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ON SOME EXTREMAL PROBLEMS IN CERTAIN
HARMONIC FUNCTION SPACES OF SEVERAL

VARIABLES RELATED TO MIXED NORM SPACES

Abstract. In this paper we provide some (not new) estimates
on distances from our two previous papers together with some
new estimates. Namely some estimates on distances in spaces
of harmonic functions in the unit ball and the upper half space
are provided. New estimates concerning mixed norm spaces and
general weighted Bergman spaces are obtained and discussed.
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§ 1. Introduction and preliminaries

The main goal of this note to present several new results on distances
in harmonic spaces though some isolated results from our previous papers
(see[1], [2]) will be also given to make the picture more complete. This di-
rection of investigation related to extremal problems in harmonic function
spaces started in [1], then continued in [2], [3]. In this note in particular
a new sharp theorem on distances in harmonic function spaces in the unit
ball will be added. An analogue of this assertion in case of upper half
space was formulated and proved before in [2] and for completeness of ex-
position we will add it also here (but without proof) Note also this result
in the unit ball in case of p > 1 was also provided before in [2], in this
note we extend it to all values of positive p. The main tool for us will be
so-called Whitney type decomposition of the unit ball of Euclidean space
and this technique was used before in case of upperhalfspace by us in [2].
We also add important remarks concerning this extremal problem (dis-
tance function) in mixed norm spaces and weighted spaces of harmonic
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functions at the end of this paper. Harmonic function spaces were studied
by many authors during last several decades we mention, for example, [4]
and [5] and various references there.

Our line of investigation can be also considered as a continuation of
papers on distances in analytic function spaces [6] and [7]. All main
results are contained in the second section of the paper. The first section
is devoted to preliminaries and main definitions which are needed for
formulations of main results. Almost all objects we define in this section
and definitions can be found in [5], [1], [2], [3] and in [8]. The Whitney
decomposition and properities and estimates we used for our proofs can
be found in various places, but we refer the reader to [1], [9] for case of
upperhalfspace and for case of unit ball of Euclidean space (see also [2]).
This paper also contains important additions namely we add important
remarks about general Bergman spaces with general w weights, these new
weighted harmonic spaces appeared for the first time in [10]). These
results are also new and we hope to return to these issues related to
general harmonic hp

w and Hp
w Bergman-type spaces in unit ball and upper

halfspace also later.
Let B be the open unit ball in Rn, S = ∂B is the unit sphere in Rn,

for x ∈ Rn we have x = rx′, where r = |x| =
√∑n

j=1 x2
j and x′ ∈ S.

Normalized Lebesgue measure on B is denoted by dx = dx1 . . . dxn =
= rn−1drdx′ so that

∫
B dx = 1. We denote the space of all harmonic

functions in an open set Ω by h(Ω). In this paper letter C designates
a positive constant which can change its value even in the same chain of
inequalities.

For 0 < p < ∞, 0 ≤ r < 1 and f ∈ h(B) we set

Mp(f, r) =
(∫

S
|f(rx′)|pdx′

)1/p

,

with the usual modification to cover the case p = ∞.
For 0 < p < ∞ and α > −1 we consider weighted harmonic Bergman

spaces Ap
α = Ap

α(B) defined by

Ap
α =

{
f ∈ h(B) : ‖f‖p

Ap
α

=
∫

B
|f(x)|p(1− |x|2)αdx < ∞

}
.

For p = ∞ this definition is modified in a standard manner:
A∞α = A∞α (B) =

{
f ∈ h(B) : ‖f‖A∞α = supx∈B |f(x)|(1− |x|2)α < ∞}

,
α > 0.
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These spaces are complete metric spaces for 0 < p ≤ ∞, they are
Banach spaces for p ≥ 1 ([5]). These spaces serve as particular cases of
more general scales of mixed norm spaces F p,q

α and Bp,q
α (see [2]) in unit

ball of Rn. Note analytic area Nevanlinna type spaces of mixed norm type
were studied previously in recent works of the author in [11], [12].

