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Purpose: Analyzing spatiotemporal enhancement patterns is an important task for the differential
diagnosis of breast tumors in dynamic contrast-enhanced MRI �DCE-MRI�, and yet remains chal-
lenging because of complexities in analyzing the time-series of three-dimensional image data. The
authors propose a novel approach to breast MRI computer-aided diagnosis �CAD� using a multi-
level analysis of spatiotemporal association features for tumor enhancement patterns in DCE-MRI.
Methods: A database of 171 cases consisting of 111 malignant and 60 benign tumors was used.
Time-series contrast-enhanced MR images were obtained from two different types of MR scanners
and protocols. The images were first registered for motion compensation, and then tumor regions
were segmented using a fuzzy c-means clustering-based method. Spatiotemporal associations of
tumor enhancement patterns were analyzed at three levels: Mapping of pixelwise kinetic features
within a tumor, extraction of spatial association features from kinetic feature maps, and extraction
of kinetic association features at the spatial feature level. A total of 84 initial features were ex-
tracted. Predictable values of these features were evaluated with an area under the ROC curve, and
were compared between the spatiotemporal association features and a subset of simple form fea-
tures which do not reflect spatiotemporal association. Several optimized feature sets were identified
among the spatiotemporal association feature group or among the simple feature group based on a
feature ranking criterion using a support vector machine based recursive feature elimination algo-
rithm. A least-squares support vector machine �LS-SVM� classifier was used for tumor differentia-
tion and the performances were evaluated using a leave-one-out testing.
Results: Predictable values of the extracted single features ranged in 0.52–0.75. By applying
multilevel analysis strategy, the spatiotemporal association features became more informative in
predicting tumor malignancy, which was shown by a statistical testing in ten spatiotemporal asso-
ciation features. By using a LS-SVM classifier with the optimized second and third level feature set,
the CAD scheme showed Az of 0.88 in classification of malignant and benign tumors. When this
performance was compared to the same LS-SVM classifier with simple form features which do not
reflect spatiotemporal association, there was a statistically significant difference �0.88 vs 0.79, p
�0.05�, suggesting that the multilevel analysis strategy yields a significant performance improve-
ment.
Conclusions: The results suggest that the multilevel analysis strategy characterizes the complex
tumor enhancement patterns effectively with the spatiotemporal association features, which in turn
leads to an improved tumor differentiation. The proposed CAD scheme has a potential for improv-
ing diagnostic performance in breast DCE-MRI. © 2010 American Association of Physicists in

Medicine. �DOI: 10.1118/1.3446799�
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I. INTRODUCTION

Dynamic contrast-enhanced �DCE� breast MRI is being ap-
plied for detection, diagnosis, and staging of breast cancer.
As breast DCE-MRI is recently recommended as a screening
option of breast cancer for women at high risk,1–6 differen-
tiation of malignant and benign tumors is becoming a more
important function in breast DCE-MRI.

The breast DCE-MRI produces a high spatial resolution
and time course imaging data on contrast enhancements of a
tumor and its surrounding tissue. The abundance of informa-
tion it provides is potentially capable of differentiation be-
tween malignant and benign tumors.7

In principle, the contrast enhancement kinetics and mor-
phological features in breast DCE-MRI provide valuable in-
formation for diagnosing suspected malignancy of breast
tumors.8 Previous studies have reported the efficacy of con-
trast enhancement kinetics in evaluating tumor vasculariza-
tion, which has been correlated with biological and clinical
aggressiveness.9,10 The differences in tumor vascularity
present varying degrees of contrast enhancement patterns in
DCE-MRI according to their malignancy; malignant lesions
typically exhibit early strong enhancement with rapid wash-
out, whereas benign lesions usually show a slow increase
followed by persistent enhancement.9 Morphological criteria
have also been verified as valuable diagnostic tools in differ-
ential diagnosis of breast tumors.11,12 Spiculate margin, inter-
nal heterogeneous or rim enhancement, and irregular shape
are important predictors of malignancy, whereas smooth
margin, internal homogeneous enhancement, and regular
shape are related to benignancy in general.8

In conventional practice, kinetic and morphological fea-
tures are evaluated in subjective ways. The majority of ki-
netic analysis for breast tumors has been carried out on
manual placement of a region of interest �ROI� within a
tumor.9,13,14 Various morphological features are also evalu-
ated in subjective ways based on observer experience. Al-
though the Breast Imaging Reporting and Data System lexi-
con provides useful criteria on visual assessment of various
tumor morphologies,15 priority and weights on different mor-
phological features are not standardized. In addition, visual
assessment of time-series image data containing complex
spatiotemporal features by radiologists is a time consuming
task and imposes another impediment.

In order to overcome such limits, considerable efforts
have been put on the development of computer-aided diag-
nosis �CAD� algorithms. For objective classification of ki-
netic features from the ROI, Lucht et al.16 applied artificial
neural network and Levman et al.17 introduced support vec-
tor machine �SVM�. For quantitative evaluation of morpho-
logical features, Gilhuijs et al.18 employed radial gradient
histogram and other shape measures. Studies have also been

conducted to include both kinetic and morphological features
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in CAD schemes. Chen et al.19 analyzed dynamics of en-
hancement variance within segmented tumors and Meinel et
al.20 used backpropagation neural network to classify a com-
bined set of shape and kinetic features from the segmented
tumor region. Recently, Zheng et al.21,22 applied discrete
Fourier transformation �DFT� to kinetic curves and extracted
Hu’s moment invariants from the DFT coefficients of se-
lected two-dimensional images.

A major challenge in the diagnosis of breast DCE-MRI is
to analyze the complexity on the spatiotemporal association
of tumor enhancement patterns. In fact, the morphological
pattern of a tumor in DCE-MRI dynamically changes due to
diverse time courses of signal enhancement at each pixel.
Likewise, the kinetic patterns of enhancement are different
on various parts within a tumor. In most previous studies,
however, the associations between spatial and temporal fea-
tures were rarely investigated, and these features were
treated separately; the morphological features were extracted
at a specific time point assuming they are fixed; when ex-
tracting the kinetic features, their spatial dependency was
also mostly neglected.

In this study, we postulate that analyzing spatiotemporal
associations of tumor enhancement patterns would gain ad-
ditional information otherwise not attainable, and thus may
allow an improved performance for tumor differentiation.
Based on this postulation, we propose a novel approach to
breast MRI CAD using multilevel analysis of spatiotemporal
association features for tumor enhancement patterns in
DCE-MR images.

II. MATERIALS AND METHODS

II.A. Patients

A total of 171 female patients �mean age, 46.7 yr�8
�SD�; range, 25–74 yr� were included in this retrospective
study, from which one primary lesion per patient was used
for analysis. All patients were seen in our radiology depart-
ment for mammographic and/or sonographic abnormalities
and underwent breast DCE-MRI at our institution between
January 2004 and December 2009.

Our database consisted of two data sets: Data set 1 of 75
patients �mean age, 45.6 yr�8 �SD�; range, 25–61 yr�, ob-
tained with a MR scanner 1 �Magnetom Sonata; Siemens,
Erlangen, Germany� during January 2004 and December
2006; and data set 2 of 96 patients �mean age, 47.5 yr�8
�SD�; range, 32–74 yr�, obtained with a MR scanner 2 �Si-
gna; GE Medical Systems, Milwaukee, WI� during January
2007 to December 2009. As a total, our database contained
111 malignant and 60 benign lesions. All malignant lesions
and 52 benign lesions were proved by histological examina-
tion using surgically excised specimens and eight benign le-

sions were confirmed by core biopsies or follow-up exami-
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nations for at least 1 yr. The follow-up consisted of
mammography, sonography, and MRI at intervals of six
months for the first 1 yr.

