
ECEASST

A Visual Notation for Declarative Behaviour Specification

Thomas Kühne

Victoria University of Wellington

Abstract: Logical programming has many merits that should appeal to modellers.
It enables declarative specifications that are free from implementation details and
even (mostly) abstracts away from control flow specification. However, the textual
syntax of, for example PROLOG, most likely represents a barrier to the adoption of
such languages in the modelling community. The visual notation presented in this
paper aims to facilitate the understanding of behaviour specifications based on logic
programming. I anticipate that the dataflow-like nature of the resulting diagrams
will appeal to modellers. I believe the visual notation to be an improvement over
the traditional textual syntax for the purpose of specifying PROLOG programs as
such, but the ultimate hope is to have found a vehicle to make declarative logic
programming a commonplace activity in multi-paradigm modelling.

Keywords: behaviour modelling, declarative specification, visual syntax

1 Introduction

Modelling the structure of a subject is well supported by existing languages. For instance, UML
class diagrams [BRJ98] have successfully been used to model the structure of problem domains
and software systems. In general, however, modelling the subject’s behaviour is much more
challenging. Typically, the set of all possible behaviour traces is much more complex than the
structure that supports it. As with structural modelling, in behaviour modelling a finite, static
description has to be used, however, in this case to capture dynamic behaviour with a multitude
of variations, case distinctions, etc. There is an intrinsic disconnect between the static description
of behaviour and the latter’s temporal character that supports a potentially infinite unfolding of
branches.

By restricting the behaviour to be described to simple reactive behaviour, as exhibited by many
small embedded systems, it becomes possible to use notations such as UML state diagrams to in-
tuitively and completely capture their behaviour [MB02]. However, when faced with describing
more complex behaviour, it seems that one of the three following approaches has to be adopted:

1. Visual notations, such as activity diagrams and interaction diagrams, are regarded as con-
straining potential behaviour, but no attempt is made to completely specify the behaviour.

2. Visual notations, such as state diagrams and the above, are extended with action languages.
The visual notation thus provides the structure into which conventional behaviour specifi-
cation fragments are embedded.

3. Textual notations, i.e., programming languages are used. Typically their syntax is more
succinct than that of visual notations.

1 / 10 Volume 42 (2011)

A Visual Notation for Declarative Behaviour Specification

It is outside the scope of this paper to provide empirical evidence for the following assumptions
but we will nevertheless assume them to be true in the context of this paper:

• It is desirable to avoid unnecessary media changes. If many properties of the system are
described using a visual notation, one should not add textual notations to the mix unless
there is a good reason for doing so.

• Some textual descriptions can benefit from being transcribed into a visual notation in order
to acknowledge their graph-like (as opposed to tree-like) structure.

In multi-paradigm modelling typically a large variety of different notations will be used and I
believe the modeller’s experience will be improved if they can use visual models most of the
time, in particular if the visual form is more appropriate to do justice to graph-like descriptions.

In this paper, I propose to use a declarative formalism for modelling behaviour (Section 2)
and present a visual notation for it (Section 3), arguing that the visual form bears a number
of advantages. I then discuss related work (Section 4) and conclude with a final discussion
(Section 5).

2 Declarative Behaviour Specification

The intention of modelling is to focus on the “What?” not on the “How?”. This is why declara-
tive formalisms lend themselves to be used in modelling. Logic programming languages could be
regarded as quintessential behaviour modelling languages since they attempt to describe the be-
haviour logic only, leaving control aspects to inference engines [Kow79]. Execution is achieved
by logical inference and in principle the inference engine could use one of many ways to execute
the specified logic.

A well-known logic programming language is PROLOG [CR92]. It is one of the most declar-
ative programming languages in existence because

• unification is directionless. In general, any parameter of a PROLOG predicate may be
used as an input parameter, or output parameter, or precondition, depending on how the
predicate is used.

• PROLOG defines relations rather than functions. As a result, one relation definition often
substitutes a number of function definitions.

