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We derive the evaluations of certain integrals of Euler type involving generalized hypergeometric series. Further, we establish a
theorem on extended beta function, which provides evaluation of certain integrals in terms of extended beta function and certain
special polynomials. The possibility of extending some of the derived results to multivariable case is also investigated.

1. Introduction

Euler generalized the factorial function from the domain of
natural numbers to the gamma function

I'(a) = J:o t*te'dt  (Re(a) > 0), (1)

defined over the right half of the complex plane. This led
Legendre (in 1811) to decompose the gamma function into the
incomplete gamma functions, y(a, x) and I'(«, x) [1],

y (o, x) = Lx *te'dt  (Re(a) > 0), (2a)

I (@ x) = J ety (2b)

X
which are obtained from (1) by replacing the upper and
lower limits by x, respectively. The closed-form solutions to
a considerable number of problems in applied mathematics,
astrophysics, nuclear physics, statistics, and engineering can
be expressed in terms of incomplete gamma functions.
These functions develop singularities at the negative integers.
Chaudhry and Zubair [2] extended the domain of these func-
tions to the entire complex plane by inserting a regularization
factor exp(—b/t) in the integrand of (1). For Re(b) > 0, this
factor clearly removes the singularity coming from the limit
t = 0. For b = 0, this factor becomes unity, and thus we get

the original gamma function. We note the following relation
[3, page 20 (1.2)]:

T, (a) = L " exp (—t - ?) dt

=2(b)**K, (2Vb)  (Re(a) > 0),

(3)

where K, (x) is the modified Bessel function of the second
kind of order n (or Macdonald’s function) [1]. The rela-
tionships between the generalized gamma and Macdonald
functions could not have been apparent in the original
gamma function. These generalized gamma functions proved
very useful in diverse engineering and physical problems; see,
for example, [2, 3] and references therein.

We note that Riemann’s zeta function {(x) defined by the
series [1, page 85 (2.98)]

[ee)

(=Y

n=1

(x>1) (4)

is useful in proving convergence or divergence of other
series by means of comparison test. Zeta function is closely
related to the logarithm of the gamma function and to
the polygamma functions. The regularizer exp(-b/t) also
proved very useful in extending the domain of Riemann’s zeta
function, thereby providing relationships that could not have
been obtained with the original zeta function.



In view of the fact that the regularization factor is useful in
extending the domain of the gamma and zeta functions. The
domain of other special functions could be usefully extended
in a similar manner.

In particular, Euler’s beta function B(a, ) has a close
relationship to gamma function, that is,

Bf)-B(Ea) - Tl

and can be usefully extendable. We first recall the basic Euler
integral which defines the beta function as follows:

1
B(a,B) = J w1 -uwfldu  (Re(a),Re(B) > 0).
0
(6)
Keeping in view the fact that for the a- 5 symmetry to be
preserved there must be symmetry of the integrand in u and

1 — u, Chaudhry et al. [3] introduced an extension of Euler’s
beta function B(w, f3) in the following form:

b
t(l—t))dt 7)

(Re(b) > 0),

1
B(a, B;b) = J 71— )P exp (—
0
which for b = 0 reduces to the original beta function.
The transformations ¢t = (u + 1)/2 and t = (u — a)/
(c — a) in (7) yield the following integral representations for

the extended beta function (EBF) B(a, 3;b) [3, page 22 (2.9),
(2.11)]:

B(a, B;b)

_ 21—<>c—/3
1 (8)
a-1 _ B-1 —4—b
x J_l(l+u) (1-u) eXp( (1—u2)>du
(Re (b) > 0),
B(a, B;b)
= (c- a)l—a—ﬁ
C 2
% J (u—a)* " (c—u)f ' exp (_%) s
(Re(b) > 0),
9)

respectively.

The EBF B(a, 3;b) is extremely useful in the sense that
most of the properties of the beta function carry over
naturally and simply for it. This extension is also important
due to the fact that this function is related to other special
functions for particular values of the variables.
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We note the following connections [3]:

B(a,—a;b) = 2¢ K, (2b) (Re(b) >0),  (10)

B (o, a5 b)

_ -1)/2 _-2b
= \/EZ ab(a % (4 W—oc/2,(x/2 (4b) (11)

= Y2 ety (% 1-o 4b) (Re (b) > 0),

where W, (z) denotes the Whittaker function [1] and
Y(a, c; z) denotes the second form of solutions of Kummer’s
equation [4].

