and language optimized for communication?

What features of language (e.g. the brevity of common words; nature

of local ambiguity) might such optimization explain?

† How are convergent sources of linguistic information exploited in

learning and processing?

† How can non-linguistic cues from the social and physical environ-

ment be exploited by the child?

† Can specific features of language be proved to be unlearnable from

the input available to the child, using the probabilistic arguments

discussed here, or other methods.
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Conclusion

Understanding and producing language involves complex
patterns of uncertain inference, from processing noisy and
partial speech input to lexical identification, syntactic and
semantic analysis, to language interpretation in context.
Acquiring language involves uncertain inference from
linguistic and other data, to infer language structure.
These uncertain inferences are naturally framed using
probability theory: the calculus of uncertainty. Histori-
cally, probabilistic approaches to language are associated
with simple models of language structure (e.g. local
dependencies between words), but, across the cognitive
sciences, as described in this special issue, technical
advances have reduced this type of limitation. Probabil-
istic methods are also often associated with empiricist
views of language acquisition. But the framework is
equally compatible with nativism – that there are prior
constraints on the class of language models. Indeed, as we
have seen, probabilistic analysis can provide one line of
attack (alongside the empirical investigation of child
language) in assessing the relative contributions of innate
constraints and corpus input in language acquisition.
Overall, we view probabilistic methods as providing a rich
framework for theorizing about language structure,
processing and acquisition, which may prove valuable in
developing, and contrasting between, a wide range of
theoretical perspectives (see also Box 3, and Editorial
‘Where next?’ in this issue).
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