• control flow is implicit rather than explicitly specified. A PROLOG program specifies facts
and rules but no explicit control flow1.

All the above make PROLOG a formalism that should be very useful in modelling and indeed it
has already been used for the specification of transformations [CH03].

1 The extra-logical “cut”-operator is a notable exception but is mainly used to optimise execution speed.

Proc. MPM 2010 2 / 10

ECEASST

Arguments against PROLOG include

1. it is difficult to structure large PROLOG programs.

2. the textual notation is rather dense and will likely meet reservations from modellers used
to visual notations.

3. it is easier to write PROLOG programs than to read them. The fact that only the bare
essentials are expressed and that a PROLOG predicate can often be used in a multitude of
ways, can make it hard to understand PROLOG programs.

There is hope that by using other models as structuring aids, it will be possible to address the first
of the above issues. In this paper, however, I propose a visual syntax for PROLOG (the abstract
syntax and semantics from PROLOG are retained) that I believe to somewhat alleviate the last
two of the above issues.

3 Visual Notation

A typical problem of reading and writing PROLOG programs is that one is not sure about the
meaning and role of parameters. For instance, in Listing 1 it is not clear whether Peter is Paul’s
parent or vice versa. Likewise, the road description could first specify the destination and then
the starting point or vice versa. The number at the third position could be among other things a
road ID, the label of a motorway, or a distance specification.

parent (peter , paul).
road(rotorua , hamilton , 109).

Listing 1: PROLOG Fact Definitions

This problem can be addressed through comments or using descriptive formal parameter names
for other clauses that use the same functor, but in either case the information is at a different
location and potentially there are no clauses which could list descriptive formal parameter names.

road hamilton

distance

rotorua

109

endstart

Figure 1: Visual Fact Notations

Figure 1 shows the road definition using a visual syntax. Note the use of role names to associate
the values with the “road”-functor in a self-explanatory way. It is no longer necessary to mentally
associate the position of a value with its role for the clause definition since the role is spelled out
explicitly. Further note that the visual form becomes agnostic to the ordering of values. They
can be associated to the functor in any order or shape.

3 / 10 Volume 42 (2011)

A Visual Notation for Declarative Behaviour Specification

route (Finish , Finish , Visited , Visited , 0).

route (Start , Finish , Visited , Route, Distance) :−
road(Start , End, Length),
not(member(End, Visited)),
route (End, Finish , [Start | Visited], Route, AccumulatedDistance),
Distance is Length + AccumulatedDistance.

Listing 2: PROLOG Route Clauses

Listing 2 shows the definition of a PROLOG predicate that will compute all possible routes be-
tween two cities including the respective distances.

Note that it is next to impossible to understand the meaning of the first clause without consult-
ing the second clause in order to gain an understanding of the parameter roles. The first clause
states that if the start and the finish positions are identical then the route is identical to list of
previously visited cities and the distance between the start and finish locations is zero.

Consider Figure 2 and note how much easier it is to attain the same understanding of the first
clause without consulting any other location of the specification.

route

start

finish

0
distance

ro
ut

evis
ite

d

Figure 2: First Route Clause

Lines connecting parameters with each other state that these parameters have to have the same
value. PROLOG unification applies so no statement is made whether a start value is transferred
to a finish value or vice versa, or whether two values are compared.

The second route clause of Listing 2 is more interesting as it involves other predicates. Fig-
ure 3 shows the same clause in my proposed visual notation. Several observations can be made
regarding Figure 3:

• the parameter role names function like keyword parameters. Associating the result of
the addition (bottom right part of Figure 3) with the “distance” parameter of “route” is
achieved by connecting the result to the “distance” role of “route”. Instead of making sure
that the result of the addition arrives at the last position of “route” by using a common
variable name as in Listing 2, one can think of the visual variant to associate the result of
the addition with the “distance” keyword parameter of “route”. Note again that the visual
notation is agnostic to what position the “distance” parameter may have had in the textual
form.