Also, we note that

B(0,0;b) = 2¢ K, (2b) (Re (b) > 0),

1 1 T
B(3-5:0) =7 Re®@>0.

B(3.3:b) = nBric(2B)  (Re(®) > 0),

where Erfc(z) = (+/m/2)erfc(z) denotes the complementary
error function [4].
Explicit evaluations of some integrals of Euler type

jl ula - u)ﬁ_lf (u) du (13)
0

for some particular functions f, specially in the symmetric
case o = f3, are derived in [5]. These evaluations are related
to various reduction formulae for hypergeometric functions
represented by such integrals. These formulae generalize the
evaluations of some symmetric Euler integrals implied by the
following result due to Pitman [6].

If a standard Brownian bridge is sampled at time O,
time 1 and at n independent random times with uniform
distribution on [0, 1], then the broken line approximation
to the bridge obtained from these n + 2 values has a total
variation whose mean square is n(n + 1)/(2n + 1).

Motivated and inspired by the work of Ismail and Pitman
[5] and Chaudhry et al. [3], in this paper, we derive the
evaluations of certain Euler type integrals and some integrals
in terms of EBF B(«a,f3;b). In Section 2, we obtain the
evaluations of certain integrals of the following type:

Id,tx,ﬁ,y,u,e [(/) (t) Y (t)]

-1 je(t—a)“_l(e—t)ﬁ_l((b(t))y
¢ (14)

I:(fr) ; }
x F, dy (t) | dt,
(gt) ;

where _F, denotes the generalized hypergeometric series [4],
for particular functions ¢(t) and y(t). In Section 3, we
establish a theorem on EBF B(«, f3;b) and apply it to obtain
evaluations of certain integrals in terms of EBF B(a, f3;b).
Finally, we give some concluding remarks in Section 4.
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2. Euler Type Integrals

We derive the evaluations of certain integrals of the following
type:

Id,zx,ﬁ,y,a,e [¢ (t) v (t)]

1 A VY ¥
B(mj“ e -0 () .
!(fr); }
x F, dy (t) | dt.
(gt);

We evaluate the integrals of type (15) for particular
functions ¢(¢) and y(t) by considering the following cases.

Laapio. [(1 =) (1 - xyt)

t(1

(OC)m1 +m, (“1 )m1 (“2 )mz x;nl x;"z

5

(o + B) 1,115

Casel. Taking §(t) = (1-x,1) " (1—x,8)" 2, w(t) = 1/t(1-1),
a=0,and e =y = 1 in (15) and using [5, page 962 (7)]

1
I 7N = 0 (1 = )T (1 = xyt) Mt
0

=B(a, ) F, [, o), a5 + 35 ), x,] 16)

(Re (@), Re (B) > 05 max{|s, | |, [} < 1),

where F, denotes the Appell function [4], in the rhs.
(o)

after expanding ,F, [ ( dy(t) ] and simplifying, we find the
1)

following integral:

—f)

my,m,=0
1 1 17)
(fr)’z(l_“_ﬁ_ml -my), 1~ 5(“"’/3‘””1 +1my);
Xr2F 4d
(9e), 1= (+my +my), 1=
(Re (@), Re (B) > 0; max {|x; ], |x,|} < 1).
(ap); L .
Case 2. Taking ¢(¢) PFq [ (bp). et ] v = 1te -1, e find the following integral:
a=0,andy = 1in (15) and usirqlg’ [7, page 303 (1)] (ap)s 1
Id,vc,ﬁ,l,o,e qu (b ) ct(e—t) |, m
a 5
1§ () @nBn(e18)”
w0 (by),, (@ + B)/2),,((+ B+ 1)/2),,m!
(a,)
e P)’
L t*e-tf " F ct(e—t) | dt (£), %(1—:x—,8)—m,1—%(oc+ﬁ)—m;
(bQ) ; X 2P g
:(e)ow-ﬁ—lB(“’ﬁ) (g:),1-a—m,1-B-m ¢
(ap) , 0, f3s (18) (e, Re (), Re (B) > 0; |arg (4 - ce2)| < n).
ce’ (19)

X p+2F‘1+2

(b),OH’B oc+,8+1.

/> 2 2

(e,Re («),Re(B) > 0; |arg(4—ce2)| < 71),

; ; (ap) ;
d,a,f,1,0,e | ptg
(bq) ;

ct(e-1t)|,

(a,);
Case 3. Taking ¢(t) = PFq [ (:) ct(et) ],w(t) =1/((e - 1)%),
a 5

a = 0,and y = 1 and proceeding as in Case 2, we find the
following integral:

1
t2(e —t)?

