
Visualizing Traffic Causality for Analyzing
Network Anomalies∗

Hao Zhang, Maoyuan Sun, Danfeng (Daphne) Yao, and Chris North
Department of Computer Science

Virginia Tech, Blacksburg, VA
{haozhang, smaoyuan, danfeng, north}@cs.vt.edu

ABSTRACT
Monitoring network traffic and detecting anomalies are es-
sential tasks that are carried out routinely by security an-
alysts. The sheer volume of network requests often makes
it difficult to detect attacks and pinpoint their causes. We
design and develop a tool to visually represent the causal
relations for network requests. The traffic causality infor-
mation enables one to reason about the legitimacy and nor-
malcy of observed network events. Our tool with a special
visual locality property supports different levels of visual-
based querying and reasoning required for the sensemaking
process on complex network data. Leveraging the domain
knowledge, security analysts can use our tool to identify ab-
normal network activities and patterns due to attacks or
stealthy malware. We conduct a user study that confirms
our tool can enhance the readability and perceptibility of
the dependency for host-based network traffic.

Keywords
Anomaly Detection, Network Traffic Analysis, Information
Visualization, Usable Security, Visual Locality

1. INTRODUCTION
This paper addresses the issue of visualizing the network

traffic causality. We aim to design a visualization tool to
facilitate the process of identifying anomalous network traf-
fic. The recently proposed detection method advances the
analysis of network traffic by inferring the semantic and log-
ical relations [25]. Its unique advantage is the capability of
reasoning the causality or dependency of network data and
thus detecting new stealthy malware activities. The analysis
provides automatic anomaly detection in the observed net-
work activities through probabilistic reasoning of the causal
relations in traffic. By pinpointing abnormal network events

∗This work has been supported in part by NSF grant CAREER
CNS-0953638, ARO YIP W911NF-14-1-0535, and L-3 communi-
cations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IWSPA’15, March 4, 2015, San Antonio, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3341-2/15/03 ...$15.00.
http://dx.doi.org/10.1145/2713579.2713583 .

that lack of valid triggers, it can detect malware activities
on an infected machine (e.g., making command-and-control
communications with its controller). The triggers include
legitimate user events and benign network packets.

In this work, we design a tool to assist the analysis of host-
based network data based on traffic causality. Our visual
representation improves the sensemaking process for security
and can increase the productivity for analysts.

Many existing network security visualization tools provide
graphic user interfaces for Intrusion Detection Systems logs
(e.g., Snort) [3, 5, 13, 18]. IDS alerts are organized in a log-
type structure, where each alert entry indicates a potential
intrusion threat. However, very few existing work provides
the visualization of underlying relationship among network
events, with one notable exception Portall [7]. Portall visual-
izes the correlation of host processes and network activities.
Our request-level traffic causal relations are much more fine-
grained than the process-level correlation in [7]. Thus, new
visual representation approaches are needed. Our solution
aims to satisfy a unique space efficiency requirement, that
is, how to optimally utilize the screen space for displaying
the causal relations of a massive amount of network traffic.

A straightforward approach for displaying host-based traf-
fic is shown in Figure 1a. This visual representation arranges
network requests using a forest layout based on their causal
relations; the timeline may be extended horizontally when
newer network events are added. Because the forest-based
layout is intuitive, it has been used for illustrating relations
among network events [14, 25]. However, it does not use
the display space efficiently. The length of traffic causal-
ity structure grows fast, making it difficult to view related
events that are temporally far apart. Statistics shows that
more than 90% of the request causal relation falls within a
30-second interval [25]. Although rare, we observe that net-
work requests that occur 15 minutes apart may have causal
relations. Therefore, our visualization design takes these
unique traffic characteristics into considerations. To this
end, we focus on displaying items that have causal relations
in visually adjacent space. Causal relations determine their
locations on the display. This layout provides two advan-
tages: i) enhancing the navigation of traffic causality, and
ii) improving the identification of anomalous activities.

Our contribution in this work is twofold.
• We develop a visualization tool for security analysts to

efficiently display the network traffic dependency. This
tool has a visual locality feature that can optimize the
displaying of structured data. The visual representa-
tion is a radial layout based on curved timeline display.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357242653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Compared to the straightforward forest layout, our de-
sign maximizes the use of the screen by bending the
timeline into a circle, which achieves high visual local-
ity and extensibility.
• We conduct a user study to evaluate our system with

10 participants and real-world network traffic. Results
of the study show that our tool is well suited for secu-
rity analysts to perform manual inspection and analy-
sis on network events based on their causal relations.

