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Abstract 
 

Variation in salt tolerance potential of two contrasting wheat cultivars (salt tolerant S-24 and moderately salt sensitive 
MH-97) at different growth stages was observed when these wheat cultivars were exposed to salinity stress in hydroponic 
culture. Salinity caused a marked reduction in photosynthetic pigments, transpiration and photosynthetic rates, and stomatal 
conductance at early growth stages in both wheat cultivars, being more prominent in cv. MH-97. In addition, a marked salt-
induced alteration was observed in different attributes of chlorophyll fluorescence. On the basis of physiological 
characterization of these two wheat cultivars at different growth stages, it was inferred that cv. S-24 exhibited higher salinity 
tolerance at all growth stages in terms of less salinity-induced degradation of photosynthetic pigments, higher photosynthetic 
rates, maintenance of photosystem II under salinity stress as compared to that in cv. MH-97. In view of the results presented 
here, it is evident that wheat plants were prone to adverse effects of salinity at early growth stages as compared to later 
growth stages. 

 
Introduction 
 

Plants grown on saline soils show impaired growth 
due to salt-induced osmotic effect, nutrient imbalance, 
specific ionic effect, oxidative damage due to higher 
levels of reactive oxygen species (ROS) and alterations in 
endogenous levels of hormones (Ashraf, 2004; Ashraf & 
Foolad, 2007; Ashraf, 2009; Nawaz et al., 2010). Plants 
growing on salt affected lands often face the problem of 
physiological drought due to lower water potential of soil 
caused by the accumulation of soluble salts. Higher levels 
of toxic ions such as Na+and Cl- in saline soils result in 
impairment of de novo chlorophyll synthesis and various 
physiological mechanisms such as gas exchange and 
chlorophyll fluorescence attributes (Ashraf, 2004; Moradi 
& Ismail, 2007; Nawaz et al., 2010).  

Salt stress causes deterioration of a number of 
potential biomolecules like chlorophyll (Parida & Das, 
2005; Shahbaz et al., 2011). Salinity-induced decrease in 
chlorophyll contents is attributed to the decline in 
endogenous contents of 5-aminolevulinic acid because it 
acts as a precursor for protochlorophyllide, a precursor of 
chlorophyll biosynthesis (Santos, 2004). In addition, 
plants exposed to salt stress exhibit lower levels of 
glutamic acid which is required for the synthesis of 5-
aminolevulinic acid (Beale & Castelfranco, 1974; Santos 
& Caldeira, 1999; Santos et al., 2001; Santos, 2004). 
Degradation of chlorophyll in salt stressed plants is due to 
the removal of phytol brought about by the improved 
activity of chlorophyllase enzyme (Fang et al., 1998). The 
decrease in chlorophyll contents has been studied in a 
number of plants under saline regimes, e.g., canola 
(Nazarbeygi et al., 2011), maize (Molazem et al., 2010), 
Arabidopsis (Huang et al., 2005), tomato (Doganlar, 
2010), wheat (Khatkar & Kuhad, 2000), sunflower 
(Santos, 2004), etc. Furthermore, the decline in 
chlorophyll contents is not the same at distinct ontogenic 
phases as has been investigated in wheat by Khatkar & 
Kuhad (2000). Moreover, decreased rate of net CO2 
assimilation to some degree is attributed to reduced 

chlorophyll contents under salt stress (Ashraf, 2004). 
Therefore, monitoring the change in chlorophyll contents 
at different phases of ontogeny is a meaningful approach 
to pinpoint variation in salt tolerance potential of plants at 
different developmental stages.  

