Characterization of Set of k-g-Inverses

P. Jenita

Department of Mathematics KPR Institute of Engineering and Technology KPR knowledge city, Arasur, Coimbatore, India

A. R. Meenakshi

Department of Mathematics Karpagam college of Engineering Coimbatore - 641 032, India

Abstract

In this paper, we have obtained the characterization of the set of all k-g-inverses of a fuzzy matrix and characterized the set of various k-g-inverses associated with a k-regular fuzzy matrix.

Mathematics Subject Classification: 15A57; 15A09

Keywords: Fuzzy matrices, k-regular fuzzy matrices, k-g-inverses.

1. Introduction

A matrix over $\mathcal{F}=[0,1]$ is called a fuzzy matrix with operations $(+, \cdot)$ defined as $a+b=\max\{a,b\}$ and $a\cdot b=\min\{a,b\}$ for all $a,b\in\mathcal{F}$. Let \mathcal{F}_n be the set of all $n\times n$ fuzzy matrices over \mathcal{F} . A^T denotes the transpose of A. If a solution exists for the matrix equation AXA=A, then A sis called a regular fuzzy matrix and such a solution called a generalized (g $\bar{\ }$) inverse of A and is denoted as A $\bar{\ }$ [2]. A{1} denotes the set of all ginverses of a regular matrix A. Recently, Meenakshi and Jenita [4] have introduced the concept of k-regular fuzzy matrix analogous to that of generalized inverse of a complex matrix [1] and as a generalization of a regular fuzzy matrix [2,3].

Definition 1.1[4]:

A matrix $A \in \mathcal{F}_n$, is said to be right k-regular if there exists a matrix $X \in \mathcal{F}_n$ such that $A^k X A = A^k$, for some positive integer k. X is called a right k-g-inverse of A. Let $A\{1_k^k\} = \{X/A^k X A = A^k\}$.

Definition 1.2[4]:

A matrix $A \in \mathcal{F}_n$, is said to be left k-regular if there exists a matrix $Y \in \mathcal{F}_n$ such that $AYA^k = A^k$, for some positive integer k. Y is called a left k-g-inverse of A. Let $A\{l_{\ell}^k\} = \{Y/AYA^k = A^k\}$.

In general, right k-regular is different from left k-regular. Hence a right k-g-inverse need not be a left k-g-inverse [4]. Hence forth we call a right k-regular (or) left k-regular matrix as a k-regular matrix. Let $A\{1^k\} = A\{1^k^k\} \cup A\{1^k^k\}$.

Definition 1.3[5]:

A matrix $A \in \mathcal{F}_n$, is said to have a $\{3^k\}$ inverse if there exists a matrix $X \in \mathcal{F}_n$ such that $(A^k X)^T = A^k X$, for some positive integer k. X is called the $\{3^k\}$ inverse of A.

Let
$$A\{3^k\} = \{X/(A^kX)^T = A^kX\}.$$

Definition 1.4[5]:

A matrix $A \in \mathcal{F}_n$, is said to have a $\{4^k\}$ inverse if there exists a matrix $X \in \mathcal{F}_n$ such that

 $(XA^k)^T = XA^k$, for some positive integer k. X is called the $\{4^k\}$ inverse of A. Let $A\{4^k\} = \{X/(XA^k)^T = XA^k\}$.

Theorem 1.1[5]:

For $A \in \mathcal{F}_n$ and for any $G \in \mathcal{F}_n$, if $A^k X = A^k G$, where X is a $\{1_r^k, 3^k\}$ inverse of A then, G is a $\{1_r^k, 3^k\}$ inverse of A.

Theorem 1.2[5]:

For $A \in \mathcal{F}_n$, X is a $\{1^k_r, 3^k\}$ inverse of A and G is a $\{1^k_\ell, 3\}$ inverse of A then, $A^kX = A^kG$.

Theorem 1.3[5]:

For $A \in \mathcal{F}_n$ and for any $G \in \mathcal{F}_n$, if $XA^k = GA^k$, where X is a $\{1_\ell^k, 4^k\}$ inverse of A then, G is a $\{1_\ell^k, 4^k\}$ inverse of A.