H1 H7

H8 H9 H11

U1 U2

H14H10 H12 H13

H4H2

H3 H5 H6

Time

C
as

u
al

 r
el

at
io

n
sh

ip

(a) A straightforward representation of TRG.

Network
request

User
inputUi Hi

Malicious

requestHi

H15 H16

H17

U3 U4

H18

Time

(b) Two crossing edges.

H19

H20

U5

H23

Time

H21 H22 H24 H26

U6

H25 H29

H27 H28

H30

(c) Malicious requests.

Figure 1: Schematic drawing of traffic causality for out-
bound network requests on a computer. Nodes are indexed
by their relative occurrence time.

2. TRG AND SECURITY MODEL

Definition 1 (Triggering Relation Graph [25]).
TRG is composed of two types of nodes, user input and
network request. The edges in TRG refer to the triggering
relations that describe the causal relationship between
nodes. The dependencies are defined by two types of edges:
i) root-trigger dependency defines the relation between a
legitimate user’s input (e.g., mouse clicks on hyperlinks)
and its generated first network request and ii) inter-request
dependency is the relation between two network requests
where one directly triggers the other.

Figure 1a shows an example of a TRG, where U1 → H1 is
an example of a root-trigger dependency edge and H1 → H2

is an example of an inter-request dependency edge.
Triggering relations can be computed by using rule-based

methods [24] or machine learning techniques [25]. TRG is
built on the application layer packets and used to find all
triggering relations to understand how a user interacts with
applications and how applications respond to the user by
sending out network requests. Therefore, it reveals the log-
ical structure of the requests, which can be used to detect
abnormal network activities originated from the host. In this
model, the events having triggering relations to a legitimate
cause are benign ones.

However, there is no existing tool to display the triggering
relation graph. Straightforward attempts to visualize the
TRG (e.g., using conventional straight timeline layout) may
not satisfy the high visual locality requirement. In addition,
the requests with causality do not necessarily situate close

according to the time, as illustrated in Figure 1b (H15-H18).
The crossed edges make the TRG messy and hard to analyze.

Definition 2 (High visual locality). Items having
logical relations are placed close to each other on display.

In our context, we define high visual locality as our pri-
mary goal to optimize our visualization designs. It enables
analysts to easily identify related requests. To meet this re-
quirement, our design prioritizes the causality that clusters
nodes around their root-triggers and forms trees separately.
Within each tree, the nodes are organized by their tempo-
ral and other logical information. In our security model, we
consider two types of stealthy malicious network traffic.
• Network requests without valid root triggers are re-

ferred to as vagabond (H29 in Figure 1c).
• Network requests sent to malicious hosts with valid

referrer information are referred to as grafted (H26-H28

in Figure 1c).
The vagabond requests are events without legitimate

causal relations and likely due to stealthy malware activi-
ties. The grafted requests take place when the servers are
misconfigured or compromised, and thus are hard to formal-
ize rules to identify. Blocking the malware network activities
effectively isolates the malware, such as spyware exfiltrating
sensitive information through outbound traffic. Our TRG
model is general and needs no priori knowledge about a
particular malware class.

Analysis Using All Triggering Relations. One of the
design choices for visualizing TRG is whether or not to dis-
play all the discovered triggering relations. A simple visual
representation is to only display vagabond requests, i.e.,
abnormal network events. However, analysts may neglect
some attacks by viewing this type of display, because sus-
picious requests could be hidden from legitimate ones (i.e.,
the grafted requests). For example, a common attack on web
servers is to exploit web vulnerabilities (e.g., SQL injection,
cross site scripting, format string injection [8]). After the
servers are compromised, attackers can modify the websites
by injecting malicious codes, then the clients get infected
when they visit the websites. These grafted requests are of-
ten of the Javascript type with long and obfuscated request
strings in URLs, because Javascript requests have diversi-
fied functions to be leveraged by attackers. Domain experts
have to reason the legitimacy by integrating with other in-
formation (e.g., system logs).

Our TRG model provides a good visual representation for
a host-based overview. The grafted requests, sent by com-
promised servers, can be identified by their deeper levels in
TRG, late-arriving timestamps, and unusual host domains.
Therefore, the analysts need to leverage the inner logic to
infer the legitimacy of requests, which makes the displaying
of all triggering relations more desirable.