( ) (&), (ﬁ)m(ce2/4)m

()a+ﬁlz( )

a+pB)/2), (a+B+1)/2), m!
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4d
x r+6Ft+8 1
(4) jma-Bl-a-m2-a-m 1-B-m 2-B-m
gt > 4 > 2 > P > 2 > 2 >
i=1,2,3,4)(e,Re(a),Re > 0; |arg (4 — ce®)| < ).
J g
(20)
Case 4. Taking ¢(t) = K(c/t(e — 1)), w(t) = 1/t(e—t),a =0, and using [7, page 280 (3)]
and y = 1 in (15), where K(2) is the complete elliptic integral
of the first kind [4, page 35 (32)], defined by .
I t“Me- ) 'E(cVE(e 1)) dt
0
m/2 do
“@=J T (21) L1
0 (l—zzsinze) 2’2’ 5 P>
T at+p-1 cte?
= 2@ B (@) JF e
and using [7, page 265 (4)] L&t Bat+tp+1
bl 2 bl 2 bl
e 22
J £ (e t)ﬁ—lK(Cm) dt (e, Re (a),Re (B) > 0; |arg (4 —-ce )' <n),
0 (25)
l: la x, ﬁ;
- 22 29 we find the following integral:
=T B () Fy i
a+pf a+p+ 1 1
> P > T) Id,ot,/},l,O,e [E (C \t (e — t)) s m]
(Re (@), Re (B) > 0; [arg (4 = %e?)[ < ), et & U2, @ (B (Ee 1)
(22) T2 L (W)t B)/2),,((a+ B +1)/2),,m!
()5 (1= f)=m1= 2 (a+f)—m
we find the following integral: X viaFy 2 2 4d

Lioproe [K (C\/W) ’ t(el— t) ]

et (1/2)m(1/ D@ (B) (¢ 14)"
2 = (D ((a+ P)/2),((a+ B+1)/2),,m!

()5 (1 —a=p)=m 1= (a+p)-m
x r+2Ft+2 ﬂ
(g):1-a=m1=f=m;

(Re («),Re(B) > 0; Iarg (4 - 6262)| < n),
(23)

Case 5. Taking ¢(t) = E(ct(e — 1)), w(t) = 1/t(e —t),a =0,
and y = 1 in (15), where E(z) is the complete elliptic integral
of the second kind [4, page 35 (33)], defined by

/2
E(z) = Jo (1 - 2%sin?0)d0

(24)

&2

(ge),1-a—m1-B-m

(e, Re (a),Re (B) > 0; |arg (4 - czez)l < n).
(26)

Case 6. Taking ¢(t) = arcsin(ct(e — 1)), y(t) = 1/t(e — t),
a =0,and y = 2 in (15) and using [7, page 173 (151)]

r t* (e — )’ arcsin? (C\/l’ (e - t)) dt
0

=@ P'B(a+1,8+1)
LLLa+1,B+1;

g 4
3 ) a+p+2 a+f+3

> &> > >

2 2 2
(e > 0;Re (), Re (B) > —1;|arg (4_ 5262)' < n),
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we find the following integral:

Id,a,[;,z,o,e [arcsin (c Vt (e - t)) ! ]

“tle—t)
__aplettt
C(a+B)(a+p+1)
(D Dy Dyt + 1, (B + 1), (Pe/4)"
0 (3/2),p(2),u((a + B+2)/2), ((a + B +3)/2),,m!

(£)2=3 (s ) =m =3 (o §) =m

Mg

X

3
I

X ra2Fri, 4d
62
(9:),—=m,—p—m;
(e > 0;Re (a),Re (B) > —1; |arg (4- C262)| <m).
(28)

Case 7. Taking ¢(t) = exp(czt(e —t))erf(cvt(e —1)), y(t) =
1/t(e—t),a = 0,and y = 1 in (15) and using [7, page 185 (1)]

J o= exp (Pt (e 1)) erf (cyEe— 1) dt

0

2 aip ( 1 1)
=— Bla+—-,f+=
ﬁc(e) a 2[3 5
1
A (29)
X 5Py -—
3 a+f+1 a+f+2

> > >

2 2 2

<e > 0;Re (@) ,Re (B) > —%>,

la+

o
Ll I

where erf(z) = (2/+/m)Erf(z) denotes the error function [4],
we find the following integral:

Liap10e [exp (czt (e— t)) erf (c\/m) > t(el_ P ]

2 apBla+(1/2),+(1/2)

== B(w )

f Wl + (1/2)(B + (1/2)),,(c*€*/4)"
X 2 (@t frD/2), (o + f+2)/2),m!