Next we need certain facts on spherical harmonics and the Poisson ker-
nel, see [5] for a detailed exposition. Let Y

(k)
j be the spherical harmonics

of order k, 1 ≤ j ≤ dk, on S. Next,

Z
(k)
x′ (y′) =

dk∑

j=1

Y
(k)
j (x′)Y (k)

j (y′)

are zonal harmonics of order k. Note that the spherical harmonics Y
(k)
j ,

(k ≥ 0, 1 ≤ j ≤ dk) form an orthonormal basis of L2(S, dx′). Every
f ∈ h(B) has an expansion

f(x) = f(rx′) =
∞∑

k=0

rkbk · Y k(x′),

where bk = (b1
k, . . . , bdk

k ), Y k = (Y (k)
1 , . . . , Y

(k)
dk

) and bk · Y k is interpreted

in the scalar product sense: bk · Y k =
∑dk

j=1 bj
kY

(k)
j .

We denote the Poisson kernel for the unit ball as usual by P (x, y′), it
is given by

P (x, y′) = Py′(x) =
∞∑

k=0

rk
dk∑

j=1

Y
(k)
j (y′)Y (k)

j (x′) =

=
1

nωn

1− |x|2
|x− y′|n , x = rx′ ∈ B, y′ ∈ S,

where ωn is the volume of the unit ball in Rn. We are going to use also a
Bergman kernel for Ap

β spaces, (see [5]) this is the following function

Qβ(x, y) = 2
∞∑

k=0

Γ(β + 1 + k + n/2)
Γ(β + 1)Γ(k + n/2)

rkρkZ
(k)
x′ (y′), (1)

x = rx′, y = ρy′ ∈ B.
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This function is playing a very important role in many issues related with
harmonic function spaces in unit ball (see [1], [2], [3], [5] and references
there).

For details on this kernel we refer to [5], where the following theorem
can be found.

Theorem 1. [5] Let p ≥ 1 and β ≥ 0. Then for every f ∈ Ap
β and x ∈ B

we have

f(x) =
∫ 1

0

∫

Sn−1
Qβ(x, y)f(ρy′)(1− ρ2)βρn−1dρdy′, y = ρy′.

This theorem is a cornerstone for our approach to distance problems
in the case of the unit ball. Everywhere below y = ρy” and x = rx” are in
unit ball, sometimes this will be omitted by us and this will be clear from
text. The following lemma gives estimates for this kernel, see [5], [4].

Lemma 1. 1. Let β > 0. Then, for x = rx′, y = ρy′ ∈ B we have

|Qβ(x, y)| ≤ C

|ρx− y′|n+β
.

2. Let β > −1. Then

∫

Sn−1
|Qβ(rx′, y)|dx′ ≤ C

(1− rρ)1+β
, |y| = ρ, 0 ≤ r < 1.

3. Let β > n− 1, 0 ≤ r < 1 and y′ ∈ Sn−1. Then

∫

Sn−1

dx′

|rx′ − y′|β ≤ C

(1− r)β−n+1
.

The following simple lemma is classical see, for example, [5] and referen-
ces there.

Lemma 2. [5] Let α > −1 and λ > α + 1. Then

∫ 1

0

(1− r)α

(1− rρ)λ
dr ≤ C(1− ρ)α+1−λ, 0 ≤ ρ < 1.

The following lemma is purely technical, but it is vital for the proof
of our main result.
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Lemma 3. For δ > −1, γ > n + δ and β > 0 we have
∫

B
|Qβ(x, y)| γ

n+β (1− |y|)δdy ≤ C(1− |x|)δ−γ+n, x ∈ B.

Proof. Using Lemma 1 and Lemma 1 we obtain:
∫

B
|Qβ(x, y)| γ

n+β (1− |y|)δdy ≤ C

∫

B

(1− |y|)δ

|ρrx′ − y′|γ dy ≤

≤ C

∫ 1

0

(1− ρ)δ

∫

S

dy′

|ρrx′ − y′|γ dy′dρ ≤

≤ C

∫ 1

0

(1− ρ)δ(1− rρ)n−γ−1dρ ≤

≤ C(1− r)n+δ−γ . ¤

Now we turn to the basic definitions for upperhalfspace, all of them
are classical see [5] and references there or see [1], [2].