Theorem 1.4[5]:

For $A \in \mathcal{F}_n$, X is a $\{1^k_\ell, 4^k\}$ inverse of A and G is a $\{1^k_r, 4\}$ inverse of A then, $XA^k = GA^k$,

In particular for k=1, Theorems (1.1) to (1.4) reduces to the following:

Theorem 1.5[3]:

For $A \in \mathcal{F}_{mn}$, the set $A\{1,3\}$ consists of all solutions for X of AX=AG, where G is a $\{1,3\}$ inverse of A and the set $A\{1,4\}$ consists of all solutions for X of XA=GA, where G is a $\{1,4\}$ inverse of A.

2. Characterization of set of k-g-inverses

Lemma 2.1:

For $A \in \mathcal{F}_n$, if G and G^* are right k-g-inverses of A such that $G^* \ge G$, then G+H is a right k-g-inverse of A for some $H \in \mathcal{F}_n$ such that $G^* \ge G + H \ge G$.

Proof:

Since G and G^* are right k-g-inverses of A with $G^* \ge G$, let $G^* - G = H$. Then $G^* \ge H$ and $G^* \ge G + H \ge G$ (2.1). Pre multiplying by A^k and post multiplying by A in Equation (2.1), we get $A^k G^* A \ge A^k (G + H) A \ge A^k G A \Rightarrow A^k \ge A^k (G + H) A \ge A^k = A^k (G + H) A$. Thus G + H is a k-g-inverse of A.

Lemma 2.2:

For $A \in \mathcal{F}_n$, if G and G^* are left k-g-inverses of A such that $G^* \ge G$, then G+K is a left k-g-inverse of A for some $K \in \mathcal{F}_n$ such that $G^* \ge G + K \ge G$.

Proof:

Proof is similar to Lemma (2.1) and hence omitted.

Theorem 2.1:

Let $A \in \mathcal{F}_n$ and G be a particular right k-g-inverse of A. Then $A_G\{1_r^k\} = \{G + H/ \text{ for all } H \in \mathcal{F}_n \text{ such that } A^k \ge A^k HA\}$ _____(2.2) is the set of all right k-g-inverses of A dominating G.

Proof:

Let \wp denote the set on the R.H.S of (2.2). Suppose $G^* \in A_G\{1_r^k\}$, then $G^*{\ge}G$. Let $G^*{-}G{=}H$.

By Lemma (2.1), $G^* \ge G + H \ge G$ and G + H is a right k-g-inverse of A dominating G. Then, $A^k(G+H)A = A^k \Rightarrow A^kGA + A^kHA = A^k$ $\Rightarrow A^k + A^kHA = A^k$

$$\Rightarrow A^{k} + A^{k} H A = A^{k}$$
$$\Rightarrow A^{k} > A^{k} H A.$$

Hence $G+H \in \mathcal{D}$. Thus for each $G^* \in A_G\{1_r^k\}$, there exists a unique element in \mathcal{D} .

Conversely, for any $G^* \in \mathcal{D}$, $G^* = G + H \ge G$ with $A^k \ge A^k H A$, then

$$A^{k}G^{*}A = A^{k}(G+H)A$$

$$= A^{k}GA+A^{k}HA$$

$$= A^{k}+A^{k}HA$$

$$= A^{k}.$$

Thus $G^* \in A_G\{1_r^k\}$. Hence the theorem.

Theorem 2.2:

Let $A \in \mathcal{F}_n$ and G be a particular left k-g-inverse of A.

Then $A_G\{1_\ell^k\} = \{G + K / \text{ for all } K \in \mathcal{F}_n \text{ such that } A^k \ge AKA^k\}$ is the set of all left k-g-inverses of A dominating G.

Proof:

This can be proved in the same manner as in Theorem (2.1) and hence omitted.

Theorem 2.3:

For
$$A \in \mathcal{F}_n$$
 and $G \in A\{1_r^k,3\}$,

 $A_G\{1_r^k,3^k\} = \{G + H/ \text{ for all fuzzy matrix } H \in \mathcal{F}_n \text{ such that } A^k G \ge A^k H\}$ _____(2.3) is the set of all $\{1_r^k,3^k\}$ inverses of A dominating G.