()5 (1 -a=B)=m—> @+ f) - m
4d

X ri2Fpin 2

1 1
(gt)’i_‘x_m’i_ﬁ_m; .
(e> 0; Re (@), Re () >_E)'
(30)

Now, we establish a theorem and apply it to obtain the
evaluations of certain integrals in terms of extended beta
function.

3. Integrals in Terms of Extended
Beta Function

Consider an (r+1)-variable generating function G(x,, x5, . . .,
x,;t) which possesses a formal (not necessarily convergent for
t #0) power series expansion in ¢ such that [4, page 80 (8)]

[ee)
G(x1, %55 %,5t) = chgn (x1, %5, x, )t (31)
n=0

where each member of the generated set {g,(x;,x,,...,
x,)},o, is independent of ¢ and the coefficient set {c,},-, may
contain the parameters of the set {g,,(x;, x,,...,x,)},-, but is
independent of x,, x,,...,x, and t.

Theorem 1. Let the generating function G(xy,%,,...,%,;1)
defined by (31) be such that G(x|, x,, ..., x,;t(u—a)’ (c —u)”)
remains uniformly convergent for u € (a,c), p,o > 0, and
p+0>0. Then

JC w—-a)* " (c—-ut !

a

X G (X1, Xp, ..o, X3t — a) (c — u)?)

b(c — a)*
X exp (—m) du

[e)
-1
= Z(C - a)#*(erU)n Cngn (xl’ xz’ te xr)
n=0

(32)

XxB(A+pn,u—A+onb)t"
(Re(u) > Re(A) > 0;Re (b) > 0),
where B(x, y; b) is the extended beta function defined by (7).

Proof. Applying the definition of G(x;, x,, ...,
(31) in the Lh.s. of (32), we get

x,;t) given in

00

n
chgn (x1>x2’ e ’xr)t
n=0

x J (u _ a)/\+pn—1(c _ u)y—/\+0n—1 (33)
b(c — a)?
A/ 7 )
xexp( (u—a)(c—u)> u
which by using (9) yields the r.h.s. of (32). O

Corollary 2. With definition (31) and notations as in
Theorem 1, one has

1
J -G (x), Xy st (1 —1)7)
0

b
><exp<—u(1 _u)>du




= chgn (x1, %5, %, ) B(A+ pn,p — A + om; b) t"

n=0

(Re () > Re(X) > 0;Re (b) > 0).
(34)

Proof. Taking a = 0 and ¢ = 1 in (32), we get (34). O

Corollary 3. With definition (31) and notations as in
Theorem 1, one has

Jl (1+ w1 -t
-1

X G (X1, Xp, ., x5 (1 + )P (1 —u)”)

X exp (—4—b) du
(1-u?) (35)
_ = (2)y+(p+(r)n—1

Cngn (x1) xz, ceey xr)

XxB(A+pn,u—A+on;b)t"
(Re () > Re(A) > 0;Re (b) > 0).

Proof. Taking a = —1 and ¢ = 1 in (32), we get (35). O

Corollary 4. With definition (31) and notations as in
Theorem 1, one has
1 c—u\’
G<x,x,...,x;t< ) )
172 r U-—a

b(c — a)?
(u—a)(c—u))du

, %) Koo (2b) "

JC (u—- a)’l_l(c - u)_A_

xexp(—

(C—a)EZbZ nIn x17x2,...
(Re (1) > 0;Re (b) > 0).
(36)

Proof. Taking 4 = 0 and p = —o in (32) and making use of
relation (10), we get (36).

Now, we apply Theorem 1 to derive the evaluations of
certain Euler type integrals in terms of EBF B(a, 3;b). We
consider the following cases.