3. VISUALIZATION DESIGN
Our design for the visualization tool is based on charac-

teristics of traffic triggering relations. We run a pilot study
that contains 12MB network data (10-hour HTTP traffic on
a host, 45000+ requests) to investigate the characteristics of
traffic dependency. We summarize our findings as follows.

Wide-and-shallow trees. The nodes on the top three
levels in TRG account for above 90% of the total amount.
There are respectively 68% and 21% of requests on the sec-
ond and third levels, so the trees are extremely wide on their

top levels. Besides, 99.7% of trees in TRG have less than 6
levels, while there is only 0.3% of trees whose depth is 7 to
9 levels, which illustrates the shallowness of the trees.

Temporally adjacent events. We further check the
time difference between any two requests that have a trigger-
ing relationship. Statistics shows that about 93% of HTTP
requests trigger their dependencies within 3 minutes. If the
time window is enlarged to 15 minutes, then 99.8% of HTTP
requests and their dependencies are included. Therefore, the
HTTP requests with dependents are temporally close to each
other, despite some rare cases.

Sparsity of vagabonds. The vagabond requests are
classified into two groups. Malicious and misconfigured
packets represent 0.3% and 0.5% respectively of the total
number of nodes. Malicious requests are sent when a user
visits a compromised website or the host is infected by mal-
ware. Misconfigured requests are not sent to malicious hosts
but contain some missing fields in the request header.

Automatic update requests. The updates are the le-
gitimate requests sent to upgrade the system or software
periodically, without user interaction. In our design, we
maintain a list of known programs and their official up-
grade domains to reduce the false alarms (e.g., Java Update

Checker and its update domains javadl-esd.sun.com and
javadl.oracle.com).

Our design aims to visualize the traffic dependency of net-
work requests by meeting the high visual locality principle,
so users can identify and analyze the anomalies with ease.
We utilize a radial design for displaying traffic triggering re-
lations. This design has a curved timeline that is centered
at the display, and the radiating branches represent network
traffic events and their trigger relations. The advantage of
this view design is that it maximizes the utilization of the
display screen. It is more convenient for users to interact
with this view than a conventional straight timeline view.
We further provide a condensed view to simplify the display
by merging the trivial nodes. In addition, our design uses a
heatmap to show the distribution of the requests over time
and store original logs in each color-coded tile.

3.1 Visual Locality Design for Analysts
We design a radial layout to display the traffic dependency

with high visual locality. A straightforward visualization of
TRG would be an axial layout in Figure 2a, however it is
not suitable for visualizing large-scale traffic dependencies.
This layout is not efficient at displaying hierarchy structures,
as the tree structure spans unilaterally and leads to much
unused space. In addition, the length of the forests grows
as the data size increases. Users have to scroll up and down
for browsing and searching. In the radial layout shown in
Figure 2b, we arrange the nodes in a clockwise manner. In
this design, time line defines the positive direction and the
start point is at 12 o’clock position, which is consistent with
an analog clock and intuitive to users.

Our prototype arranges the nodes and allocates the space
of the radial layout as follows.
(1) We sort the root-triggers by their timestamps and plot

them in the innermost ring. We cluster the nodes un-
der their root-triggers. Clustering nodes of each tree
guarantees there is no cross edges in the display.

(2) The rendering space is allocated in proportion to the
number of nodes on its second level, rather than the
timespan of the tree in TRG. The time spans of each tree

(a) Axial layout. (b) Radial layout.

Time Line

Level Line

HTTP Request

User Event

Triggering
Relation

Figure 2: Schematic diagrams of two visualization designs
for the structured network data.

in TRG may overlap. Requests from different trees may
arrive simultaneously. Our layout, based on indexing
nodes, eliminates the overlapping issue.

(3) We render the nodes by their levels. The level lines are
used to align the nodes on the same level. The nodes
on the same level are lined up on the concentric arcs.
The innermost ring is used to place the user inputs, and
is divided into sectors whose angles correspond to the
sizes of its dependent nodes.

Our design maximizes the usage of display space. The ra-
dial layout presents hierarchies of events in concentric rings.
Users using the conventional forest-like layout need to scroll
twice more than our design. Additionally, by concentrating
nodes at the center of the screen, the radial layout enables
users to easily manipulate the display.