Considerable perturbation in important 
physiological attributes has been reported in plants 
exposed to salt stress. For example, salinity stress 
decreases photosynthetic and transpiration rates, water 
use efficiency and stomatal conductance in plants 
(Ashraf, 2004). The decline in net photosynthetic rate 
is ascribed to closure of stomata in salinity stressed 
plants (Drew et al., 1990; Downton, 1977; Ashraf, 
2004). Higher accumulation of soluble salts causes 
osmotic stress resulting in enhanced production of 
ABA whose accumulation in leaves reduces rubisco 
activity, internal CO2 concentration, stomatal 
conductance, etc. Photosynthetic tissues are prone to 
adverse effects of elevated salt concentration in terms 
of damage to thylakoid membrane. Furthermore, the 
activity of photosystem II (PSII) is hampered due to 
reduced chloroplast K+ contents caused by ionic 
imbalance under salinity stress (Ashraf, 2004). Higher 
rates of photosynthesis and active stomatal regulation 
induce tolerance to plants against salinity stress 
(Salama et al., 1994; Ashraf, 2004). Generally, less 
salt-induced decline in photosynthesis leads to higher 
biomass thereby resulting in improved yield (Ashraf, 
2004). Salinity-induced decline in photosynthesis has 
been reported earlier in wheat at the vegetative, boot 
and reproductive stages (Ashraf & Parveen, 2002; 
Abdeshahian et al., 2010).  

Salt-induced decrease in photosynthesis is often 
linked to the hampered activity of PS II which is more 
prone to inhibitory effects of salt stress as compared to PS 
I (Saleem et al., 2011). Salt stress degrades some potential 
proteins (chlorophyll protein, membrane protein) required 
for active association between thylakoids and 
phycobilisomes (Garnier et al., 1994). Salinity stress 
disintegrates the thylakoid membranes in the form of 
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altered protein profile inhibiting the oxygen evolving 
potential of PS II. Furthermore, this alteration in protein 
profile limits the transfer of light energy from antenna 
complex to PS II (Mehta et al., 2010). Plants exposed to 
salt stress improve the conversion efficiency of excitation 
energy by down regulating the activity of PS II (Lu & 
Vonshak, 2002). Therefore, measure of damage to PSII 
using the chlorophyll fluorescence method is an effective 
approach to understand the inhibitory effects of salinity 
on photosynthetic apparatus (Saleem et al., 2011). The 
damage to PS II under salt stress has been reported earlier 
in wheat at the seedling stage (Mehta et al., 2010). 
Likewise, inhibition in the functioning of PS II under 
saline regimes in rice at the vegetative and reproductive 
stages has also been studied using the chlorophyll 
fluorescence technique by Moradi & Ismail (2007).  

In view of the above-given contrasting reports, the 
present study was conducted to determine the adverse 
effects of salt stress on various physiological attributes of 
two contrasting wheat cultivars (S-24, salt tolerant and 
MH-97, moderately salt sensitive) and to draw the 
relationships between the salt-induced alterations in 
physiological mechanisms and degree of salt tolerance of 
these cultivars at different growth stages. 
 
Materials and Methods 
 

A hydroponic experiment was conducted in a wire-
house of the Botanical Garden of the University of 
Agriculture, Faisalabad, to appraise the inherent potential 
differences in salinity tolerance of two contrasting wheat 
cultivars (S-24, salt tolerant and MH-97, moderately salt 
sensitive) at different growth stages. For this purpose, 
seeds of two wheat cultivars obtained from Department of 
Botany, University of Agriculture, Faisalabad, were sown 
on moistened filter papers placed in Petriplates. Nutrient 
solution with varying concentrations of NaCl (0, 50 100 
and 150 mM) was used to moisten the filter papers. Eight-
day old seedlings were transplanted into styrofoam sheets 
floating on nutrient solution contained in a plastic tub (45 
x 66 x 23 cm). This hydroponic system was aerated for 
eight hours a day with the help of an electric pump. The 
weather conditions for entire experimental period were in 
the range of 27.46-13.75 ºC for average day and night 
temperature, 77.28-40.71% for average relative humidity 
and 5.37-0.871 mm for average rainfall. The data for 
different attributes were recorded at the vegetative, boot 
and reproductive stages. 
 
Photosynthetic pigments (Chlorophyll a and b): 
Photosynthetic pigments were quantified with the help of 
a procedure described by Arnon (1949).  
 
Gas exchange parameters: Gas exchange attributes were 
measured as described elsewhere (Ashraf, 2003). 
 
Chlorophyll fluorescence: Chlorophyll fluorescence 
attributes were recorded with the help of a fluorescence 
meter (Multimode chlorophyll fluorometer, OPTI-
Sciences, OS5P), following the method of Strasser et al., 
(1995). 
 
Experimental design and statistical analysis: The 
experimental plan was CRD (completely randomized 
design) with four replications. Data were analyzed using 

the Costat program (Version 6.303, USA). The means 
were compared at 5% level of significance (Steel & 
Torrie 1986). 
 