Case 1. Consider the generating function of the multivariable

Hermite polynomials H'">*"(x},x,,...,x,) [8, page 602
(20,21)]

exp (xlt +oxpt x,tr)

) 37
Z (1,2,...,7) X x X)i ( )
< 1> A2y n!
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Applying Theorem 1 to generating function (37), we find
the following integral:

[ w-arc

a
xexp(—

+ ZT: xi(tu—a)’(c - u)g)j) du
=

_ u)p.—/\—l

b(c - a)®

(u-a)(c-u)

(38)
_ Z(C _ a)y+(p+a)n—lHr(ll,2 ,,,, ) (xl’ Xyrenos xr)
n=0
tn
B(/\+pn,‘u—)t+0n;b);
(Re(u) > Re(X) > O;Re(b) > 00,0 2 0;p+0 > 0).
Taking r = 3 in (38), we get
J (=) (c — u)!
b(c - a)®
xexp| ———————
(u—a)(c—u)
3
+Z x;(tw - a)f(c—u)) >du
j=1 (39)

(o a)W(PM)n_IHn (xl’ X2 x3)

n

t
xB(A+ pn,u—A+onb) —
nl
(Re(4) >Re(X) > O;Re(b) > 0;p,0 > 0;p+0 >0),
where H, (x,, x,, x5) are the 3-variable Hermite polynomials

(3VHP) [9].
Again, taking r = 2 in (38), we get

[ w-arc

a
xexp(—

2 .
+ Z xi(tu—a)(c - u)a)]) du
i

_ u)y—/l—l

b(c - a)®

(u-a)(c-u)

(40)

(o)

= Z(c

n=0

-, (3, 3)

xB(A+pn,y—A+an;b)t—'
n

(Re () >Re(A) > 0;Re(b) > 0;p,0 20;p+ 0 > 0),
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where H,(x,,x,) are the 2-variable Hermite-Kampé de-
Fériet polynomials (2VHKAFP) [10].

Next, replacing x; by x, x, by y and taking x, =
X3 = -+ = x,.;, = 0in (38) and using the relation
H,Sl’z""’r)(x, 0,0,...,0,y) = g, (x, ¥), we get

J-C (w—-a)* (c—upr !

a

2
X exp (—% +xt(u—a)’(c—u)’

+y(tw —a)’(c - u)g)r) du
(41)

(o]

_ Z(C _ a)H+(p+a)n_1g; (x) )/)

n=0
XB(/\+pn,pt—/\+an;b)t—'
n!
(Re(4) > Re(X) > O;Re(b) > 0;p,0 2 0;p+0 >0),

where g7 (x, y) are the Gould-Hopper generalized Hermite
polynomials (GHGHP) [11].

Further, replacing x; by vx and taking x, = x5 = -+ =
x,_; = 0, x, = —1 in (38) and using the relation Hfll‘z """ ) (vx,
0,0,...,0,-1) = H,, (x), we get

jc (=) (e — !

a

X ex ——b(c _ a)2
P (u—a)(c-u)

+xt(u — a)f (c — u)” — (Hu — a)’ (c - u)")r) du

= OZO:(C —a)#t Pl ()

nr,v
n=0

xB(A+pn,y—/\+an;b)t—|
n!

(Re () > Re(A) > 0;Re (b) > 0;p,0 20;p+0 > 0),
(42)

where H, , ,(x) are the generalized Hermite polynomials [12].

Furthermore, taking r = v = 2 in (42) and using the
relation H, , ,(x) = H,(x), we get

JC (u—-a)* " (c—uyp !

a

X ex _—b(c — a)2
PU ) e u)

+2xt(u—a)f (c—u)’ - (tu—-a)(c - ”)0)2> du

7
= Z(c - a)”+(p+a)n_lHn (x)
n=0
><B(/\+pn,;4—/\+an;b)%
(Re(u) > Re(A) > 0;Re (b) > 0;p,0 20;p+0 > 0),
(43)

where H,(x) are the ordinary Hermite polynomials [1].

Case 2. Consider the generating function of the 2-variable
Laguerre polynomials L ,(x, y) [13]

1 @
=) L.(ey)t" Iyt <1),
(l_yt)exp<1_yt> r;) 2 (%) (|y|< )
(44)

which can also be expressed as

[ee] tfl
exp (yt) Cy (xt) = ZOLn (x5) s (45)
n=
where C,(x) denotes the Oth-order Tricomi function [4].
Applying Theorem 1 to generating functions (44) and
(45), we find the following integrals:

J-C (u _ a)/\—l(c _ u)y—)t—l
a l=ytu—-a)f(c-u)

“ ~ b(c — a)?
P\ w-a)c-w

. xt(u—a)’(c —u)° >d
1 - yt(u—a)’(c —u)’ “

(46)

[e9]

= (e af L, (x, )

n=0
x B(A+ pn,u—A+onb)t"
(Re () > Re(X) > 0;Re (b) > 0;

lyt(u—a)’(c-u)’| < Lp,oc>0p+0c>0),

J'C (- (c -y
X ex —M+ tu—a)(c-u)’
\Vu—ayec-uw

x Cy (xt(u —a)f(c —u)’) du
(47)

[ee)

_ Z(C _ a)y+(p+a)n—1Ln (X, )/)

n=0

n

xB(A+pn,y—A+an;b)t—'
nl

(Re () > Re(A) > 0;Re(b) > 0;p,0 20;p+0 > 0),

respectively.