We first set Rn+1
+ = {(x, t) : x ∈ Rn, t > 0} ⊂ Rn+1. We usually denote

points in Rn+1
+ by z = (x, t) or w = (y, s) where x, y ∈ Rn and s, t > 0.

For 0 < p < ∞ and α > −1 we consider spaces

Ãp
α(Rn+1

+ ) = Ãp
α =

{
f ∈ h(Rn+1

+ ) :
∫

Rn+1
+

|f(x, t)|ptαdxdt < ∞
}

.

Also, for p = ∞ and α > 0, we set

Ã∞α (Rn+1
+ ) = Ã∞α =



f ∈ h(Rn+1

+ ) : sup
(x,t)∈Rn+1

+

|f(x, t)|tα < ∞


 .

These spaces have natural (quasi)-norms, for 1 ≤ p ≤ ∞ they are Banach
spaces and for 0 < p ≤ 1 they are complete metric spaces (see [5]). They
serve as particular cases of more general F p,q

α and Bp,q
α mixed norm spaces

(see, for example, [2] and references there).
Now we turn to formulate some known assertions in this case of up-

perhalfspaces (see [5] and references there). We denote the Poisson kernel
for Rn+1

+ by P (x, t), i. e.

P (x, t) = cn
t

(|x|2 + t2)
n+1

2

, x ∈ Rn, t > 0.
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For an integer m ≥ 0 we introduce a Bergman kernel Qm(z, w), where
z = (x, t) ∈ Rn+1

+ and w = (y, s) ∈ Rn+1
+ , by

Qm(z, w) =
(−2)m+1

m!
∂m+1

∂tm+1
P (x− y, t + s).

The terminology is justified by the following result from [5] which is
a complete analogue of integral representation of Bergman spaces in the
unit ball we formulated above. Note it is well-known that these theo-
rems on integral representations for ball and upperhalfspace have various
applications in harmonic function theory.

Theorem 2. Let 0 < p < ∞ and α > −1. If 0 < p ≤ 1 and m ≥
≥ α+n+1

p − (n + 1) or 1 ≤ p < ∞ and m > α+1
p − 1, then

f(z) =
∫

Rn+1
+

f(w)Qm(z, w)smdyds, f ∈ Ãp
α, z ∈ Rn+1

+ . (2)

The following elementary estimate of this kernel is crucial and it is
contained, for example, in [5]:

|Qm(z, w)| ≤ C
[|x− y|2 + (s + t)2

]−n+m+1
2 , (3)

z = (x, t), w = (y, s) ∈ Rn+1
+ .

It is well-known that the theory of Bergman spaces in unit ball and
upperhalfspace are parallel to each other and it is natural to consider ex-
tremal problems in both spaces together. Various issues in these spaces
can be solved using arguments related so-called properties of a certain
family of special cubes which usually called Whitney cubes (see [8]) and
references there. Here are two basic properties of Whitney type decom-
position which we will need for upperhalfspace Rn+1

+ (see, for example,
[2]). There is a collection of closed cubes ∆k in Rn+1

+ with sides parallel
to coordinate axes such that the following properties hold The union of
these collection ∆k of cubes gives all Rn+1

+ . The interior of ∆k cubes are
pairwise disjoint. Such type of family also exists in the unit ball (see, for
example, [9] and references there). Related facts and estimates we need
for these cubes and their centers can be found in [9] in unit ball and in
[2] in case of upperhalfspace Rn+1

+ .
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§ 2. Sharp estimates for distances in harmonic
Bergman function spaces of several variables in the
unit ball and in Rn+1

+ and related theorems in mixed
norm spaces and weighted Bergman spaces

In this section we investigate distance problems both in the case of the
unit ball and in the case of the upper half space for harmonic functions
of several variables. The method we use here originated in [13], see also
[1], [2], [3], [6], [7] for various modifications of this interesting approach,
and applications of this method to various distance problems in analytic
function spaces and harmonic function spaces in one and several variables.
New assertions and important remarks concerning mixed norm harmonic
function spaces and general harmonic weighted Bergman spaces will be
added at the second part of this paper. The following lemma is elementary.