Data set 1 included 51 malignant and 24 benign lesions.
The 51 malignant lesions were 36 invasive ductal carcino-
mas �IDCs�, nine invasive lobular carcinomas �ILCs�, and
six ductal carcinomas in situ �DCISs�. Among the 24 benign
lesions, 16 lesions were histologically confirmed: Six fi-
broadenomas, two fibrocystic changes, three papillomas,
three phyllodes tumors, one hamartoma, and one atypical
hyperplasia. Data set 2 included 60 malignant and 36 benign
lesions. The 60 malignant lesions were: 20 IDCs, 15 ILCs,
18 DCISs, five metaplastic carcinomas, and two mucinous
carcinomas. The 36 benign lesions contained 13 fibroad-
enomas, eight fibrocystic changes, six papillomas, one hama-
rtoma, one atypical hyperplasia, and seven other benign
masses. The distribution of the histological findings in our
database is summarized in Table I.

II.B. MR imaging

MR imaging was performed with the patients in a prone
position using a dedicated phase-array breast coil. MR scan-
ner 1 was used to scan 75 patients in data set 1. The contrast
agent gadopentetate dimeglumine �Magnevist; Schering,
Berlin, Germany� was administered intravenously by power
injection with a dose of 0.1 mmol/kg bodyweight at a flow
rate of 2 ml/s for 5 s. T1-weighted three-dimensional fast low
angle shot �3D FLASH� dynamic sequences were performed

TABLE I. Distribution of the malignant and benign lesions according to the

Data set 1 Data

MR scanner 1 MR s

Malignant
No. of
lesions Benign

No. of
lesions Malignant

No. of
lesions

Invasive ductal
carcinoma

36 Fibroadenoma 6 Invasive ductal
carcinoma

20

Invasive lobula
carcinoma

9 Fibrocystic
change

2 Invasive lobula
carcinoma

15

Ductal
carcinoma
in situ

6 Papilloma 3 Ductal
carcinoma
in situ

18

Phyllodes
tumor

3 Metaplastic
carcinoma

5

Hamartoma 1 Mucinous
carcinoma

2

Atypical
hyperplasia

1

Follow-up 8

Subtotal 51 Subtotal 24 Subtotal 60
with one pre-enhanced and four postenhanced series in a
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unilateral sagittal volume scan. The imaging parameters
were: Repetition time/echo time, 4.9/1.83 ms; flip angle, 12°;
field of view, 170�170 mm2; matrix size, 448�448; in-
plane resolution, 0.38�0.38 mm2; slice thickness, 1–1.5
mm without a gap; and number of sagittal slices, 96–112.
The acquisition time of each volume sequence was 1.4 min
and the dynamic series were consecutively scanned without
delay after contrast injection. Thus, the first postcontrast time
point occurred 1.4 min �in terms of full k-space acquisition
time� after the injection, followed by 2.8, 4.2, and 5.6 min
postcontrast time points �third to fifth scans�.

MR scanner 2 was used for 96 patients in data set 2. The
contrast agent gadobutrol �Gadovist; Schering, Berlin, Ger-
many� was administered intravenously by power injection
with a dose of 0.1 mmol/kg bodyweight at a flow rate of 2
ml/s for 5 s. T1-weighted 3D spoiled gradient-echo �SPGR�
sequences were performed with one precontrast and five
postcontrast series in a bilateral sagittal volume scan. The
imaging parameters were: Repetition time/echo time, 6.5/2.5
ms; flip angle, 10°; field of view, 180�180 to 200
�200 mm2; matrix size, 512�512; in-plane resolution,
0.35�0.35 to 0.39�0.39 mm2; slice thickness, 1.4–1.5 mm
without a gap; and number of sagittal slices, 144–208. The
acquisition time of each volume sequence was 1 min and the
dynamic series were scanned without delay, and then with
1.5, 4.5, 6, and 8 min delay after contrast injection, respec-
tively. Thus, the first postcontrast time point occurred 1 min
�in terms of full k-space acquisition time� after the injection,

athologic types in data sets 1 and 2.

2 Pooled data set

r 2 MR scanner 1/MR scanner 2

Benign
No. of
lesions Malignant

No. of
lesions Benign

No. of
lesions

broadenoma 13 Invasive ductal
carcinoma

56 Fibroadenoma 19

brocystic
ange

8 Invasive lobula
carcinoma

24 Fibrocystic
change

10

pilloma 6 Ductal
carcinoma
in situ

24 Papilloma 9

Metaplastic
carcinoma

5 Phyllodes tumor 3

martoma 1 Mucinous
carcinoma

2 Hamartoma 2

ypical
perplasia

1 Atypical
hyperplasia

2

her benign
ss

7 Other benign
mass

7

Follow-up 8

btotal 36 Total 111 Total 60
histop

set
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followed by 2.5, 5.5, 7, and 9 min postcontrast time points
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�third to sixth scans�. Details of the two different MR imag-
ing protocols used in the analysis are summarized in Table II.

II.C. Image registration

In order to reduce possible artifacts or blurring due to the
patient motion, we aligned all postcontrast series to the pre-
contrast one �first series� of the dynamic sequences using a
3D rigid registration technique based on the maximization of
mutual information.23 The registered MR images were visu-
ally inspected and evaluated by two experienced and highly
trained radiologists in consensus and confirmed to be helpful
for motion compensation.

II.D. Tumor segmentation

For breast tumor segmentation on DCE-MR images, a
box-shaped 3D volume of interest �VOI� was selected to
contain the lesion by a human operator for each case. The
size of a rectangle bounding the lesion in each slice level was
determined by the largest extent of the lesion shown in a
representative middle slice. And then, a fuzzy c-means
�FCM� clustering algorithm was applied to segment tumor
out of background tissue.24,25 While FCM clustering was
usually performed using vector data to represent time-series
data in previous studies, we employed a scalar value in this
study that extract more compact information from all time-
series data in order to be better applicable to our two data
sets having different temporal acquisition protocols.

