
Tales About a Small Software Testing Bridge
from Academy to SMEs

Drs. Mark de Gids
Instituto Technológico de Informática
Universidad Politecnica de Valencia

Camino de Vera s/n
46022 Valencia, Spain

+34 963877069

mdegids@iti.upv.es

Dr. Tanja Vos
Instituto Technológico de Informática
Universidad Politecnica de Valencia

Camino de Vera s/n
46022 Valencia, Spain

+34 963877069

tanja@iti.upv.es

ABSTRACT
This report describes our experiences during a University/Industry
Interaction of type “technology transfer” and “consultancy service
to help the company solve a, by them signaled, problem”. We will
describe the settings of the project, the progress of the project, the
failures, successes and lessons learned.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques] Object-oriented design
methods.
D.2.3 [Coding Tools and Techniques]: Object-oriented
programming, Structured programming.
D.2.5 [Testing and Debugging]: Testing tools (e.g., data
generators, coverage testing), Tracing.

General Terms
Design, Languages, Theory, Verification.

Keywords
Software testing, Small and Medium Sized companies (SMEs),
consultancy services, academy-industry gap.

1. INTRODUCTION
This report describes our experiences during a University/Industry
Interaction of type “technology transfer” and “consultancy service
to help the company solve a, by them signaled, problem”. In the
next subsections we will describe the setting of the interaction.

1.1 The ITI
ITI, the Instituto Tecnológico de Informática, is a non-profit
technological research institute located at University premises
whose principal objective is to apply knowledge obtained from
high-tech innovative scientific research to ICT-related small and
medium size enterprises (SME).

The institute comprises 7 research groups, most of which are lead
by University professors. The experiences described in this report
are from our SQuaC group that is working in areas of Software
Quality and Correctness.

ITI’s mission statement says that one of the main goals is to build
bridges between the knowledge and technologies learned from
scientific research on the one hand, and the necessity for practical,
simple and bullet proof solutions for the associated ICT related
industries on the other hand. To achieve this goal, ITI helps
companies with company specific education and courses,
technology transfer, in-house developed off-the-shelf solutions,
and in-company held consultancy projects.

1.2 The project
This article describes the process and side effects of one of these
in-company held consultancy projects, where the gap between
university and industry was more visible then ever before.

1.3 The company
The company involved is a small software house in Valencia
consisting of:

• five full time contracted programmers (who are also
responsible for the support and after sales services),

• a secretary, and

• a director, who is also for a substantial part of his time
involved in code generation, besides that he acts as the
software architect and project manager and is running his
one-man sized marketing and sales department as well.

Their single and only product consists of an ERP-related software
solution programmed in JAVA with some compatible hardware
devices and they are financially doing very well due to some
relatively big customers.

2. THE PROBLEM
It was the director of the company himself that came to us
because he signaled a problem with respect to the quality,
maintainability and/or scalability of their product. The software,
initially programmed by just one or two developers, had grown
from something small, transparent and easy to maintain, to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SSEE'06, May 20, 2006, Shanghai, China..
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357242488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

something huge, opaque and impossible to maintain by his
expanded group of developers.

In one of the first meetings, the director told us things like: “We
know that we have some old source code incorporated that we
really don’t use anymore, but removing it from the system makes
the program unstable or even sometimes not executable” or “Our
customers are our test department, we don’t test at all” or “We
spend so incredible much time in debugging”.

The director said that he thought that his problems could be
solved if only he had an easy tool for version control, some way
to be improve the source code traceability and that he wanted a
“best practices” manual concerning these traceability issues.
Moreover, conscious about the fact that they do no testing at all,
he said that he wanted his programmers to know something more
about how to test their own code and include this knowledge in
the “best practices” manual..

3. SOLUTIONS
3.1 The wrong solution to the wrong problem
After these initial meetings, we erroneously thought we
understood their problem and started to work on a “best practices”
manual for “incorporating open source version and tracing tools”
in their development process. However, due to the always existing
and too short deadlines in real industrial environments and
therefore lack a of available time by the programmers of the
company to start applying the advice given in the manual, our
“best practices” manual was never opened and until today it
remains unread.

To teach the programmers more about how to test their own code,
we gave them an off-the-shelf course on Unit Testing using the
“JUnit” framework [1,3], based on the latest discovered
techniques and strategies. The idea behind this was that once all
the code would have been covered by unit tests, the program
would contain less bugs, be easier to maintain and trace.
However, we never finished the course because for the
programmers it seemed to be “much too far from their daily tasks
and realistic practical situations”. They said they found it too
theoretical and that they could not apply it to their code. The
director said something like “this is always the problem with
asking the Universities help, they do not know how things work
in practice”…….