Lemma 4. Let 0 < p < ∞ and α > −1. Then there is a C = Cp,α,n

such that for every f ∈ Ap
α(B) we have

|f(x)| ≤ C(1− |x|)−α+n
p ‖f‖Ap

α
, x ∈ B.

Proof. We use subharmonic behavior of |f |p, see for this for example
[8], [5], to obtain

|f(x)|p ≤ C

(1− |x|)n

∫

B(x,
1−|x|

2 )

|f(y)|pdy ≤

≤ C
(1− |x|)−α

(1− |x|)n

∫

B(x,
1−|x|

2 )

|f(y)|p(1− |y|)αdy ≤

≤ C(1− |x|)−α−n‖f‖p
Ap

α
. ¤

This lemma shows that Ap
α is continuously embedded in A∞α+n

p

and

motivates the distance problem in unit ball which investigated in our
Theorems below.

Lemma 5. Let 0 < p < ∞ and α > −1. Then there is C = Cp,α,n such

that for every f ∈ Ãp
α and every (x, t) ∈ Rn+1

+ we have

|f(x, t)| ≤ Cy−
α+n+1

p ‖f‖Ãp
α
. (4)
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The above lemma states that Ãp
α is continuously embedded in Ã∞α+n+1

p

,

its proof is analogous to that of Lemma 2. This lemma motivates the
distance problem in harmonic function spaces in upperhalfspaces which
investigated in our Theorems below.

For ε > 0, t > 0 and f ∈ h(B) we set

Uε,t(f) = Uε,t = {x ∈ B : |f(x)|(1− |x|)t ≥ ε}.
The following assertion alone can be found among other things in [3]
hovewer we decided to formulate it since the remaining part of it p ≤ 1
case was open and we in this note close it in our next theorem, we also
prove the first theorem to use it for further results and observations at
the end of this note.

Theorem 3. Let p > 1, α > −1, λ = α+n
p , m ∈ N0. Set, for

f ∈ A∞α+n
p

(B) :

s1(f) = distA∞α+n
p

(f, Ap
α),

s2(f) = inf
{

ε > 0 :
∫

B

(∫

Uε,λ

Qβ(x, y)(1− |y|)β−λdy

)p

×

×(1− |x|)αdx < ∞
}

.

Then there is a m0 depending from α, p, n so that for all β > m0

t1(f) ³ t2(f).

In the following new sharp theorem on distances we cover the remain-
ing case of p ≤ 1. Note this result is new. Nevertheless the proof of this
theorem is based on estimates connected with Whitney-type decomposi-
tion of the unit ball which we mentioned above(see [9]), and it is very
close and parallel to the case of upperhalfspace case (see the last theorem
of this paper below) and arguments in proofs are similar. The theorem
in upperhalf space is formulated at the end of this paper and the proof of
it is given in our previous work (see [2]). Hence here we omit details of
proof, refereing the reader to [2].

Theorem 4. Let p ≤ 1, α > −1, λ = α+n
p , m ∈ N0. Set, for

f ∈ A∞α+n
p

(B) :

s1(f) = distA∞α+n
p

(f, Ap
α),
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s2(f) = inf
{

ε > 0 :
∫

B

(∫

Uε,λ

Qβ(x, y)(1− |y|)β−λdy

)p

×

×(1− |x|)αdx < ∞
}

.

Then there is an m0 depending on α, p, n so that for all β > m0

s1(f) ³ s2(f).

We now provide now a complete proof of first theorem we formulated
above.

Proof. We begin with inequality t1(f) ≥ t2(f). Assume t1(f) < t2(f).
Then there are 0 < ε1 < ε and f1 ∈ Ap

α such that ‖f − f1‖A∞t ≤ ε1 and

∫

B

(∫

Uε,t(f)

|Qβ(x, y)|(1− |y|)β−tdy

)p

(1− |x|)αdx = +∞.

Since (1−|x|)t|f1(x)| ≥ (1−|x|)t|f(x)|− (1−|x|)t|f(x)− f1(x)| for every
x ∈ B we conclude that (1−|x|)t|f1(x)| ≥ (1−|x|)t|f(x)|−ε1 and therefore

(ε− ε1)χUε,t(f)(x)(1− |x|)−t ≤ |f1(x)|, x ∈ B.