A scalar signal, denoted as variance of enhancement slope
�VES�, was used to represent the pharmacokinetic activity at
each pixel.26 The VES is given as the following expression:

VES = Var� It − I0

t
�, 0 � t � M , �1�

where t denotes the time elapsed �min� from contrast injec-

TABLE II. MR imaging protocols used for image acq

Imaging parameter M

Contrast agent Gadopen
Dose �mmol/kg�

Injection rate �ml/s�
Injection duration �s�
B0 field strength �T�

Pulse sequence T1-wei
Scan coverage

Plane
TR/TE �ms�

Flip angle �deg�
Field of view �mm2�
Matrix size �pixel�

In-plane resolution �mm2�
Slice thickness �mm�

No. of slices/gap 9
Volume scan time �min�

Dynamic acquisition time �min� 1.4
No. of postcontrast series
tion and M is the elapsed time of the last temporal phase,
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which was 5.6 for data set 1 and 9 for data set 2 in this study.
I0 and It indicate the precontrast and postcontrast signal in-
tensity taken at time t, respectively. Var� · � indicates the vari-
ance of enhancement slope data over all available t. A volu-
metric image was generated to map the VES value at each
pixel. The selected examples of VES maps generated using
Eq. �1� are shown in Fig. 1, where enhanced tumor-to-

on in the study.

anner 1 MR scanner 2

dimeglumine Gadobutrol
.1 0.1

2
5

.5 1.5
3D FLASH T1-weighted 3D SPGR
teral Bilateral

ittal Sagittal
1.83 6.5/2.5
2 10

170 180�180 to 200�200
448 512�512
0.38 0.35�0.35 to 0.39�0.39

1.5 1.4–1.5
12/No 144 to 208/No

.4 1
4.2, 5.6 1, 2.5, 5.5, 7, 9

5

FIG. 1. Example of the proposed VES map images: �a� Initial postcontrast,
�b� fourth postcontrast, and �c� VES map images. Upper two rows are ma-
lignant cases: M1 �IDC� and M2 �DCIS�, while lower two rows are benign
cases: B1 �phyllodes tumor� and B2 �fibroadenoma�. Note that enhanced
uisiti
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tumor contrast appears in the VES map images.



3944 Lee et al.: Spatiotemporal association features for MR-based breast tumor diagnosis 3944
parenchyma contrast is demonstrated in both malignant and
benign cases.

The FCM clustering algorithm is a fuzzy equivalent to the
“hard” k-means clustering, where the assignment of fuzzy
membership values can serve as a confidence measure in
tumor segmentation. Let X= �xi , i=1,2 , ¯ ,N �xi�R	 denote
the input data set compromising N pixels to be partitioned
into c clusters. In this study, the data point xi was the scalar
value of VES at pixel i within the 3D VOI. The FCM clus-
tering was applied to partition the VOI pixels into two cat-
egories �c=2�: Tumor and background parenchyma. Fuzzy
partitioning for breast tumor segmentation was carried out
through an iterative optimization to minimize the within-
group error function J defined as

J = 

k=1

2



i=1

N

uki
2 �xi − vk�2, �2�

with the following constraints:



k=1

2

uki = 1, ∀ i;0 � uki � 1, ∀ k,

i;

i=1

N

uki � 0, ∀ k , �3�

where N is the number of pixels in the 3D VOI, ukj is the
membership probability that xi belongs to cluster k, vk is the
kth cluster center obtained from weighted averaging of xi,
and � · � denotes the Euclidean distance expressing the simi-
larity between any measured data and the center, respec-
tively. The within-group error function J is minimized when
high membership values are assigned to the pixels close to
the centroids of clusters, and low membership values to the
pixels far from the centroids. The membership probability
depends on the distance between the pixel and each indi-
vidual cluster center in the feature domain. In our implemen-
tation, starting with random assignment of the membership
probability uki, the center vector vk was initially guessed and
then uki and vk were iteratively updated by the following
equations:

uki =
1



l=1

2 � �xi − vk�
�xi − vl�

�2
, k = 1,2;i = 1,2, ¯ ,N , �4�

vk =



i=1

N

uki
2 xi



i=1

N

uki
2

, k = 1,2. �5�

The iterative optimization was stopped when

maxki�uki
�r+1� − uki

�r�� � � , �6�

where � ��=10−5 in this study� is a termination criterion and
r denotes the iteration steps. The vk was used to determine

which k represented the lesion class. If l=arg maxk�vk�, uli
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and vl were the membership probability and cluster center of
the lesion class, respectively.

The lesion membership map resulting from the FCM clus-
tered VOI was binarized with an experimentally determined
threshold TH=0.6, which was consistently applied to all tu-
mors in our database. If uli at pixel i was larger than TH, the
pixel was assigned to the tumor. Within the 3D VOI, the
largest 3D connected component based on 26 pixel connec-
tivity was selected and the other pixels were grouped into the
background. Some examples of the lesion membership map,

FIG. 2. Lesion segmentation using FCM: �a� Lesion membership map from
FCM, �b� binarized results, and �c� surface rendered images after lesion
segmentation. The lesion samples are corresponding to the rows in the same
order in Fig. 1.

FIG. 3. Distribution of lesion volumes for all malignant and benign lesions

in the breast MR imaging database.
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binarized results, and corresponding 3D mass contour are
shown in Fig. 2. The resulting segmented lesions had a mean
size of 3.014 cm3 with standard deviation of 7.942 cm3.
Figure 3 shows the distribution of tumor volumes for all of
the lesions included in this study.

II.E. Multilevel extraction of spatiotemporal
association features

We regarded it as essential to extract informative features
related to spatiotemporal association of intratumoral en-
hancement patterns for effective differentiation of malignant
and benign tumors in DCE-MRI. More specifically, we mod-
eled the tumor enhancement as a signal distribution in 4D
spatiotemporal space, wherein the characteristic information
of a tumor is scattered throughout. Therefore, it is required to
develop a sophisticated model to efficiently capture various
aspects of tumor information scattered in the spatiotemporal
enhancement patterns. In this study, we used a three-level
approach to analyze various aspects of spatiotemporal asso-
ciation of tumor enhancement patterns: Pixelwise kinetic fea-
ture mapping, extraction of spatial association features from
pixelwise kinetic feature maps, and extraction of kinetic as-
sociation features at the spatial feature level. An illustration
of the three-level spatiotemporal extraction procedure is
shown in Fig. 4.

II.E.1. First level: Pixelwise kinetic feature mapping

At the first level, various kinetic features were calculated
for each pixel within a tumor: Temporal enhancement at each
temporal phase �TEt�, peak enhancement �PE�, time-to-peak

FIG. 4. Illustration of the spatiotemporal feature extraction process at three
pixelwise basis at the first level. The seven kinetic feature maps �VS1, VS2, V
time-series TE maps �VTEt

, 0� t�M� are used for the third level analysis. N
method. Seven spatial features �ROI, WT, M21, M22, M23, M3, and M4� are ex
association of temporal signals, and then five kinetic features �SER, PE, TT
to evaluate the kinetic association of each spatial feature.
�TTP�, wash-in slope �WIS�, wash-out slope �WOS�, and
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three additional features �S1, S2, and SER� according to
three-time-points �3TP� method.19,27–29 The TE at each tem-
poral phase is defined by

TEt =
It − I0

I0
, 0 � t � M , �7�

where t and M are the same as Eq. �1�. The PE is the maxi-
mum value among all TEs �PE= max

0�t�M

TEt�, and TTP is the

time at which the PE occurs. The WIS and WOS are, respec-
tively, defined as

WIS =
PE

TTP
, �8�

WOS = �PE − TEM

M − TTP
�TTP � M�

0 �TTP = M�
 , �9�

where TEM denotes the TE at the last postcontrast time. The
S1, S2, and SER are the parameters of a TE curve at each
pixel defined in the 3TP method. The selection of the 3TP is
known to be accomplished by model-based calculations that
provide optimal discrimination between malignant and be-
nign tumors.27,30 In our implementation, S1 was chosen as
the TE taken between 1 and 2 min �1.4 min for data set 1; 1
min for data set 2� and S2 as the TE taken between 5 and 7
min �5.6 min for data set 1; 7 min for data set 2�.31,32 The
SER was the signal enhancement ratio defined as S1 /S2.27–29

Then, we created volumetric images to map these basic ki-
netic features at each pixel on a tumor, which were used for
subsequent feature extraction steps. VTEt

denotes the volu-

ls. Five kinetic feature maps and time-series TE maps are generated on a
VPE, VTTP, VWIS

, and VWOS� are selected for use at the second level and the
hat VS1 and VS2 are the TE maps selected from VTEt

�0� t�M� in the 3TP
ed from the seven kinetic feature maps at the second level to evaluate spatial
S, and WOS� are extracted from the seven spatial features at the third level
leve

SER,
ote t
tract

P, WI
metric image for the TE map at time t, VS1 for the S1 map,
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VS2 for the S2 map, VSER for the SER map, VPE for the PE
map, VTTP for the TTP map, VWIS

for the WIS map, and VWOS

for the WOS map. Figure 5 shows example images of pixel-
wise kinetic feature maps for selected cases.