3.2 Interactive Heatmap for Accessing Origi-
nal Traffic Logs

Heatmap is a graphical data presentation approach where
each value in the matrix is color-coded. Our design is com-
posed of LogMap, an instance of Heatmap (see Figure 4). The
LogMap reveals the density information of the network re-
quests. It provides an overview of the request distribution
over the observed period. The LogMap accommodates differ-
ent levels of time-period granularities, e.g., seconds, minutes,
hours, etc. Last, security analysts often resort to the origi-
nal logs for more details. In our design, the LogMap supports
users to access the original logs by clicking on the colored
tiles in the heatmap.

The LogMap divides the timeline into fixed windows and or-
ganizes network events occurred in each time window into a
sub-block. In our design, there are sixty tiles in a sub-block,
which represents sixty seconds. The color coding in each tile
corresponds to the number of requests. The granularity of
events displayed on the LogMap can be adjusted according to
analysts’ needs.

3.3 Condensed View to Distill Information
According to our pilot study, more than 90% of network

requests are situated on the top three levels in the TRG. To
avoid visual clutter, we provide a condensed view for security
analysts. We design a condensing algorithm to merge the
nodes that meet all the following criteria.
• Legitimate requests that are of the same type;
• Requests that are on the same level in the TRG;
• Requests that are the leaf nodes in the TRG.

The algorithm iterates a list of chronologically sorted re-
quests and outputs a list of condensed nodes. We use an

auxiliary dictionary to store each newly generated node and
a list of requests being condensed. In the condensing algo-
rithm, we only merge the benign requests, so as to avoid
losing any information of abnormal requests. Our condens-
ing algorithm does not merge the nodes on the different
(sub)trees, which guarantees that the dependency structure
in a TRG is preserved. Therefore, the condensed views are
compatible to the original radial and axial layouts.

We categorize the HTTP requests into six types, which are
web, CSS, Javascript, multimedia, data, and others. Around
50% of browser-generated HTTP requests are used to fetch
the multimedia objects (e.g., image or streaming data) in
our pilot study. Unlike Javascript objects, these requests to
obtain static files do not trigger further HTTP traffic.

To evaluate the effectiveness of the condensing algorithm
for reducing the redundancy and emphasizing the anomalies,
we test our tool on the pilot study dataset. Shown in Ta-
ble 1, we compare the number of nodes in both original and
condensed views. Compression ratio is defined to qualify the
effectiveness of the algorithm. The root-triggers are on the
first level, and thus cannot be compressed. There are 68%
of total requests situated on the second level, and 87.5% of
them are merged, which significantly saves space. Overall,
the total compression ratio is 82.2%. Multimedia requests
mostly serve as leaf nodes and can be compressed as much
as 91%. Compared with the original view, our condensed
view significantly reduces the redundancy of displaying leaf
nodes. Therefore, it helps users identify abnormal nodes due
to its visually salient.

Level # of nodes in # of nodes in Compression
in TRG original view (n) condensed view (c) ratio (1 − c

n)

1 1158 1158 0.0%
2 31242 3913 87.5%
3 9725 2190 77.5%
4 2753 644 76.6%
5 835 225 73.1%
6 201 49 75.6%

7 - 9 74 24 67.6%
Total 45988 8203 82.2%

Table 1: The number of HTTP requests on each level in the
Triggering Relation Graph for original and condensed views.

4. PROTOTYPE IMPLEMENTATION
We build ReView, a visualization tool for viewing and ana-

lyzing the triggering relations for network requests. It is de-
signed based on the three-tier architecture and implemented
as a web-based tool. The workflow is illustrated in Figure 3.

Logic Tier Presentation TierData Tier

Reasoning
Engine

Visualization
Engine

Displaying

Filtering

Highlight
(node, path)

Statistics

Condensed
Data Parser

Data Storage

Network
Traffic Log

User Input
Log

Triggering
Relation

Inference

Hierarchical data

Condensed dataVulnerability
Database

Figure 3: The workflow of ReView.

ReView takes the user events (e.g., clicking on a hyperlink
of a webpage) and the outbound HTTP requests as inputs.
The network requests are recorded by leveraging the libpcap

library. The features of an HTTP request include its times-
tamp, process ID, source and destination IP address, and
request semantic information (e.g., HTTP host domain and
referrer). In the data tier, we add a customized vulnerabil-
ity database, which is composed of several known blacklists
and feeds [15, 16, 23], to facilitate the process of identify-
ing the suspicious requests. However, solely relying on the
blacklists is not sufficient because of the ever-changing mal-
ware variants and malicious domains.