Hence

+∞ =
∫

B

(∫

Uε,t(f)

|Qβ(x, y)|(1− |y|)β−tdy

)p

(1− |x|)αdx =

=
∫

B

(∫

B

χUε,t(f)(y)
(1− |y|)t

|Qβ(x, y)|(1− |y|)βdy

)p

(1− |x|)αdx ≤

≤ Cε,ε1

∫

B

(∫

B
|f1(y)||Qβ(x, y)|(1− |y|)βdy

)p

(1− |x|)αdx = M,

and we are going to prove that M is finite, arriving at a contradiction.
Let q be the exponent conjugate to p. We have, using Lemma 1,

I(x) =
(∫

B
|f1(y)|(1− |y|)β |Qβ(x, y)|dy

)p

=

=
(∫

B
|f1(y)|(1− |y|)β |Qβ(x, y)| 1

n+β ( n
p +β−ε)|Qβ(x, y)| 1

n+β ( n
q +ε)dy

)p

≤
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≤
∫

B
|f1(y)|p(1− |y|)pβ |Qβ(x, y)|n+pβ−pε

n+β dy

(∫

B
|Qβ(x, y)|n+qε

n+β dy

)p/q

≤

≤ C(1− |x|)−pε

∫

B
|f1(y)|p(1− |y|)pβ |Qβ(x, y)|n+pβ−pε

n+β dy

for every ε > 0. Choosing ε > 0 such that α − pε > −1 we have, by
Fubini’s theorem and Lemma 1:

M ≤ C

∫

B
|f1(y)|p(1− |y|)pβ

∫

B
(1− |x|)α−pε|Qβ(x, y)|n+pβ−pε

n+β dxdy ≤

≤ C

∫

B
|f1(y)|p(1− |y|)αdy < ∞.

In order to prove the remaining estimate t1(f) ≤ Ct2(f) we fix ε > 0
such that the integral appearing in the definition of t2(f) is finite and use
Theorem on integral representation in unit ball formualted above, with
β > max(t− 1, 0):

f(x) =
∫

B\Uε,t(f)

Qβ(x, y)f(y)(1− |y|2)βdy+

+
∫

Uε,t(f)

Qβ(x, y)f(y)(1− |y|2)βdy = f1(x) + f2(x).

Since, by Lemma 1, |f1(x)| ≤ 2β
∫
B |Qβ(x, y)|(1−|w|)β−tdy ≤ C(1−|x|)−t

we have ‖f1‖A∞t ≤ Cε. Thus it remains to show that f2 ∈ Ap
α and this

follows from

‖f2‖p
Ap

α
≤ ‖f‖p

A∞t

∫

B

(∫

Uε,t(f)

|Qβ(x, y)|(1− |y|2)β−tdy

)p

×

×(1− |x|)αdx < ∞. ¤
The above theorem has a counterpart in the Rn+1

+ setting. As a prepa-
ration for this result we need the following analogue of Lemma 1.

Lemma 6. For δ > −1, γ > n + 1 + δ and m ∈ N0 we have
∫

Rn+1
+

|Qm(z, w)| γ
n+m+1 sδdyds ≤ Ctδ−γ+n+1, t > 0.
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Proof. Using Fubini’s theorem and estimate (3) we obtain

I(t) =
∫

Rn+1
+

|Qm(z, w)| γ
n+m+1 sδdyds ≤

≤ C

∫ ∞

0

sδ

(∫

Rn

dy

[|y|2 + (s + t)2]γ

)
ds =

= C

∫ ∞

0

sδ(s + t)n−γds = Ctδ−γ+n+1. ¤

For ε > 0, λ > 0 and f ∈ h(Rn+1
+ ) we set:

Vε,λ(f) = {(x, t) ∈ Rn+1
+ : |f(x, t)|tλ ≥ ε}.

Theorem 5. Let p > 1, α > −1, λ = α+n+1
p , m ∈ N0 and Set, for

f ∈ Ã∞α+n+1
p

(Rn+1
+ ) :

s1(f) = distÃ∞α+n+1
p

(f, Ãp
α),

s2(f) = inf

{
ε > 0 :

∫

Rn+1
+

(∫

Vε,λ

Qm(z, w)sm−λdyds

)p

tαdxdt < ∞
}

.