II.E.2. Second level: Extraction of spatial
association features

At the second level, seven spatial features were calculated
for the volumetric images of the pixelwise kinetic features
produced at the first level: Mean values of the most enhanc-
ing ROI and whole tumor �WT� and five 3D moment invari-
ants. As our database consisted of two data sets, which were
acquired with two different MRI machines that produced dif-
ferent number of postcontrast images at different time points,
we determined to include only those features which represent
common meaning from the two subdata sets. The selected
features were seven spatial features calculated from seven
kinetic feature map images such as VS1, VS2, VSER, VPE, VTTP,
VWIS

, and VWOS.
II.E.2.a. Mean of ROI. A ROI of a 9�9 pixel square

mask �3.15�3.15 to 3.51�3.51 mm2� was automatically
selected on a location having the highest mean value in the
VS1 image for each tumor and was used to obtain mean val-
ues within the most enhancing ROI �denoted as ROI�.33,34

The same ROI location was used to obtain the ROI on the
pixelwise kinetic feature map images for each tumor. The
seven ROIs were ROI�VS1�, ROI�VS2�, ROI�VSER�,
ROI�VPE�, ROI�VTTP�, ROI�VWIS

�, and ROI�VWOS�.
II.E.2.b. Mean of whole tumor. Mean values of a whole

tumor �WT� were obtained by taking the volumetric average
35

FIG. 5. Examples of pixelwise kinetic feature map images. VS1 is an image
for S1 map, VS2 for S2 map, VSER for SER map, VPE for PE map, VTTP for
TTP map, VWIS

for WIS map, and VWOS for WOS map. A typical slice was
selected to visualize the spatial distribution of pseudocolored kinetic fea-
tures within tumors. Rim enhancements are seen in case M1 at VS1, VS2, VPE,
and VTTP, along with a later wash-out seen at VSER and VWOS, which are
typical enhancement patterns of the malignant tumor. Case M2 shows het-
erogeneous area enhancements at VS1 and VS2, which is another important
pattern of the malignant tumor. Case B1 has early central enhancements
seen at VS1 and VWIS

along with delayed peripheral filling seen at VS2. Case
B2 shows the relatively homogeneous enhancement pattern, which is a typi-
cal enhancement pattern of a benign tumor. Small boxes �9�9 pixel square
masks� in VS1 are the most enhancing ROIs. Note that the kinetic feature
maps represent the scaled size for visual convenience. The tumor samples
are corresponding to the rows in the same order of those in Fig. 2.
of pixelwise kinetic feature values within the tumor. The
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seven WTs were WT�VS1�, WT�VS2�, WT�VSER�, WT�VPE�,
WT�VTTP�, WT�VWIS

�, and WT�VWOS�. Distributions of time
enhancement curves for ROIs and WTs are compared be-
tween malignant and benign tumors in Fig. 6.

II.E.2.c. 3D moment invariants. We adopted a 3D moment
invariant �3D MI� method for describing the spatial distribu-
tion patterns of pixelwise kinetic feature maps within a tu-
mor. The intensity value of a pixel in a volumetric feature
map image is represented as a density function ��x ,y ,z� of
Cartesian coordinate system. Then, the 3D moments of a
density function ��x ,y ,z� are defined as

mpqr = �
−�

� �
−�

� �
−�

�

xpyqzr��x,y,z�dxdydz , �10�

where n= p+q+r is the order of the moment. In addition,

FIG. 6. Distribution of time enhancement curves for �a� mean ROI and �b�
mean WT values. The four postenhanced curves are resulted from the data
set 1, while the five postenhanced curves form the data set 2. Solid lines are
for malignant tumors and dotted lines for benign tumors. Error bars indicate
the �1 standard deviation of the TE values in each time point.
invariant transformations were applied to the 3D moments in
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order to capture unique spatial features independent to shift,
rotation, or scale caused by variations in patient postures or
particular coordinate system used in imaging system. The
translational invariance was obtained by using central mo-
ments defined as

	pqr = �
−�

� �
−�

� �
−�

�

�x − x̄�p�y − ȳ�q�z − z̄�r��x,y,z�dxdydz ,

�11�

where x̄, ȳ, and z̄ are the centroid coordinates of the density
function ��x ,y ,z�, calculated as

x̄ =
m100

m000
, ȳ =

m010

m000
, z̄ =

m001

m000
. �12�

For scale invariance, the central moments were additionally
normalized as follows:


pqr =
	pqr

	000
��p+q+r�/3�+1 . �13�

In order to obtain rotational invariance, the normalized cen-
tral moments were transformed into linear combinations of
moments of the same order. A total of five 3D MIs were used
in this study, three of which were based on the second order
moments derived by Sadjadi and Hall,36 and the remaining
higher order MIs were derived based on moment tensor con-
traction according to Ng et al.37 With the normalized 3D
central moments, the second order 3D MIs can be written as

M21 = 
200 + 
020 + 
002, �14�

M22 = 
200
020 + 
200
002 + 
020
002 − 
101
2 − 
110

2 − 
011
2 ,

�15�

M23 = 
200
020
002 − 
002
110
2 + 2
110
101
011 − 
020
101

2

− 
200
011
2 . �16�

The derived higher order 3D MIs are as follows:

M3 = 
300
2 + 
030

2 + 
003
2 + 3
210

2 + 3
201
2 + 3
120

2 + 6
111
2

+ 3
102
2 + 3
021

2 + 3
012
2 , �17�

M4 = 
400
2 + 
040

2 + 
004
2 + 4
310

2 + 4
301
2 + 6
220

2 + 12
211
2

+ 6
202
2 + 4
130

2 + 12
121
2 + 12
112

2 + 4
103
2 + 4
031

2

+ 6
022
2 + 4
013

2 . �18�

These 3D MIs were calculated for the seven pixelwise ki-
netic feature map images, generating a 5�7 array of the 3D
MIs. Thus, this array of the 3D MIs contain comprehensive
information on various aspects of volumetric spatial distribu-
tion pattern for each pixelwise kinetic feature. The 5�7 3D
MI values are denoted as M21�VS1� to M4�VS1�, M21�VS2� to
M4�VS2�, M21�VSER� to M4�VSER�, M21�VPE� to M4�VPE�,
M21�VTTP� to M4�VTTP�, M21�VWIS

� to M4�VWIS
�, and
M21�VWOS� to M4�VWOS�.
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II.E.3. Third level: Extraction of kinetic association
features

At the third level, the five kinetic features SER, PE, TTP,
WIS, and WOS were additionally measured for the time-
series of seven spatial features to extract additional informa-
tion on kinetic association of spatial features within a tumor.
At this stage, the seven spatial features were first calculated
for the time-series pixelwise TE maps �VTEt