Taking y = 1 in (46) and (47) and using the relation
L,(x,1) = L,(x), we get
JC (u _ a)l*l(c _ u)luf/\fl

2 1-tlu—-a)lf(c-u)’

b(c - a)* xt(u—a)f (c —u)°
XeXp<_(u—a)(c—u) - l_t(u_a)P(C_u)a)dLl
— i(c _ a)‘u+(p+cr)n71Ln (X)
n=0

XxB(A+pn,u—A+onb)t"
(Re () > Re(A) > 0;Re (b) > 0;
[t(u-a)(c-uw)’|<1;p0>0p+0>0),

(48)
JC u—-a)* " (c—up !
b(c - a)? .
X exp <_#(j)—u) +t(u—-a)(c—u) )
x Cy (xt(u—a)’(c —u)’)du ()

[ee]
= Z(c — )P (%)
n=0

xB(A+pn,(4—/\+(m;b)t—|
n!
(Re(4) > Re(X) > O;Re(b) > 0;p,0 2 0;p+0 >0),

respectively, where L, (x) are the ordinary Laguerre polyno-
mials [1].

Again, taking y = 0in (46) and (47) and using the relation
L,(x,0) = (—x)"/n!, we get

JC w—a)* " c—ur !

2
X exp (_b(c;a) —xt(u—a)’(c- u)‘I) du
(u—a)(c-u)

00
_ Z(C _ a)‘u+(p+0')1’l*1
n=0

(=xt)"
n!

X B(A+ pn,u— A +omnb)

(Re () > Re(A) > 0;Re(b) > 0;p,0 20;p+0 > 0),
(50)

JC (u—-a)* " (c—uyp !

a

b(c — a)? v
X exp (—%) Co (xt(u—a)’(c —u)?)du
— Oo(C_a),u+(p+a)n—1
x B(A+ pn,u—A+omnb) ((_;;ZL
(Re (1) > Re () > 03Re (b) > 03p,0 > 0;p+0 > 0),

(51)

respectively.
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Next, taking x = 0 in (46) and (47) and using the relation
L,(0,y) = y", we get

r w-a)* " (c - w _be-a) ),
a l=ytu—-a)f(c-u) P (u-a)(c—-u) “

_ i(c _ a);ﬁ(pﬂf)n—l (52)

n=0
x B(A+ pn,u— A +onb) (yt)"
(Re () > Re(A) > 0;Re(b) > 0;p,0 20;p+ 0 > 0),
JC (=) (c - w) !
X exp —Lﬂ)z + yt(u—a)(c —u)’
w-a)c-u
- i(c _ g)rtiprom-l (53)

(=}

n=

(yt)"

n!

X B(A+ pn,u—A+omnb)

(Re () > Re(A) > 0;Re(b) > 0;p,0 20;p+0 > 0),

respectively. Replacing y by —x in (53), it reduces to (50).

Case 3. Consider the generating function of the Hermite-
Appell polynomials ;A (x}, x,, x3) [14, page 759 (2.3)]

[ee] n
A(t) exp (xlt + x2t2 + x3t3) = Z 1A, (%15 %5,x3) %
n=0 '
(54)

Applying Theorem 1 to generating function (54), we find
the following integral:

Jc w—a)""(c - At - a)’ (c —u)°)

X exp <b(c—a)2 + Zazx-(t(u —a)f(c- u)a)j> du
(u—-a)(c-u) !

=1

= Z(C - Q)W(PW)W_IHAn EAESED
n=0
><B(/\+pn,y—/\+cm;b)%
(Re(y) > Re (L) > O;Re (b) > 03,0 2 0;p+ 0 > 0).
(55)
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Taking x, = x; = 0 and replacing x; by x in (55) and
using the relation ;A (x,0,0) = A, (x) (14, page 760 (2.6)],
we get

JC w-a)* " c—uw AW - a)c-w)’)

a

2
X exp (—% + xt(u—a)’(c - u)a) du
- i(c — )P (x)
n=0

><B(/\+pn,‘u—/\+an;b)t—'
n!