In the reasoning engine, our tool infers the triggering re-
lations by leveraging a machine learning-based solution pro-
posed in [25]. It discoveries vagabond request that are not
generated by any user actions. ReView screens out the be-
nign update traffic using a whitelist. It also filters the traffic
according to our customized vulnerability database. Other
advanced solutions to rank domains and detect malicious
URLs (e.g, [21]) can be also integrated into our tool. In ad-
dition, we leverage the condensing algorithm to preprocess
the raw traffic data in the logic tier.

The rendering in ReView uses D3 [6], which is a Javascript
library for data visualization. The layout of ReView is shown
in Figure 4. Our design contains two major components,
main display and heatmap panels.

On the main display panel, we show the optimized visual-
izations of hierarchical structure using the radial layout. The
user inputs are placed in the innermost ring. The HTTP re-
quests are situated on the second and later levels. On the
right hand side, a draggable control panel is composed of five
tabs that are used to manipulate the layout options, query
the source data, highlight the nodes, and show the statistics.
Our tool supports path highlighting for exploratory analy-
sis. The path from a selected node to its root-trigger can be
highlighted, which helps security analysts identify the logic
chain of the nodes, understand why the request is triggered
and find the common ancestors for multiple nodes. Our tool
aims at presenting the causal relations, meanwhile minimiz-
ing the display of the detailed information for each request.
In ReView, there are three ways to display the HTTP request
information: i) using the Popup when mouse hovers over a
node; ii) reading the information at InfoTab after clicking a
node; and iii) loading the complete information in a separate
LogWindow. These options can reveal the details of different
levels, as requested by users.

On the heatmap panel, the LogMap reveals the traffic pat-
terns, which is complementary to the main panel. Each tile
in LogMap represents one second and is colored on a green
scale based on the number of requests in this second. The
tile with a red frame indicates that at least one vagabond
HTTP request is observed during its time window. A sepa-
rate window that displays the original logs is shown when a
colored tile is clicked.

5. USER STUDY
We carried out a user study with ten participants, and

all of them have at least four years of experience working
with computers. Their specialties include system/network
security, high performance computing and human computer
interaction. As our tool is to visualize the network requests
for security purposes, it is not built for the average users.
We target users with computer science knowledge and people
who are curious about, or care about, the computer security.
In this user study, we investigate: i) the user’s preference,
and the trade-off between a neat view with condensed data

①

② ③
④⑤

⑥

① Main Display (radial
layout, condensed view)

② Legend
③ Control Panel (showing

the InfoTab)
④ Popup showing basic

info.
⑤ Path highlighting
⑥ LogMap

Figure 4: A screen layout of ReView.

and a complete view with all triggering relations; ii) how
our tool can direct users to analyze the suspicious requests.

We conducted the study in a computer science laboratory
in a university. A 15-minute tutorial was given to the par-
ticipants to introduce the functionalities of ReView. We di-
rected the tutorial using a 7-page slide presentation, so that
every participant got the equivalent level of details. In the
study, participants were asked to finish 10 questions that in-
clude the tasks of analyzing logs routinely done by analysts
and the user preference of different visualization options.

The data used in the user study was obtained from a grad-
uate student’s laptop. We collected both HTTP traces and
user’s inputs (keyboard and mouse events) for a 30-minute
session. The test data contains a total of 3724 HTTP re-
quests, including 24 update requests and 33 vagabonds (12
abnormal and 21 misconfigured requests).

5.1 Analysis of User Preference

Popup

Graphic view

Radial layout

Condensed view

InfoTab

Useful

Log view

Axial layout

Original view

Log window

Not useful

0 2 4 6 8 10

Graphic vs. Log

Radial vs. Axial

Condensed vs.
Original

In-depth Info.
Display

Usability of the
LogMap

Figure 5: The breakdown of results on user preference in the
user study.

Figure 5 presents a brief summary about user’s preferences
of major features in ReView. All ten participants correctly
identified root-triggers, the first level of network requests,
and answered the exact maximum level of requests. Based
on results shown in Figure 5, nine participants indicated that
they preferred visualizations over traditional network logs.

They agreed on the fact that the provided visualizations
in ReView summarize the network data, compared with the
overwhelming information in raw logs. With ReView, users
can quickly understand and make use of the structure of
network causal relationship for security analysis.