, 0� t�M�, cre-
ating additional time-series sets of the spatial features that
were not included into the second level feature set. As the
number of TEs in data sets 1 and 2 were 4 and 5, respec-
tively, 7�4 spatial feature components were created for data
set 1 and 7�5 spatial feature components were created for
data set 2. And then, for each time-series set of the seven
spatial features, the above five kinetic features were calcu-
lated to evaluate the kinetic association of spatial features
within a tumor. For example, PE�ROI� was obtained as the
maximum value among the ROI�VTEt

� �0� t�M� and
TTP�ROI� was the time at which the PE�ROI� occurred. The
rationale behind this application is based on the assumption
that the kinetic properties evaluated from time-series of spa-
tial features may provide additional information that is not
available in spatial features calculated for the pixelwise ki-
netic feature maps. Thus, a total of 7�5 kinetic feature com-
ponents were created at the third level: SER�ROI�,
SER�WT�, SER�M21� to SER�M4�, PE�ROI�, PE�WT�,
PE�M21� to PE�M4�, TTP�ROI�, TTP�WT�, TTP�M21� to
TTP�M4�, WIS�ROI�, WIS�WT�, WIS�M21� to WIS�M4�,
WOS�ROI�, WOS�WT�, and WOS�M21� to WOS�M4�.

II.F. Predictable values of single features

Our three-level feature extraction procedures produced a
total of 7�12 components of spatiotemporal features: 7
�7 spatial feature components at the second level and 7
�5 kinetic feature components at the third level. While most
of these features are spatiotemporal association features that
reflect either spatial associations of pixelwise kinetic patterns
or kinetic associations of serial spatial properties of tumor
enhancements, a subset of them includes relatively simple
features that represent only spatial or kinetic aspects of tu-
mor enhancements as most of conventional morphologic or
kinetic features do. We selected a set of simple features
among our feature array, and used them as references in per-
formance comparison with the spatiotemporal association
features. In the second level features, the seven spatial fea-
tures calculated on VS1 were set as simple spatial features, as
they represent the spatial properties of only the initial TE
image, which are equivalent to conventional form of mor-
phological features. In the third level features, the five ki-
netic features calculated on only ROI means were set as
simple kinetic features, which are the frequently used con-
ventional kinetic features.

The predictable values of each single feature were evalu-
ated by measuring the area under the receiver operating char-
acteristic curve �Az� using a simple thresholding technique
with varying threshold values for the features obtained from

all 171 tumor cases. A statistical significance testing was also
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performed using a z-test to assess the performance improve-
ment of the spatiotemporal association features over the
simple features.38 In this statistical significance testing, the
predictable values were compared among the same kind of
features in a pairwise manner between a simple feature and
each of its corresponding association features. For example,
M21�VS1� �simple feature� was compared to each of M21�VS2�
to M21�VWOS� �association features�. The calculation of Az

values and statistical testing for evaluating their difference
were performed using MEDCALC statistical software �MED-

CALC software version 11.2.1.0, Mariakerke, Belgium�.

II.G. Feature selection

Feature selection was performed using a support vector
machine-recursive feature elimination �SVM-RFE� algo-
rithm. The SVM-RFE was originally proposed to perform
gene selection for cancer classification39 and was proved to
be effective in the selection of an optimal subset of features
from a large number of features.40 This algorithm determines
the ranking of each feature based on a sequential backward
elimination manner that removes one feature at a time, and
searches for a nonlinear separating margin to obtain the op-
timal hyperplane in the feature space.41

In a two-class classification problem, m training samples
�xk ,yk	k=1

m �Rn� �−1,1	 consist of the input feature sets xk

and the known class labels yk. The SVM algorithm first maps
the inputs xk into a high dimensional feature space via a
nonlinear mapping function �� · � then computes a decision
function of the form42

g�x� = wT��x� + b �19�

by maximizing the distance between the set of points ��xk�
to the hyperplane parametrized by the weighted vector w and
the bias term b, while being consistent on the training set.
The class label of x is obtained by considering the sign of
g�x�. The learning task in the SVM can be formalized as the
following constrained optimization problem:

min
w,b,�

1

2
wTw + C


k=1

m

�k,

subject to ykg�xk�  1 − �k, �k  0, ∀ k , �20�

where C is the regularization parameter, which is a tradeoff
between the training accuracy and the prediction term. When
C is large, the error term is emphasized. A small C means
that the large classification margin is encouraged. � is a mea-
sure of the number of misclassifications and known as the
slack variable. The solution of this problem is obtained using
the Lagrangian theory and one can prove that vector w is of
the form

w = 

k=1

Ns

�kyk��xk� , �21�

where �k are the Lagrange multipliers and �k�0. Ns is the
number of training samples xk which correspond to �k�0.

Vectors xk for which �k�0 are called support vectors and the

Medical Physics, Vol. 37, No. 8, August 2010
closest ones to the separating hyperplane. The �k is the so-
lution of the following quadratic programming �QP�
problem:42

max
�

W��� = 

k=1

m

�k −
1

2

k,l

m

�k�lykyl�K�xk,xl� +
1

C
�k,l� ,

subject to 

k=1

m

yk�k = 0 and ∀ k, �k  0, �22�

where �k,l is the Kronecker symbol and K�xk ,xl�
=��xk�T��xl� is the Gram matrix of the training data. The
threshold b is chosen to maximize the margin and is given by

b = −
maxyk=−1�wTxk� + minyk=+1�wTxk�

2
. �23�

The decision function given by the SVM becomes

g�x� = wT��x� + b = 

k=1

Ns

�kykK�x,xk� + b . �24�

We apply the zero-order method for identifying the vari-
able that produces the smallest value of the ranking criterion
when removed and use the weight magnitude �w�2 as ranking
criterion, defined as

�w�i��2 = 

j=1

Ns



k=1

Ns

�k
�i�� j

�i�ykyjK
�i��xk,xj� , �25�

where K�i� is the Gram matrix of the training data when the
variable i is removed and ��i� is the corresponding solution
of the SVM classifier. The rationale of the ranking criterion
is that the inputs which are weighted by the largest value
have the most influence on the classification decision. Con-
sequently, if the classifier performs well, those inputs with
the largest weights correspond to the most informative fea-
tures. In the implementation of SVM-RFE, we used a radial
basis function �RBF� kernel of which K�xi ,xj�=exp�−�xi

−xj�2 /�2� with �=1 for the nonlinear problem, and set the
hyperparameter C to be sufficiently high �C=103� in order to
keep training error low.