Proc. MPM 2010 4 / 10

ECEASST

finish

road

start

distance

routevisited routeroute

end

length

start

not member

+

se
t

element start
finish

[|][|]
visited

ro
ut

e

distance

route

Figure 3: Second Route Clause

• the keyword parameters help to understand the significance of a value for a predicate used
as a premise. For instance, it is possible to figure out that the “[Start | Visited]”
value at the third position of the “route” premise is meant to be the updated list of visited
locations but this requires looking up the formal parameter name of the clause definition.
In comparison, the “visited” role of the “route” premise in the visual notation makes it
explicit in what way the value is going to be used.

• variable names can appear in more than two places which results in more than two roles
being connected by the same line. I currently use little circles as explicit junction points
for such n-ary connectors. It is possible to annotate these connectors or lines in order to
communicate the role of a value in the context of a clause definition. For instance, one
could add an “accumulated distance” annotation to the line that connects “route” with the
second operand of the addition operator.

• the graph shown in Figure 3 offers a direct visual insight into the topology of the clause
definition. Akin to a dataflow diagram it becomes readily apparent how values are used to
form new aggregates or feed into further computations. Consider the connection between
the “road” and “route” premises. It becomes evident that the end point of the road used
in the route becomes the start point of the sub-route that needs to be computed. The same
can be inferred from the textual version in Listing 2 but it requires to find locate two
occurrences of the “End” variable and one has to look for the connection while it is has
been turned into explicit geometry in Figure 3.

In summary, the visual notation appears to be the more natural one since multiple occurrences
of one variable in the text form are reduced to one n-ary connector. In other words, coreference

5 / 10 Volume 42 (2011)

A Visual Notation for Declarative Behaviour Specification

is not encoded by multiple variable occurrences using the same name but becomes explicitly
apparent by using visual connectors. The fundamental purpose of using a variable in two posi-
tions (e.g., “End” in the “road” and “route” premisses) is to connect the two positions. Any
arbitrary variable name like “X” would have worked as well. The (potentially n-ary) line in the
visual form does just this; it connects positions that need to be connected. If the relevance of the
connections is not clear from all the role names involved, one can annotate the line with a label,
such as “intermediate location”.

3.1 Further Applications

The graphs created using the visual notation lend themselves to unfolding of premisses. For
instance, there are two possibilities in which the “route” premise of Figure 3 may be unfolded.
Either the clause shown in Figure 2 or that in Figure 3 applies.

Figure 4 shows the resulting structure if the first clause is inserted within the second. This
corresponds to the situation where the final location of a route has been found. It is very easy to
manually insert the structure of Figure 2 into that of Figure 3 (in this case this mainly leads to
connection shortcuts) but ideally there should be tool support for this.

road

start

distance

route

visited routeroute

end

length

start

not member

+

se
t

element

finish

[|][|]

0

Figure 4: Unfolding Using the First Route Clause

Figure 5 shows the insertion of the second clause into itself. This particular unfolding is useful
to illustrate the recursive nature of the second clause. One can clearly see how the “visited” list
is built up by successive additions of elements to the head of the list.

Unfolding operations such as the above are useful to check whether special cases are handled
correctly and/or whether the clauses cooperate with each other as intended. The unfolded graphs
will reveal unexpected structures in case the clause definitions are erroneous.

After having looked at Figure 4 a developer will realise that the final location is not added to

Proc. MPM 2010 6 / 10

ECEASST

road

start

distance

routevisited routeroute

end

length

start

not member

+

se
t

element

finish

[|][|]
visited

finish

road
start end

length

not member

+

se
t

element start

[|]

visited

ro
ut

e

distance

route

Figure 5: Unfolding Using the Second Route Clause

the “visited” locations and hence will not appear as part of the “route” result. After having looked
at Figure 5, a developer will also know that the “visited” locations, and hence the locations in
the “route” result are in reverse order. Both these facts are not as apparent from the textual
clause definitions in Listing 2. The reverse ordering of the locations is caused by the use of an
accumulator technique which makes the “route” predicate more efficient. This “route” predicate
version was deliberately chosen over a more straightforward definition in order to demonstrate
the efficacy of the visual notation in making the reverse ordering apparent.