Proof:

Let \wp denote the set on the R.H.S of (2.3).

Suppose $G^* \in A_G\{1_r^k,3^k\}$, then $G^* \ge G$. Let $G^* - G = H$.

Since $A_G\{1_r^k,3^k\} \subseteq A_G\{1_r^k\}$, by Lemma (2.1), $G^* \ge G + H \ge G \Rightarrow A^k G^* = A^k (G + H) \ge A^k G$

By Theorem (1.2),
$$G^* \in A_G\{1_r^k, 3^k\}$$
 and $G \in A\{1_r^k, 3\} \Rightarrow A^k G^* = A^k G$

$$\Rightarrow A^k (G+H) = A^k G$$

$$\Rightarrow A^k G + A^k H = A^k G$$

$$\Rightarrow A^k G \ge A^k H.$$

Hence $G+H \in \mathcal{O}$. Thus for each $G^* \in A_G \{1_r^k, 3^k\}$, there exists a unique element in \mathcal{O} . Conversely, for any $G^* \in \mathcal{O}$, $G^*=G+H \ge G$ with $A^k G \ge A^k H$, then

$$A^kG^* = A^k(G+H) = A^kG + A^kH = A^kG$$
. Since $G \in A\{1_r^k,3\} \Rightarrow G \in A\{1_r^k,3^k\}$. Therefore, by Theorem (1.1), $G^* \in A_G\{1_r^k,3^k\}$. Hence the theorem.

Theorem 2.4:

For $A \in \mathcal{F}_n$ and $G \in A\{1_\ell^k, 4\}$,

 $A_G\{1_\ell^k,4^k\} = \{G + K/ \text{ for all fuzzy matrix } K \in \mathcal{F}_n \text{ such that } GA^k \ge KA^k\}$ _____(2.4) is the set of all $\{1_\ell^k,4^k\}$ inverses of A dominating G.

Proof:

Let \wp denote the set on the R.H.S of (2.4).

Suppose $G^* \in A_G\{1_\ell^k, 4^k\}$, then $G^* \ge G$. Let $G^* - G = K$.

Since $A_G\{1_\ell^k,4^k\}\subseteq A_G\{1_\ell^k\}$, by Lemma (2.2), $G^*\geq G+K\geq G \Rightarrow G^*A^k=(G+K)$ $A^k\geq GA^k$.

By Theorem (1.4),
$$G^* \in A_G\{1_\ell^k, 4^k\}$$
 and $G \in A\{1_\ell^k, 4\} \Rightarrow G^*A^k = GA^k$

$$\Rightarrow (G+K)A^k = GA^k$$

$$\Rightarrow GA^k + KA^k = GA^k$$

$$\Rightarrow GA^k \ge KA^k.$$

Hence $G+K \in \mathcal{D}$. Thus for each $G^* \in A_G\{1_\ell^k, 4^k\}$, there exists a unique element in \mathcal{D} .

Conversely, for any $G^* \in \mathcal{D}$, $G^* = G + K \ge G$ with $GA^k \ge KA^k$, then

$$G^*A^k = (G + K)A^k = GA^k + KA^k = GA^k$$
. Since $G \in A\{1_{\ell}^k, 4\} \Rightarrow G \in A\{1_{\ell}^k, 4^k\}$.

Therefore, by Theorem (1.3), $G^* \in A_G\{1_\ell^k, 4^k\}$. Hence the theorem.

References

- [1] A .Ben Israel and T.N.E .Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
- [2] K.H.Kim and F.W.Roush, Generalized Fuzzy Matrices, Fuzzy sets and systems, 4 (1980), 293-315.
- [3] AR.Meenakshi, Fuzzy Matrix Theory and Applications, MJP Publishers, Chennai, 2008.
- [4] AR.Meenakshi and P.Jenita, Generalized Regular Fuzzy Matrices, Iranian Journal of Fuzzy Systems (accepted).

[5] AR.Meenakshi and P.Jenita, Inverses of k-Regular Fuzzy Matrices, International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 4 No. IV (October 2010), pp. 187-195.

Received: October, 2010