II.H. Tumor differentiation

By using the rank data, we identified several optimal fea-
ture sets for use in the final tumor classification. Identifica-
tion of an optimal feature set was performed by applying a
least-squares support vector machine �LS-SVM� classifier to
a sequential forward inclusion procedure.43 The LS-SVM is a
modified version of the standard SVM, and is known to be
advantageous in handling a large dimensional data and find-
ing an optimal separation based on the limited amount of
available training data, without dimensionality reduction.44

In principle, LS-SVM simplifies the formulation by re-
placing the inequality constraint in SVM with an equality
constraint. This approach significantly reduces the cost in

complexity and computation time, solving a set of linear
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equations instead of solving the QP problem. The LS-SVM
algorithm considers the following constrained optimization
problem:45

min
w,b,e

1

2
wTw +

1

2
�


k=1

m

ek
2,

subject to the equality constraints yk = g�xk�

+ ek, ∀ k , �26�

where � is a regularization parameter controlling the bias-
variance tradeoff and ek are normal distributed errors of the
outputs yk. The solution is considered in the dual form of Eq.
�26�, which is given by the following set of linear
equations:45

�K + �−1Im 1v

1v
T 0

���

b
� = �y

0
� , �27�

where y= �y1 ; ¯ ;ym�, �= ��1 ; ¯ ;�m�, 1v= �1; ¯ ;1�, Kij

=K�xi ,xj�, and Im is the identity matrix of size m. Equation
�27� can be factorized into the form a positive definite sys-
tem

�H 0

0 1v
TH−11v

��� + H−11vb

b
� = � y

1vH−1y
� , �28�

with H=K+�−1Im. Since 1v
TH−11v�0 is positive and H is

positive definite, the overall matrix is also positive definite.
The model parameters � and b can be obtained in terms of
H−1 by

� = H−1�y − b1v� , �29�

b = 1vH−1y�1v
TH−11v�−1. �30�

The decision function given by the LS-SVM becomes

g�x� = wT��x� + b = 

k=1

m

�kykK�x,xk� + b . �31�

In the implementation of the LS-SVM algorithm, a RBF
kernel of which K�xi ,xj�=exp�−�xi−xj�2 /�2� was used for
classification. In this configuration, two hyperparameters
�� ,�� have to be determined. Each time LS-SVM was
trained with a feature set selected from the ranked features,
the hyperparameters �, � were initialized with randomized
values and tuned to optimal values by grid search after ap-
plying the algorithm to the Ripley’s synthetic data set gener-
ated from mixtures of two Gaussian distributions.46 In the
sequential forward inclusion procedure, the top ranked fea-
ture was first selected at an initial state, and then each feature
was added to the previously selected feature set at a time in
order given by the rank data set, and the performance of a
new feature set was tested by the LS-SVM. An optimal fea-
ture set was determined as the feature set which recorded the
best classification performance during the sequential forward
inclusion procedure. This procedure was repeated three times
to find an optimized simple feature set which was determined

by using only simple form features, an optimized second
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level feature set which was determined by using only second
level features, and an optimized second and third level fea-
ture set which was determined by using all second and third
level features. In order to obtain reliable performance, the
leave-one-out test was performed. Area under the ROC curve
�Az� was used as a performance measure in the binary clas-
sification of malignant and benign tumors. For comparison of
Az values of SVM classifiers using different features, their
standard errors and statistical significances �p-values� were
calculated by using MEDCALC statistical software according
to the way described by Hanley and McNeil.38

III. RESULTS

III.A. Distribution of second and third level features

The box plots in Figs. 7�a�–7�f� compare the distributions
of the selected spatiotemporal feature values for malignant
and benign tumors. The base-10 logarithmic values of fea-
tures are displayed for convenience of visual presentation
because of large variations in their distribution range. Fig-
ures 7�a�–7�c� show the distributions of three spatial features
�i.e., WT� · �, M21� · �, and M23� · �� for seven pixelwise kinetic
feature maps. In general, the feature values significantly
overlap in their distributions between malignant and benign
cases regardless of whether they are simple or association
types. However, it is noteworthy that the TTP map-based
spatial features �i.e., WT�VTTP�, M21�VTTP�, and M23�VTTP��
maintain relatively consistent distinction between malignant
and benign tumors. Shown in Figs. 7�d�–7�f� are the distri-
butions of SER� · �, WIS� · �, and WOS� · �, evaluated for the
time-series of seven spatial features, respectively. In those
kinetic features, the level of distinction does not vary much
upon the types of spatial features from which they were ex-
tracted, although those of ROI and WT show slightly higher
differences.

III.B. Predictable values

Table III shows the predictable values of each single fea-
ture in our multilevel feature array. Among the second level
features, ROI�VTTP�, M22�VTTP�, and M23�VTTP� were the
most predictable ones having Az of 0.75, which compare to
ROI�VS1� having Az of 0.69, the most predictable simple fea-
ture in the second level. It is noteworthy that there were
significant improvements in predictable values of M22�VTTP�
and M23�VTTP�, which taking account of spatial association
of pixelwise kinetic feature maps, over their simple forms
�i.e., M22�VS1� and M23�VS1��, both having Az of 0.54. Also
shown as statistically significant improvement over their
simple forms were M21�VTTP�, M22�VS2�, M23�VS2�,
M23�VPE�, M3�VTTP�, M3�VWIS

�, M3�VWOS�, and M4�VTTP�.
Overall, the VTTP-based features ranked top range of predict-
able values �0.62–0.75�, while VPE-based features ranked
bottom range �0.52–0.59�. Among the third level features,
three ROI-based kinetic features �i.e., SER�ROI�, TTP�ROI�,

WIS�ROI�, and TTP�WT�� were in top ranks having Az of
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FIG. 7. Box plots representing distributions of selected spatial and kinetic association features. Distributions of three spatial association features such as �a�
mean WT, �b� M21, and �c� M23 are shown for each pixelwise kinetic feature map. Distributions of kinetic association features �SER, WIS, and WOS� are
shown in �d�–�f� for seven spatial features, respectively. Gray bars are for malignant tumors and white bars are for benign tumors. Base-10 log transformation
was used for convenience of visual presentation. The boundaries of the box indicate the 25th and 75th percentiles and the horizontal bar inside the box
represents the median value. Lines are drawn from both ends of the box to denote the largest and smallest values. The outliers �o� and extreme values � �� are

those with magnitudes between 1.5 and 3 box lengths and more than 3 box lengths, respectively.
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0.73–0.74. Unlike the case of the second level features, the
performance improvement of kinetic association features
over simple features was not observed.

III.C. Optimized feature sets

Our feature selection procedure identified three optimized
feature sets: An optimized simple feature set, �M21�VS1�,
SER�ROI�, WT�VS1�, PE�ROI�, WOS�ROI�, M22�VS1�,
WIS�ROI�, M23�VS1�, and ROI�VS1��; an optimized second
level feature set, �ROI�VTTP�, WT�VTTP�, M21�VS2�, and
M21�VWOS��; and an optimized second and third level feature
set, �M23�VPE�, WT�VTTP�, WT�VS2�, WT�VS1�, SER�M21�,
WOS�WT�, WIS�WT�, and M21�VWOS��. In Figs. 8�a� and
8�b�, the distributions of feature values from the optimized
simple feature set and the optimized second and third level
feature set are depicted in 2D scatter plots with their two
principal component values. The projection on to the princi-
pal component axes was performed using SPSS statistics soft-
ware package �SPSS for windows 16.0, Inc. 1989–2007, Chi-
cago, IL�. The malignant cases are denoted with black circles
and benign cases with white circles. In the scatter plot of Fig.
8�a�, there was a considerable overlap between malignant
and benign cases in the distributions of the first and second

TABLE III. Predictable values for tumor differentiation in single features as re
level feature set represent a subset of simple form features which do not re

Spatial feature

Second level feature set

VS1 VS2 VSER VPE VTTP

ROI 0.69 0.51 0.69 0.58 0.75
WT 0.65 0.52 0.62 0.52 0.72
M21 0.53 0.59 0.50 0.57 0.73a

M22 0.54 0.60a 0.50 0.58 0.75a

M23 0.54 0.62a 0.50 0.59a 0.75a

M3 0.53 0.54 0.54 0.53 0.62a

M4 0.54 0.56 0.51 0.54 0.69a

aIndicate a statistically significant improvement �p�0.05� over their corresp

TABLE IV. Comparison of performances among different optimal feature sets
single features �best single simple feature and best single association fea
performance differences between each pair of feature sets as evaluated usin
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principal component values from the optimized simple fea-
ture set. On the other hand, the scatter plot in Fig. 8�b� shows
substantially improved distinction between malignant and
benign cases in the distribution of the two principal compo-
nent values from the optimized second and third level feature
set.