(Re () > Re(A) > O;Re (b) > 0;p,0 2 0;p+0 > 0),
(56)

where A, (x) are the Appell polynomials [4, 15].

Case 4. Consider the generating function of the Laguerre-
Appell polynomials ; A, (x, y) [16]

A() [ . _lyt) exp < 1__";)]

(57)
= Z LA, (x,y) t" (|yt| < 1),
n=0
which can also be expressed as follows:
[e¢] t_}’l
A(t)exp (yt) Cy (xt) = Z LA, (%) E (58)

n=0

Applying Theorem 1 to generating functions (57) and
(58), we find the following integrals:

¢ A-1 a1 A (t(” —-a)’(c- M)U)
L (u-a)" (c-uw" RS TT L —
wexo [ b(c - a)® _ xt(u- a)(c—u)° du
P (w—a)(c-u) 1-ytu—a)f(c-—u)’
= Se-a 4, (x,)
n=0

XB(A+pn,u—A+onb)t"
(Re (4) > Re(A) > 0;Re (b) > 0;

|yt —a)’(c-u)’| < 1L;p,0>0;p+0>0),
(59)

9
JC (u—-a)* " (c—w A (tw - a)’(c—u))
X exp _b(c;a)z + yt(u—a)(c —u)’
(u—a)(c-u)
x Cy (xt(u—a)’(c—u)’)du
(60)

0
=Y (=@ A, (x,y)
n=0

xB(A+pn,/4—/\+0n;b)t—'
n:
(Re(¢) > Re(A) > 0;Re (b) > 0;p,0 > 0;p+0 > 0),

respectively.

Taking y = 0 and replacing x by —x in (59) and (60) and
using the relation ;A (x,0) = A, (-x)/n! [16, page 9 (2.8)],
we get (56) and

JC w—-a)* - Atw - a)Pc-u)°)

a

b(c — a)® -
X exp(—%)q) (—xt(u—a)’(c—u)’)du

= Y (- PA, (x)

n=0

n

XB(A+pn,u—A+onb
(A+pn,p n )(n!)2

(Re(u) > Re(A) > 0;Re (b) > 0;p,0 > 0;p+0 > 0),
(61)

respectively.

Case 5. Consider the generating function of the Hermite-
Sheffer polynomials s, (x;, x5, x3) [17]

A exp (x,H (t) + x,H (£) + x,H (1))

= ;Hsn (51, %2, X3) a

Applying Theorem 1 to generating function (62), we find
the following integral:

JC w-a)Yc-uwr 1A (tu-a)’(c—u)?)

a

X ex _—b(c —a)’
PUru—a) c-w

3
+ijHj (tu-a)’(c- u)”)) du

Jj=1



10

(]

_ Z(C _ a)y+(p+0)n—l

n=0

HSh (xl,xz,x3)

B(/\+pn,y—/\+an;b)t—
n

(Re(4) > Re (L) > O;Re(b) > 00,0 2 0;p+0 >0).
(63)
Taking x, = x; = 0 and replacing x; by x in (63) and

using the relation ;s (x,0,0) = s,(x) [17, page 16 (2.3)], we
get

JC (w—-a)* " (c— A (Hu - a) (c - u)°)

e be-a’
PU - c-u

+xH (t(u—a)’(c - u)”)) du

(o]

= Z(c—a

n=0

)y+(p+0)n—1 s, (X)

B(/\+pn,;4—/\+0n;b)t—'
n

(Re(u) > Re(A) > O;Re (b) > 0;p,0 = 0;p+0 > 0),
(64)

where s, (x) are the Sheffer polynomials [15, 18, 19]. O

n —a 1
Id,%/;,l,o,l [H(l - x,-t) f1-1) ]

(‘X)m1 My, (“1 )m1 ( )

Journal of Mathematics

4. Concluding Remarks

In this paper, we have derived the evaluations of certain Euler
type integrals. We have also established a theorem and applied
it to obtain evaluations of some integrals in terms of EBF
B(a, ;b). We remark that these results can be extended to
multivariable case.

To give an example, we consider the following integral
representation [5, page 965 (20)] of Lauricella’s multiple
hypergeometric series Fg’) [4]:

—x;t) Mdt

J'1a1 )ﬁll—[

=B, B) F [ ays gy s 3 &+ B X1 Xy X,

(Re (a),Re (B) > 0;max {|x|, |x,] ..., |x,|} < 1).