Then there is an m0 depending on α, p, n so that for all m > m0 we have

s1(f) ³ s2(f).

The proof of this theorem closely parallels the proof of the previous
one, in fact, the role of Lemma 1 is taken by Lemma 2 and the role of
Theorem on integral representation in unit ball formulated above is taken
by Theorem on integral representation in upperhalspace which was also
given above. We leave details to the reader.

The following theorem covers the remaining case of p ≤ 1. A sharp
theorem for this values of p as above in parallel case of same values of p,
but in unit ball is proved via direct application of Whitney decomposition
of upperhalfspace (see [2]) we mentioned above and estimates for it which
were also mentioned above by us (see also[9]). We remark here that this
theorem below is not new and we add this assertion for completness of our
exposition in these issues connected with extremal problems. The proof



54 R. F. Shamoyan

of theorem will be omitted. We refer the reader to our previous papers
[1], [2] where the proof of this result can be seen.

Theorem 6. Let p ≤ 1, α > −1, λ = α+n+1
p , m ∈ N0 and Set, for

f ∈ Ã∞α+n+1
p

(Rn+1
+ ):

s1(f) = distÃ∞α+n+1
p

(f, Ãp
α),

s2(f) = inf

{
ε > 0 :

∫

Rn+1
+

(∫

Vε,λ

Qm(z, w)sm−λdyds

)p

tαdxdt < ∞
}

.

Then there is an m0 depending from α, p, n so that for all m > m0 we
have

s1(f) ³ s2(f).

The proof closely parallels the proof we have in the unit brll case for
same values of p (see [2]). At the end of this paper we add important re-
marks on distance theorems in so-called mixed norm and general weighted
spaces of harmonic functions.

By S we define a class of all positive measurable functions v on (0, 1)
for which there are positive numbers mv,Mv and qv so that mv, qv ∈ (0, 1)
and so that mv ≤ v(λr)

v(r) ≤ Mv for all r and λ,r ∈ (0, 1), λ ∈ (qv, 1). These
spaces of special functions were mentioned in [5] and analytic Bergman
spaces with these general weights were considered and studied in unit
disk, polydisk and later in unit ball, see [10]. This S class includes var-
ious unusal weight-functions, for example, like tα(ln( c

t )
β for any positive

numbers α and β.
We define as in [10] the following general spaces of harmonic functions

of Bergman-type in unit ball and upperhalfspace. Let hp
v(B) for all positive

values of p be the space of all harmonic F functions in the unit ball with
the following finite quazinorm.∫

B
|F (x)|pv(1− |x|)dx.

These are Banach spaces for all p so that p > 1 and quazinormed spaces
for all p ≤ 1 (see [10]). We modify this quazinorm in a standard manner to
define also h∞v (B) as a space of F harmonic functions with finite quazinorm

sup
x∈B

|F (x)|v(1− |x|).
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Some results of this note can be extended directly to these general
spaces since the Bergman representation formula for these general classes
is also valid (see[10]) and it is a core of our approach in all proofs [1], [2],
[3]. We formulate a result from [10] it says that for all p > 1 and p = ∞ and
all α > s(v, p) = αv+1

p , where αv = logmv

ln qv
the intergal representation for

all functions from hp
v via Qα(x, y) kernel is valid. The following theorem

in particular can be found in [10]. We formulate it since it is not available
in literature openly.

Theorem 7. [10] Let p ≥ 1 or p = ∞ and α > s(v, p) > 0. Then for
every f ∈ hp

v and x ∈ B we have

f(x) =
∫ 1

0

∫

Sn−1
Qα(x, y)f(ρy′)(1− ρ2)αρn−1dρdy′, y = ρy′.