III.D. Tumor differentiation performance

The tumor differentiation performances of our selected
features as evaluated with leave-one-out Az values using a
LS-SVM classifier are summarized in Table IV. The leave-
one-out Az values of two single features, SER�ROI� �best
single simple feature� and ROI�VTTP� �best single association
feature�, shown as references were 0.68 and 0.74, respec-
tively. The highest performance among all feature sets were
shown with the optimized second and third level feature set
to have Az of 0.88, whereas the optimized second level fea-
ture set showed a little lower performance �Az=0.84�, al-
though the difference was not statistically significant �p
=0.21�. The Az of the optimized simple feature set was 0.79,
which was lowest among the three optimized feature sets,
although it was significantly higher over the best single
simple feature. Note that the performance differences neither

nted by Az values in the ROC analysis. Italic sections in the second and third
patiotemporal association.

Third level feature set

VWIS
VWOS SER PE TTP WIS WOS

0.72 0.66 0.74 0.58 0.73 0.73 0.66
0.68 0.61 0.70 0.51 0.73 0.71 0.62
0.57 0.51 0.69 0.53 0.66 0.64 0.71
0.57 0.50 0.70 0.53 0.65 0.63 0.70
0.58 0.51 0.70 0.53 0.65 0.62 0.69
0.56a 0.60a 0.66 0.53 0.62 0.56 0.66
0.57 0.55 0.70 0.54 0.65 0.59 0.66

ng simple form features.

aluated with leave-one-out Az of LS-SVM classifier. Performances of two
were shown as references. p-values represent statistical significance of
-test.
prese
flect s
as ev
ture�
g a z
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between the optimized simple feature set and the optimized
second level feature set nor between the optimized second
level feature set and the optimized second and third level

FIG. 8. 2D scatter plots compare the distributions of first and second prin-
cipal component values for the tumor cases taken from �a� the optimized
simple feature set and �b� optimized second and third level feature set.
White circles denote benign cases and black circles denote malignant cases.
Note that there was a significant overlap between malignant and benign
tumors in the distribution of two principal component values in �a�, whereas
a substantially improved distinction is noticed between malignant and be-
nign tumors in the distribution of two principal component values in �b�.
feature set were statistically significant �p=0.25 and 0.21�,
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whereas improvement of the optimized second and third
level feature set over the optimized simple feature set was
statistically significant �p=0.014�.

The ROC curves of the two best single features and three
optimized feature sets were depicted in Fig. 9. The smooth
ROC curves were plotted using JROCFIT.47 The optimized
second and third level feature set shows the highest sensitiv-
ity at most specificity levels over the other features, followed
by the optimized second level feature set, optimized simple
feature set, best single association feature �ROI�VTTP��, and
best single simple feature �SER�ROI��.

Figure 10 shows the changes of classification accuracy
�Az� of LS-SVM according to the number of features in-
cluded in order, as ranked by SVM-RFE from the combined
second and third level features. The accuracy increases
abruptly up to its highest peak at the number 8, and then
shows a decreasing tendency along with some fluctuations
later on. This suggests that the redundant features have to be
identified and eliminated in order to yield a best classifica-
tion performance and that how to determine the ranks of
each feature should be chosen carefully.

IV. DISCUSSION

IV.A. Postulate of this study

Breast DCE-MRI represents the challenges faced in radio-
logical interpretation of multidimensional imaging data to-
day. Dynamic 3D images are produced during the time
course of contrast enhancement, which contain rich informa-
tion involving functional and anatomical aspects of breast
tissues. However, capturing and interpreting of complex spa-
tiotemporal signal patterns in such dynamic 3D images in
everyday practices surpass human ability. This mismatch be-
tween the efficiencies of image production and interpretation
often causes intraobserver and interobserver variability in di-
agnostic performance and makes a bottleneck in diagnostic
workflow as well in breast DCE-MRI.48 Therefore, the mo-
tivation of this study was to develop a CAD scheme that can
effectively characterize such spatiotemporal signal patterns
of tumor enhancement in multidimensional image data set in
DCE-MRI.

In this study, we postulated that analyzing spatiotemporal
association would provide additional information on tumor
differentiation that was not attainable using conventional ap-
proaches in which spatial or temporal features were extracted
separately. Based on this postulation, we presented a novel
approach to breast MRI CAD using a multilevel analysis of
spatiotemporal association features for tumor enhancement
patterns in DCE-MRI. Spatial association features �second
level features� for pixelwise kinetic patterns as well as ki-
netic association features �third level features� for time-series
of spatial features were extracted in the proposed multilevel
feature extraction procedure.

IV.B. Testing of postulate

In order to test our postulate, we first evaluated the per-

formance improvements of our spatiotemporal association
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features over the conventional approach at a single feature
level. In a statistical test comparing the predictable values of
association features with that of their corresponding simple
form feature, ten out of 72 association features were found to
show statistically significant improvements. Noteworthy
were the 3D MI features which exhibited up to 21% increase
in their mean predictable values. These results suggest that
our multilevel feature extraction procedures were able to
condense more compact information at a single feature level.
None of single features, however, showed sufficient accuracy
in tumor differentiation. The performance of the best single
feature �i.e., ROI�VTTP�� as evaluated with leave-one-out Az

remained 0.74. Also, diverse levels of the predictable value
for each feature shown in Table III appear to reveal the fact
that the characteristic information on tumor enhancements
are scattered in various forms of spatial and temporal signal
patterns in 4D signal space, as we postulated.

Next, we evaluated the performance improvements of the
optimized feature sets. Best performance was shown in the
optimized second and third level feature set to have Az of
0.88, which was a substantial improvement over the best
single feature �0.88 vs 0.74, p�0.002�. This feature set also
showed a statistically significant performance improvement
over the optimized simple feature set �0.88 vs 0.79, p
�0.05�. It is interesting to note that none of simple features
except for WT�VS1� were included in the optimized second
and third level feature set, although all simple features were
allowed to be included together with the association features
in feature selection process. Also of note is the fact that the
optimized second level feature set did not show significant
improvement over the optimized simple feature set; both sec-

FIG. 9. ROC curves compare the classification performances of the three
optimized feature sets, along with those of the two single features. A leave-

one-out testing was used to evaluate the ROC performances.
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ond and third level features were necessary to achieve a sig-
nificant performance improvement. This indicates that our
second and third level spatiotemporal association features
capture different parts of information scattered in 4D signal
space of tumor enhancements. These results appear to sup-
port our postulate that analyzing spatiotemporal association
of tumor enhancement patterns would gain additional infor-
mation, which in turn may lead to improved tumor differen-
tiation as compared to the conventional way using spatial
and temporal features separately.