(65)

Now, taking ¢(t) = [T, (1 — x;t) ™, y(t) = 1/t(1 - 1),
a =0,and e = y = 1in (15), using integral (65) in the r.h.s.
(f)s
after expanding _F, [ ( dy(t) | in series and simplifying, we
9t);

get

.

my,my,....,m,=0

x r+2 F t+2

(Re (a),Re (B) > 0;max {|x], |x, |- ..,

We note that, for a; = oy = --- = 0, (66) reduces to (17).

Further, we extend Theorem 1 as follows.

Theorem 5. Let the conditions for G(x,, x5, ..., x,;t) defined
by (31) be the same as in Theorem 1, and then one has

JC (u _ a))\—l (c— u)p.—/\—l

a

((X + ﬁ)m1+m2+--~+mn

(fr) (1_“ ﬁ Zm>al_%<“+ﬁ+imi>;

~a )m xl X
m! mz' m,,!
(66)
4d
n
(g),1- ((x+zmi),1
i=1
|} < 1).
b(c - a)2
- |d
xeXP< i—a) -1 u
(o]
= Z (c— a)y+(p+0)n+m1+m2+‘..+ms_1
n,ml,mz,‘,,,ms:o
X CuGn (x1>x2, ce. ,xr)
s (&), vi" .
—’t

<[ -y =-a)™
i=1

X G (x1, %y, ..., x5t —a) (c —u)?)

xB(A+pn+imi,y—/\+(m;b>H

i=1 i1 mi!
(Re () > Re(A) > O;Re (b) > 0;p,0 > 0;p+0 > 0).

(67)
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The proof of this theorem is similar to that of Theorem 1.
The following are the consequences of Theorem 5.

Corollary 6. Let the conditions for G(x,, x5, ..., X,;t) defined
by (31) be the same as in Theorem 1, and then for b = 0 and
s =2, one has

JC (w—-a)* " (c—up !

a

2
x H(l ~y(u—a))™™
i=1

X G (X1, %y, ..., x5t —a) (c —u)’) du

[ee]
+(p+o)n-1
:Z(c—a)“ PO gn (X1, %00+ 05 X,)
n=0

X B(A+ pn,u—A+on)
X F [A+ pnyag, o5+ (p+0)ms
(c=a) yi,(c—a) p,]t"

(Re(u) > Re(X) > 0;p,0 >0;p+0 >0).
(68)

Corollary 7. Let the conditions for G(x,, x5, ..., X, t) defined
by (31) be the same as in Theorem 1, and then for b = 0 and
p =0 =1, one has

JC (u—-a)* " (c—ut

a

X H(l ~y;(w—a)™™
i=1

X G(x),Xp, .., x5t (u—a) (c—u))du

= B0 1) Y0V g, (v ) o

n=0

o Dnlp -2,
(#)sn
ng) A+nma,ay,...05u+2m(c—a)y,
(c—a)yy....(c—a)y]t"
(Re(p) > Re(A) > 0).

Example 8. Applying Corollary 7 to generating function (37)
of the multivariable Hermite polynomials H,(ll’z""’r)(xl, X5,
..»X,), we get

r (=) (e -y

a

x [T =y -a))™
i=1

X exp <ix]-(t (u—a)(c- u))j> du
=1

1

=B(Lu-1) Z(c —a) T HYE (xx, L x,)

n=0

y M= A),
(),

X F [A+ma,0...,05 4+ 215 (c —a) y,

n

(c—a)yz,...,(c—a)ys]%

(Re(u) > Re(A) > 0).
(70)

Remark 9. Takinga = 0and ¢ = 1in (67), we get an extension
of integral (34).

Remark 10. Taking a = -1 and ¢ = 1 in (67), we get an
extension of integral (35).

Clearly, it appears that, by applying Theorem 5 and
Corollaries 6 and 7 to the generating functions defined by
(37), (44), (45), (54), (57), (58), and (62) and also to some
other generating functions, a number of interesting integrals
can be obtained.

Further, it is remarked that the operational methods
provide useful tools to estimate specific theorems in various
fields of analysis. This approach requires the validation of any
of its consequences by a more rigorous procedure. This is
indeed the case of the Ramanujan master theorem [20, 21].
An operational method, already employed to formulate a
generalization of the Ramanujan master theorem, is applied
for the evaluation of certain integrals by Babusci et al. [22].

The technique adopted in [22] provides a very flexible and
powerful tool yielding new results encompassing different
aspects of the theory of special functions. The possibility of
using the method outlined in [22], for the integrals evaluated
in this article, is a further research problem.
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