Another use for the visual notation is shown in Figure 6. Here actual values have been provided
for “start”, “visited”, and “finish” and the graph shows how these values yield the “route” and
“distance” results. Again, a simple unfolding of premises using the appropriate clause definitions
is all that is required to produce the graph in Figure 6. Note how actual values flowing between
premises are shown as annotations, in this example “hamilton”, “auckland” and the distance
values. Such usage scenario graphs could prove to be useful for debugging purposes or helping
to understand how a predicate works prior to using it.

4 Related Work

Often PROLOG execution is presented through so-called AND/OR trees [Tam95]. These show
regular PROLOG predicates with variable bindings. The depiction of a PROLOG execution as
shown in Figure 6 better shows how values flow between predicate invocations and thus pro-

7 / 10 Volume 42 (2011)

A Visual Notation for Declarative Behaviour Specification

visited

road

start

end

length

rotorua

not member

+

se
t

elem
ent

[|][|]
visited

road

start

end

length

not member

+

se
t

element

[|]

[]

start

distance

235route

[hamilton, rotorua] auckland

finish

hamilton

auckland

109

126

0

[rotorua]

Figure 6: Actual Usage Scenario

vides a better understanding of the topology of an execution graph. Currently, my visualisation
approach does not aim at indicating potential future continuations of execution or depicting past
computations and is therefore not as suited as AND/OR trees for such purposes.

SLDNF-DRAW is visualisation system used to support the teaching of PROLOG [Gav07]. As
with AND/OR trees, lines between predicates are motivated by the call graph, not by corefer-
enced variables. As a result, the system is successful in showing PROLOG execution including
the extra-logical “cut” operator, but does not provide insights into the dataflow between premises
in clause definitions.

LOGICHART was developed to visualise the execution flow of PROLOG programs [AF07].
Similar to AND/OR trees, no attempt is made to visualise the connections between predicate
argument positions. These connections have to be inferred by matching variable names. It is
possible that the LOGICHART work on obtaining optimal layouts [ATIY99] is transferable to the
visual notation presented here.

The SPARCL language organises terms on the basis of finite sets as opposed to tuples or lists.

Proc. MPM 2010 8 / 10

ECEASST

The respective visualisation also uses lines to show variable coreference but visual embedding
is used to depict logical inclusion. As a result, the program visualisation seems to yield far less
intuitive diagrams compared to the approach presented in this paper.

Puigsegur et al. also use set inclusion relationships in order to derive a visual layout based
on embedding [PAR96, PAR98]. While the resulting diagrams may be regarded as intuitive for
relations which can be thought of having a set and membership underpinning, the further the
stretch to that underpinning, the less intuitive the diagrams appear. The diagrams are not very
self-explanatory, in particular because connectors do not use role names. I am of the opinion that
the approach by Puigsegur et al. overlays a set metaphor on top of the generic relations paradigm
that, overall, just adds a complication rather than being helpful. Further research is required to
evaluate whether the notation proposed in this paper is actually easier to use in practice.

VPL aims to use visualisations to emphasise the relational nature of logic programming. It
supports program composition and editing in both textual and graphical representations [LR91].
VPL also presents predicates as boxes but replaces variable names with graphical patterns. The
task to infer coreferenced variables is therefore turned into the arguably even harder task of
matching patterns. The visual notation captures logical conjunction and disjunction. The ap-
proach presented in this paper always assumes logical conjunction within one diagram and re-
quires the use of multiple diagrams for including disjunction. It remains to be seen which ap-
proach is more advantageous in practice.