IV.C. 3D moment invariants

Comparing our performance results with those of previ-
ous breast MRI CAD studies,17,19,20 in which Az values
ranged from 0.74 to 0.97, the performance of our developed
CAD scheme appears to be in high range. We attribute the
relatively good performance of the proposed CAD scheme in
part to the employment of 3D MI descriptors for spatial fea-
ture extraction. The 3D MI-based features constituted three
out of eight features in the optimized second and third level
feature set, which is a considerable proportion.

The 3D MIs have been shown to successfully characterize
spatial distribution of functional MRI activations.37 How-
ever, to the knowledge of the authors, it was for the first time
that 3D MIs were used for extraction of spatial features on
tumor enhancement patterns in this study. Margin character-
istic and contour irregularity have been reported as the most
predictable architectural feature in many studies.8,49 Another
importantly reported morphological predictor was an area
enhancement or internal enhancement distribution,8 suggest-
ing that regional, clumped, or rim enhancements are strongly
associated with malignancy. To include morphological fea-
ture in CAD, Gilhuijs et al.18 measured radial gradient his-
togram and margin gradient and Meinel et al.20 calculated
standard deviation of radial length and compactness for seg-

FIG. 10. A plot shows the trends of classification accuracy �Az� of LS-SVM
classifier according to the number of included features in order as ranked by
SVM-RFE algorithm. The combined second and third level features are used

in feature ranking.
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mented tumors. While these descriptors were useful to cap-
ture boundary characteristics of the segmented tumor, they
are unable to evaluate the area enhancement or internal en-
hancement distribution which require to describe the spatial
distribution of tumor enhancements on a continuous tone im-
age. The 3D MIs used in this study extract multiple orders of
3D spatial moments on continuous tone volumetric images,
and thus are able to describe internal enhancement as well as
to characterize 3D morphological patterns within a tumor.
The results of our study appear to show that 3D MIs are able
to successfully characterize the morphological aspects of tu-
mor enhancements in breast DCE-MRI.

IV.D. FCM segmentation

In the application of automated feature classification tech-
nique to tumor differentiation, the performance depends sig-
nificantly on appropriate tumor segmentation.22 In previous
breast MRI CAD studies, tumor segmentation was frequently
done manually, which suffers intraobserver and interobserver
variability. In this study, we applied an automated tumor seg-
mentation technique in order to obtain more reliable perfor-
mance measure free from user’s manual intervention. We
employed a FCM clustering approach, which has been often
recommended for the segmentation of a tumor in breast
DCE-MRI.24,25 In our realization, we extracted a scalar value
�i.e., VES� at each pixel and used it in FCM clustering. The
VES used in this study takes a modified form of the weighted
variance which was proposed by Alderliesten et al.26 for in-
creasing the conspicuity of tumors against slowly enhancing
surrounding parenchyma. Although a scalar value-based
FCM approach was used considering two different time-
series protocols of MRI data in this study, there are studies
using FCM clustering technique that takes all time-series sig-
nals as inputs to create segmentation membership. Selecting
different types of FCM clustering technique and determining
optimal parameters such as the segmentation threshold may
lead to differences in tumor classification performance,
which is an interesting research subject. However, it was out
of the scope of this study. That issue remains as a further
study.

IV.E. Image registration

There are still several limitations in this study. First, we
applied 3D rigid registration technique to correct possible
patient motions during acquisitions of MR data. In litera-
tures, nonrigid registration techniques were shown to im-
prove the accuracy of tumor segmentation and tissue align-
ment in case of significant motion artifacts.50,51 However, we
were concerned about the risk of local misalignment within a
tumor that might be introduced by the nonrigid registration
procedure due to the confusion between rapid kinetic
changes and patient motion. Actually, a previous breast MRI
CAD study comparing the various registration techniques re-
ported that a CAD scheme with a rigid image registration
yielded the best performance in tumor differentiation among

52
various registration options. It would be an interesting re-
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search topic to investigate the effect of the nonrigid registra-
tion on improvement in tumor differentiation performance of
a CAD scheme.

IV.F. Ability to generalize

Second, the data sets we used were obtained with two
protocols each using different MRI machines. Therefore,
some of our methods have to be compromised to be appli-
cable to both data sets, which might have limited the perfor-
mance improvement. Ideally, use of a best combination of an
imaging protocol and CAD scheme in both development
stages and clinical applications would bring a highest pos-
sible performance. In reality, however, use of diverse acqui-
sition protocols and different MRI machines are unavoidable
across different institutions. Even at the same institution, sys-
tem replacement or upgrade may cause changes of acquisi-
tion protocols. Therefore, development of a CAD scheme
with data sets consisting of different protocols as done in this
study may better reflect real-world cases. In this scenario,
finding a way to tune techniques to be applicable to different
data sets and thereby to yield a robust output would deter-
mine the level of generalizability of the developed CAD
scheme.

In this study, we chose a set of kinetic features at the first
level for the feature extraction that carry a common meaning
despite the differences of temporal acquisition protocols. The
scale normalization process of 3D MIs also made them ro-
bust to the differences of spatial resolution in two data sets.
Use of VES in FCM clustering also contributed to the robust-
ness of our CAD scheme. In a preliminary experiment to test
the generalizability of our CAD scheme, the performance
results were shown to be similar for the two data sets �0.90
vs 0.87, p�0.60� as shown in Table V. Therefore, although
our CAD scheme might have sacrificed some fraction of per-
formance, it appears to represent a robust and generalizable
CAD scheme to different protocols in breast DCE-MRI. In
this regard, however, a further study will be necessary to
validate the generalizability of our CAD scheme that in-
cludes more patient cases and participation of multiple insti-
tutions.

IV.G. Other limitations

Third, there was no observer performance evaluation. The
CAD is, by definition, for effective assistance of human ob-
server’s interpretation. Accordingly, the final value of any

TABLE V. Comparison of performances between data sets 1 and 2 as evalu-
ated with leave-one-out Az. The same LS-SVM classifier and the optimized
second and third level feature set were used for both data sets.

Data set Az �mean�1.96 SE� p-value
Sensitivity

�%�
Specificity

�%�

Data set 1 0.90�0.08 0.614 82 88
Data set 2 0.87�0.07 92 72
CAD scheme has to be determined in terms of observer per-
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formance improvements. Therefore, an observer perfor-
mance study is warranted to finally judge the value of our
developed CAD scheme.

Finally, this study presented a multilevel feature extrac-
tion approach to analyzing the spatiotemporal association of
tumor enhancement patterns. Although our method showed a
promising performance results, it was one of many possible
approaches. An extended study to explore further potentials
of analyzing the spatiotemporal association of tumor en-
hancement patterns will be a challenging and yet valuable
task to advance CAD techniques to find a more essential role
in future applications.

V. CONCLUSION

This work presented a novel approach to breast MRI
CAD based on multilevel analysis of spatiotemporal associa-
tion features in tumor enhancement patterns. The spatiotem-
poral association features derived by our multilevel analysis
strategy were shown to collect various aspects of character-
istic tumor information effectively. By optimizing a feature
set using these spatiotemporal association features and clas-
sifying with LS-SVM, a high performance tumor classifica-
tion was possible, achieving Az of 0.88.

Comparing with a feature set which does not reflect the
spatiotemporal association, our multilevel feature analysis
strategy showed a statistically significant performance im-
provement �p�0.05�. Our proposed CAD framework has a
potential for improving diagnostic performance in breast
DCE-MRI.
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