ReView effectively navigates users among a large amount
of network requests through different levels of abstractions.
Eight participants preferred the radial layout over the axial
one, because it enables the efficient utilization of the screen
space. In addition, participants choosing the radial layout
mentioned that they can navigate the display with minimal
mouse scrolling needed. Other participants prefer the ax-
ial layout because they think the forest-like design is more
salient and intuitive.

Nine participants preferred the condensed view over the
original one. They agreed that the condensed view simpli-
fied representations by avoiding unnecessary leaf nodes. One
participant who was in favor of the original view also admit-
ted that condensed view is neat, but he still chose original
view in case of missing necessary information. Last, eight
participants found LogMap useful for showing the network re-
quests by their distributions over time.

5.2 Analysis of Suspicious Requests
Nine participants identified the exact number of vagabond

requests (33 nodes in total). The other one participant mis-
understood the task and counted the vagabonds on the first
level. All participants correctly listed detailed information of
examples corresponding to each type of the vagabond. They
were able to distinguish among different types of vagabond
requests by digesting the request information using our tool.

With some domain knowledge, participants can infer rea-
sons for the occurrences of malicious requests. For example,
8 participants answered that the first malicious request was
sent to spi.domainsponsor.com and the domain was black-
listed as spyware. By reviewing its long URL string, partic-
ipants found out that the request URL contains some sub-
strings, such as migTrackDataExt and migAgencyId. Therefore,
they speculated the outbound request is used to leak host

information. Users also found that the display of triggering
relations for all requests benefits the analysis of malicious
ones. For example, participant #9 pointed out that a sim-
ilar vagabond request is sent out after a website is visited
twice, so the website hosts may be compromised by malware
or due to misconfiguration.

LogMap also helps to direct users to potentially suspicious
network traffics with color coding of the frame for each grid.
Participants #4, #7 and #10 regarded this as an important
factor as to why they preferred LogMap. They used the tool to
find out that the update requests were often sent out during
the idle time, while abnormal ones were sent out along with
some legitimate requests.

6. RELATED WORK
The dependency analysis provides an effective way to pin-

point the origin of the vulnerability and reason the com-
plex structures (e.g., finding the dependency of network ser-
vices [4] and intrusion detection logs [12], detecting drive-by
download attacks [20]). However, the dependency analy-
sis on network requests has not been well studied, with a
few exceptions [14, 19]. WebProphet [14] extracts the de-
pendencies between web objects in the light of their delays.
ReSurf [19] reconstructs web surfing activities from network
traces based on a referrer-based inference.

A comparative study from Goodall [9] confirmed that vi-
sualizations, compared with traditional logs, can help users
easily perceive patterns and anomalies for cyber security re-
lated analysis. Many visualization designs have been pro-
posed as intuitive and efficient means of displaying complex
structures that cannot be explicitly identified in the raw
data [5, 17]. Radial Traffic Analyzer [11] and Traffic Cir-
cle [2] are two network visualization tools that adopt the
radial layout. Both solutions are used for monitoring the
network (e.g., identifying communication partners and traf-
fic types) by displaying the raw packet or flow information.
In ReView, we use concentric arcs to represent different de-
pendency levels, in such way that our tool provides logical
relation of the network traffic in an information-rich fashion.

In recent years, many research efforts have been dedicated
to visualize the network traffic, as visualization tools help re-
searchers understand the structure of data [17,22] and iden-
tify the anomalies [1,10]. Traffic Causality Graph (TCG) [1]
enables the profiling of network application through the tem-
poral and spatial causality of flows. This solution aggre-
gates the packets into flows and focuses on the causality of
them. The causality finding algorithm in [1] is based on
the protocol, IP and port information of flows, while ours
is based on higher level application layer information, which
is a fine-grained model and has better descriptive power.
Traffic Dispersion Graph (TDG) [10] is used to present the
network-wide flows by aggregating the packets. TDG cap-
tures the interaction among hosts in a network, while our
TRG is on the host-based network traffic. Last, our model
differs from TCG and TDG, as their solutions aim at classi-
fying the traffic or detecting port-related threats (e.g., port
scanning). However, our TRG is for identifying the abnor-
mal requests through revealing the triggering relations of
outbound packets.