5 Conclusion

In this paper I argued that logical programming has many merits that should appeal to modellers.
I briefly discussed PROLOG as a well-known example for a declarative language that enables the
specification of many functions through the definition of comparatively fewer relations.

I speculated that the dense textual syntax and the resulting “easier to write than to read”-
character of such languages may have been a barrier for adopting such approaches in modelling.
The visual notation presented in this paper is hoped to facilitate the understanding of PROLOG

programs by PROLOG programmers, but the fact that role names as known from UML class
diagrams are used and that the resulting diagrams resemble dataflow diagrams should appeal to
modellers in particular.

Part of the effectiveness of the visual notation derives from the fact that coreferencing is made
visually explicit. Instead of requiring the reader to infer the coreferencing through matching vari-
able names, the visual notation shows how predicate argument positions are connected through
n-ary connectors. One could argue that PROLOG clause definitions have an inherent graph struc-
ture and that the visual notation is the more natural one to do justice to this property.

Note that it is trivial to translate any of the diagrams presented in this paper to executable
PROLOG programs. A modeller can therefore obtain an executable behaviour specification by
simply drawing diagrams in the spirit as presented here.

The work presented here is just the beginning of a number of potential future research di-
rections. Empirical studies could look into the effectiveness of the visual notation in terms of
understandability and error detection. Automatic layout variants that aim to emphasise structure
or design decisions should be evaluated with respect to their impact on readability.

9 / 10 Volume 42 (2011)

A Visual Notation for Declarative Behaviour Specification

Bibliography

[AF07] Y. Adachi, Y. Furusawa. Logichart: A Prolog Program Diagram and its Layout. ECE-
ASST 7, 2007.

[ATIY99] Y. Adachi, K. Tsuchida, T. Imaki, T. Yaku. Logichart - Intelligible Program Diagram
for Prolog and its Processing System. Electr. Notes Theor. Comput. Sci. 30(4), 1999.

[BRJ98] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1998.

[CH03] K. Czarnecki, S. Helsen. Classification of Model Transformation Approaches. In
OOPSLA’03 Workshop on the Generative Techniques in the Context Of Model-Driven
Architecture. 2003.

[CR92] A. Colmerauer, P. Roussel. The birth of Prolog. In Second ACM SIGPLAN conference
on History of programming languages. Pp. 37–52. 1992.

[Gav07] M. Gavanelli. SLDNF-Draw: a visualisation tool of prolog operational semantics.
CEUR workshop proceedings, ISSN 1613-0073, 2007.

[Kow79] R. Kowalski. Algorithm = Logic + Control. Communications of the ACM 22:424–
436, July 1979.

[LR91] D. Ladret, M. Rueher. VLP: a visual logic programming language. J. Vis. Lang. Com-
put. 2(2):163–188, 1991.
doi:http://dx.doi.org/10.1016/S1045-926X(05)80028-X

[MB02] S. J. Mellor, M. J. Balcer. Executable UML: A Foundation for Model-Driven Archi-
tecture. Addison-Wesley, 2002.

[PAR96] J. Puigsegur, J. Agusti, D. Robertson. A Visual Logic Programming Language. Visual
Languages, IEEE Symposium on 0:214, 1996.
doi:http://doi.ieeecomputersociety.org/10.1109/VL.1996.545290

[PAR98] J. Puigsegur, J. Agusti, D. Robertson. A Visual Syntax for Logic and Logic Pro-
gramming. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 9(4):399–428,
1998.

[Tam95] D. Tamir. A visual debugger for pure Prolog. INFORMATION SCIENCES 3(2):127–
147, 1995.

Proc. MPM 2010 10 / 10

http://dx.doi.org/http://dx.doi.org/10.1016/S1045-926X(05)80028-X
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/VL.1996.545290

	Introduction
	Declarative Behaviour Specification
	Visual Notation
	Further Applications

	Related Work
	Conclusion