The complete analogue of this representation is valid for all p > 1
for spaces of Bergman type in upper halfspace Rn+1, which we defined
above, but with general v weights from S class [10] These are spaces of F
harmonic functions in upperhalfplane Hp

v (Rn+1
+ ) with finite quazinorm

∫

Rn+1
+

|F (x”, xn+1)|pv(xn+1)dxdxn+1

for all positive p [10] with obvious modification for p = ∞ case. And
again for p > 1 these are Banach spaces, for all other positive p they are
quazinormed spaces. Here again v is a positive slowly varying function on
(0,∞) from S class (see [10]).

In this case another integral representation for upperhalfspace Rn+1
+

with another kernel, which we also mentioned above is true. Note for
other values of positive p, namely for p ≤ 1 there is also another(more
complicated) kind of integral representations [10] both unit ball and up-
perhalfspace. The following result for general weighted Bergman spaces
also can be found in [10].

Theorem 8. Let 1 < p ≤ ∞ and m > m0 for certain fixed m0 depending
from p, w, m0 = s(v, p)− 1 then the following representation is valid

f(z) =
∫

Rn+1
+

f(w)Qm(z, w)smdyds, f ∈ Hp
v , z ∈ Rn+1

+ . (5)
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Finally we remark results of these note partially can be extended to so-
called mixed norm spaces of harmonic functions F p,q

α and Bp,q
α in unit ball

and their direct analogues in upperhalf space Rn+1
+ at the same time. For

definition of these four scales of harmonic mixed norm spaces we refer the
reader to [2], [1], [3]. Note Carleson-type embedding theorems for these
spaces were studied in our previous paper [2]. The core of the proof of a
distance theorem for these classes is the same and at the end of proof an
appropriate (known) embeddings connecting classical Bergman Ap

α spaces
with F p,q

α and Bp,q
α classes in unit ball or Rn+1

+ should be used [2] We
provide two natural examples in Rn+1

+ from a group of not sharp results
for these classes in ball and upperhalfspace to readers noting we didn’t get
yet any sharp result yet in this direction. Note the problem is motivated
by an embedding F p,q

α ⊂ A∞λ and also by another embedding Bp,q
α ⊂ A∞λ

for q ≤ p, which we actually already showed partially above (see also [1],
[2], [3]) where λ = α+n+1

p , α > −1, p, q ∈ (0,∞).

Theorem 9. Let p, q ∈ (0,∞),q ≤ p, α > −1, λ = α+n+1
p , m ∈ N0. Set,

for f ∈ Ã∞α+n+1
p

(Rn+1
+ ) :

s1(f) = distÃ∞α+n+1
p

(f, B̃p,q
α ),

s2(f) = inf

{
ε > 0 :

∫

Rn+1
+

(∫

Vε,λ

Qm(z, w)sm−λdyds

)p

tαdxdt < ∞
}

.

Then there is an m0 depending from p, q, n, α so that for all m > m0,

s2(f) ≤ Cs1(f).

Theorem 10. Let q, p ∈ (0,∞), q ≤ p, α > −1, λ = α+n+1
p , m ∈ N0.

Set, for f ∈ Ã∞α+n+1
p

(Rn+1
+ ) :

s1(f) = distÃ∞α+n+1
p

(f, F̃ p,q
α ),

s2(f) = inf

{
ε > 0 :

∫

Rn+1
+

(∫

Vε,λ

Qm(z, w)sm−λdyds

)p

tαdxdt < ∞
}

.
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Then there is an m0 depending from p, q, n, α so that for all m > m0,

s2(f) ≤ Cs1(f).

Proofs repeat arguments we provided above in combination with
(known) embeddings between mixed norm and Bergman spaces [2], namely
we use the embedding X ⊂ Ap

α where by X we denote one of these mixed
norm spaces and which we should use at very last step of proof and we
omit easy details here.

A note from the author. This mainly expository paper was prepared
by Romi Shamoyan alone, however it contains also several old results from
previous work with Dr. Miloś Arsenović. Dr. Miloś Arsenović declined
my suggestion to join to this project (which was obviously needed from
my point of view) in April 2012 when this work was in preparation, so the
paper was posted in www.arxiv by Romi Shamoyan as the only author.
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[3] Arsenović M., Shamoyan R. F. Sharp theorems on multipliers and
distances in harmonic function spaces. arXiv:1106.5481 [math.CV]
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