7. CONCLUSIONS
Discovering traffic dependency has been shown to be an

effective way to analyze network activities and identify ma-

licious events. We introduced a new concept of high vi-
sual locality and developed ReView, a visualization tool that
maximizes the usage of screen and helps security analysts
better utilize network traffic dependency. In our design, we
adopted a radial layout that supports to high visual locality.
ReView serves as an integrated solution for analysts to accu-
rately pinpoint anomalous network events and perform fur-
ther investigation. User study results suggest that our tool
provides usable visualization and interaction to help inter-
pret network traffic causality and enhance security analysis.

8. REFERENCES
[1] H. Asai, K. Fukuda, and H. Esaki. Traffic Causality Graphs:

Profiling network applications through temporal and spatial
causality of flows. In ITC’11, pages 95–102, 2011.

[2] D. M. Best, S. Bohn, D. Love, A. Wynne, and W. A. Pike.
Real-time visualization of network behaviors for situational
awareness. In VizSec’10, pages 79–90, 2010.

[3] A. Boschetti, L. Salgarelli, C. Muelder, and K.-L. Ma. TVi: a
visual querying system for network monitoring and anomaly
detection. In VizSec’11, page 1, 2011.

[4] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating
network application dependency discovery: Experiences,
limitations, and new solutions. In OSDI’08, pages 117–130.

[5] G. Conti, K. Abdullah, J. Grizzard, J. Stasko, J. A. Copeland,
M. Ahamad, H. L. Owen, and C. Lee. Countering security
information overload through alert and packet visualization.
Computer Graphics & Applications, IEEE, 26(2):60–70, 2006.

[6] D3.js: a JavaScript library to display given digital data into
graphic, dynamic forms. http://d3js.org.

[7] G. A. Fink, P. Muessig, and C. North. Visual correlation of
host processes and network traffic. In VizSec’05, page 2, 2005.

[8] J. Fonseca, M. Vieira, and H. Madeira. Vulnerability & attack
injection for web applications. In DSN’09, pages 93–102, 2009.

[9] J. R. Goodall. Visualization is better! A comparative
evaluation. In VizSec’09, pages 57–68, 2009.

[10] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher,
S. Singh, and G. Varghese. Network monitoring using traffic
dispersion graphs (TDGs). In IMC’07, pages 315–320, 2007.

[11] D. A. Keim, F. Mansmann, J. Schneidewind, and T. Schreck.
Monitoring network traffic with radial traffic analyzer. In
VAST’06, pages 123–128, 2006.

[12] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen.
Enriching intrusion alerts through multi-host causality. In
NDSS’05, 2005.

[13] H. Koike and K. Ohno. SnortView: Visualization system of
Snort logs. In VizSEC/DMSEC’04, pages 143–147, 2004.

[14] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg, and Y.-M.
Wang. WebProphet: Automating performance prediction for
web services. In NSDI’10, pages 143–158, 2010.

[15] Malware domain list. http://www.malwaredomainlist.com.

[16] Suspicious domains from SANS institute.
https://isc.sans.edu/suspicious_domains.html.

[17] H. Shiravi, A. Shiravi, and A. A. Ghorbani. A survey of
visualization systems for network security. IEEE Trans. Vis.
Comput. Graph., 18(8):1313–1329, 2012.

[18] H. Song, C. Muelder, and K.-L. Ma. Crucial nodes centric
visual monitoring and analysis of computer networks. In
CyberSecurity, pages 16–23, 2012.

[19] G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos, and Y. Jin.
ReSurf: Reconstructing web-surfing activity from network
traffic. In IFIP Networking Conference, pages 1–9, 2013.

[20] K. Xu, D. Yao, Q. Ma, and A. Crowell. Detecting infection
onset with behavior-based policies. In NSS’11, pages 57–64.

[21] L. Xu, Z. Zhan, S. Xu, and K. Ye. Cross-layer detection of
malicious websites. In CODASPY’13, pages 141–152, 2013.

[22] W. Yu and R. M. Verma. Visualization of rule-based
programming. In SAC’08, pages 1258–1259, 2008.

[23] ZeuS tracker domain blocklist.
https://zeustracker.abuse.ch/blocklist.php.

[24] H. Zhang, W. Banick, D. Yao, and N. Ramakrishnan. User
intention-based traffic dependence analysis for anomaly
detection. In Security and Privacy Workshops (SPW), 2012
IEEE Symposium on, pages 104–112, 2012.

[25] H. Zhang, D. Yao, and N. Ramakrishnan. Detection of stealthy
malware activities with traffic causality and scalable triggering
relation discovery. In ASIACCS’14, pages 39–50, 2014.