3.2 The REAL problem
Since unit testing and the JUnit framework are being used in
many companies it are definitely not something purely academic,
we figured that we needed to find out why the programmers
thought it was not possible to apply these techniques to their
programs. In order to be able to do this we needed to convince the
director to share some source code with us to investigate why the
content of the course was so far from reality to them. Although,
many companies are not willing to share their source code with
external parties, we finally convinced him and received a bunch
of code that had a lot to do with a pan full of spaghetti: huge
classes with and huge nested classes, huge un-parameterized
methods with nested classes, cyclic calls between methods, no
separation between the user interface, business logic and database
persistence, no documentation, a lot of not understandable
abbreviations and unreadable code.

The most surprising fact was that, although they claim to program
object oriented and from a syntactical point of view indeed they
do, in reality their code was not object oriented at all and
therefore did not benefit from all the nice conceptual possibilities
OO programming provides us.

It soon became clear that a tracing tool would not help them to
unfold the spaghetti. Moreover, it became evident why they said
that their code could not be unit tested, with these huge nested
classes and un-parameterized methods it indeed seemed
impossible to apply the JUnit framework (let alone design test
cases that test the behavior of these huge methods).

How could a source code like this exist in a commercial
environment in a company that is doing financially so well? Did
the programmers of the company, all with a Master degree in
Computer Science, forgot the design patterns they were taught in
university, and what about the lessons on conceptual organization
of software, not to speak about object oriented thinking, designing
and programming. (We are not surprised anymore about the fact
that most of the companies do not do any testing activity, nor
know how they should do this.)

3.3 The REAL solution
Our objective was now to show the company that it were not the
“theoretical” techniques that, as they put it “were not applicable
in practice”, but that the problem lies elsewhere! The way we
wanted to do this was restructure part of their code, test it using
the techniques described in the course and explain it all again but
now using before-and-after scenarios. Together with the company
we started a process to restructure the code. The aim of this
process was not to rewrite the whole program, since that would go
far behind the available time left for this project, but to redesign,
rewrite and unit test an important component of the program.
Subsequently, based on the before-and-after scenarios, we could
then also write the desired “best practices manual” on software
engineering and teach the programmers in conceptual
organization of source code, object oriented programming, unit
testing and database unit testing.

After studying the involved source code, we first made a list of
requirements. Based on these requirements we wrote a first set of
test cases for the test-driven development. We divided the code
into a client, a server and a library with reusable code as can be
seen in figure 1a and figure 1b.

……
RepositoryEngineRepositoryEngine
ConnectionPoolConnectionPool

SQLSQL
……

 Figure 1a. Before situation without code subdivisions

18

Main Library
Connections

SQL
Tools
Stub’s

Client
Model
View

Controller

Server
Kernel

Modules
API .jar .jar

RMI

The client program was written using the Model View Controller
(MVC) paradigm (e.g. [6]), and the server program was divided
into an API layer, a kernel and a layer with modules around that
kernel. The kernel was divided into units and these units into
small classes. This process is visualized in figure 2a and figure
2b.

…

Applications Databases

SQL

ConnectionPool

RMI

JDBC

RepositoryEngine

…

…

…

…

…

Núcleo

Kernel
Applications

ModulesAPI

DatabasesSQL

Connections

RMI

JDBC

Every class was tested with a 100% coverage using normal JUnit
Unit Tests [1,3]. The coverage was measured using EMMA [5].

The kernel unit with the database persistence code was unit tested
using MockObjects [2] and DBUnit [4] integrations for JUnit.
Figure 3a and 3b show how the whole program was tested.

Business
Logic DatabaseDatabase

Persistence

Business
Logic

Database
Persistence Database

Normal
JUnit

JUnit with
MockObjects

JUnit with
DBUnit

Finally we introduced the use of “interface” and “abstract”
classes, and the use of “public”, “protected” and “private”
modifiers for methods and member variables. All source code was
well organized in packages and well documented.

We held an in-company presentation showing the new
restructured source code and comparing it to what they had. We
showed them how easy it was to apply the unit testing techniques
(that they had marked as “too theoretical”) to this new code and
why it was not possible to apply it to their code. We gave them a
list of items they should take into account when programming and
that was going to be used as the basis for the “best practices”
manual. Although we were afraid and prepared for rejection and
protest during our presentation, surprisingly the involved
employees were really interested this time. They indicated that,
being based on their own source code, made the examples and
techniques a lot more clearer and directly applicable. Even the
director was interested in the new source code organization and in
the benefits of Unit Testing, especially in database unit testing. A
new world opened to them and we are pretty confident that, when
we evaluate the project within some months, the company is
actually applying some of the techniques and advices that we
gave them!

4. Conclusions
Concluding this report we would like to summarize the successes
and failures, the lessons learned and what was gained in this
project in order to help other related projects to succeed as much
as we finally did.

4.1 Failures / Obstacles / Success
4.1.1 Failures
First of all the whole project took too much time due to the fact
that in the startup phase we thought too fast that we understood
the problem and sought the solution in a complete wrong
direction. Secondly, due to the amount of time lost in wrong

Figure 1b. After situation with code subdivisions

Figure 2a. Before situation without conceptual separation

Figure 2b. After situation with conceptual separation

Figure 3a. Before situation without layered database
access and unit testing

Figure 3b. After situation with layered database access
and unit testing and unit testing

19

solutions, at the end of the project there was no time left for a
good and appropriate follow up.

4.1.2 Obstacles
The communication between a small company and a non profit
scientific university institute can be difficult due to the lack of
understanding each others jargon, priorities and communication
habits. The project significantly improved when this obstacle was
successfully over won.

4.1.3 Success
Finally we succeed in building a small bridge between our
institute and the company. The company is going to use the
proposed solution but, more important: they got enthusiast in
learning and applying the software engineering techniques we
presented to them. Using their own code as a base and staying as
near as possible to their programming habits, we succeed in
demonstrating what problem they had and how it could be solved,
in order to achieve a better product.

4.2 Lessons learned
First of all we learned that we should not immediately believe a
company when they say that they know what they need. No
matter how successful or good the company is, it might be that
they know they have a problem but they do not really know what
there problem is let alone how to solve it.

We learned that offering off-the-shelf courses on software
engineering doesn’t work for small and medium sized companies;
the theory taught in such courses seems to be too far from the
practice and daily activities of the people involved. In other
words: is doesn’t apply to their “reality”. Using very concrete
examples based on their well known own source code to explain a
certain technique helps them to get a better overview and
understand this new technique almost directly.

We also learnt that the skill level of the software engineers (all
with Master degree in Computer Science) working for these kind
of small companies is not always high enough to assure a good
product. We where quite surprised when we saw the spaghetti
style source code for the first time and about the fact that there
was no testing department or any testing strategy at all.
Understanding the syntax of a programming language is not
enough to understand about software engineering concepts and
benefit from the Object Oriented programming paradigm. Not
knowing, and therefore not using, well known and well tested
design patterns results in unnecessary reinventing the wheel, with
all the risks of making small but crucial mistakes.

We learned that a solution running well in a controlled
laboratorial environment does not automatically runs successfully
in a commercial environment. In fact it took us quite some hours
to make the restructured code work outside the lab and in their
company.

Finally we learnt that a cocktail of open source tools (in our case
JUnit, MockObjects, DBUnit, EMMA) are very successful to
complete a certain task. However, solving the puzzle of
combining open source tools to accomplish a certain task is not
trivial and most of the time companies do not want to spend too
much time on it. In our institute however, making tasty cocktails
of open source tools is more and more becoming an independent
research area with which we hope to be able to help many
companies.

4.3 What was gained?
In later projects we found out that the case described in this report
was just a tip of the iceberg and therefore we decided to change
our strategy concerning this kind of projects. Instead of
immediately offering off-the-shelf solutions and tools we now try
to focus more on understanding the specific problems of the
company and give them a tailored solution. Our services are more
and more focusing now on the practical application of well know
but too theoretical software engineering concepts.

But the big gain of this project is the construction and existence of
a solid bridge now between the involved company and our
institute. We overcame their skeptic attitude towards our scientific
background by showing them good solutions based on their own
code. We are delight to see their enthusiasm on quality
improvement in software engineering and that the new code is
going to be used in a commercial environment.

5. REFERENCES
[1] JUnit online documentation, http://www.junit.org
[2] MockObjects online documentation,

http://www.mockobjects.com
[3] Massol, V. and Husted, T. JUnit in Action, Manning

Publications, 2003.
[4] DBUnit online documentation, http://dbunit.sourceforge.net/
[5] EMMA online documentation, http://emma.sourceforge.net
[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series, 1994.

20