Results and Discussion 
 

Photosynthetic pigments are important regulators of 
photosynthesis (Ashraf, 2004; Parida & Das, 2005). 
However, these pigments are greatly degraded in plants 
exposed to salt stress (Ashraf, 2004). Likewise, in the 
present investigation, higher levels of salts in the growth 
medium resulted in a marked decline in photosynthetic 
pigments (Chl. a & b) at different growth stages in both 
wheat cultivars, being more in cv. MH-97. The salinity-
induced degradation of photosynthetic pigments was 
higher at the vegetative and boot stages in both wheat 
cultivars as compared to that at the reproductive stage. 
Such a variable response of plants to stress-induced 
decline in pigments at different growth stages has been 
observed earlier in wheat by Khatkar & Kuhad (2000).  
These scientists stated that enhanced chlorophyllase 
activity is responsible for the degradation of chlorophyll 
contents and the activity of this inhibitory enzyme either 
increased with plant age or remained unaffected. In the 
present study, chl. a/b ratio exhibited variable response in 
both wheat cultivars under salt stress at different growth 
stages. For example, at the vegetative stage, this ratio 
exhibited a significant increase at two lower levels of salt 
(50 and 100 mM) in both wheat cultivars. On the other 
hand, at the boot stage, cv. MH-97 showed an increase in 
this attribute at 50 mM of NaCl, whereas in cv. S-24 a 
consistent decline in this ratio was evident at the boot 
stage. In contrast, this ratio remained unaffected at the 
reproductive stage in cv. MH-97 but salinity stress in 
growth medium resulted in a consistent decline in this 
attribute at the reproductive stage in cv. S-24 (Table 1; 
Fig. 1). This significant perturbation in chl. a/b ratio at 
different growth stages could be attributed to the unequal 
degradation of photosynthetic pigments (Chl. a & b) 
under saline regimes (Barber, 1994). The salt-induced 
degradation of chlorophyll contents is generally more in 
sensitive as compared to tolerant cultivars as has been 
observed earlier in pea and wheat (Hernandez et al., 1993; 
Sairam & Srivastava, 2002). These studies are parallel to 
our results which showed comparatively less decline in 
photosynthetic pigments in cv. S-24 (salt tolerant) than 
that in cv. MH-97 (salt sensitive). 

Perturbation in different gas exchange attributes due 
to salt stress is considered as an important indicator of 
salinity-induced damage to plants (Ashraf, 2004). 
Likewise, in the present work, a variable response of both 
wheat cultivars with respect to these attributes was 
recorded at distinct phases of ontogeny. For example, 
reduction in photosynthetic (A) and transpiration rates (E) 
was minimal at the boot stage in both wheat cultivars as 
compared to that at other growth stages. Likewise, lower 
values for stomatal conductance were recorded at the 
vegetative stage in both wheat cultivars. The other gas 
exchange attributes such as internal CO2 concentration, 
Ci/Ca ratio and water use efficiency (A/E) declined in 
response to salt stress in both wheat cultivars and the 
response of these attributes with respect to plant growth 
stages was markedly variable. Unlike other attributes, 
intrinsic water use efficiency (A/gs) of both wheat 
cultivars increased variably at early growth stages (Table 
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2; Figs. 2, 3). Such alterations in gas exchange attributes 
has been reported earlier in wheat at different growth 
stages by Ashraf & Parveen (2002). For example, these 
researchers reported a variable decrease in 
photosynthesis, transpiration rate, stomatal conductance 
and water use effciency in tolerant and sensitive wheat 
cultivars at the vegetative and reproductive stages. The 
decrease in these attributes has also been recorded in 
canola (Ulfat et al., 2007), wheat (Ashraf & Shahbaz, 
2003), okra (Saleem et al., 2011), sunflower (Hebbara et 
al., 2003), etc. These attributes are interlinked with each 
other implying that salinity-induced decline in one of 

these attributes results in alteration in other attributes. For 
example, decrease in stomatal conductance under salt 
stress is attributed to higher levels of ABA resulting in 
stomatal closure (Zheng et al., 2001; Parida & Das, 2005; 
Etehadnia et al., 2010). Ultimately, this decreased 
stomatal conductance results in a concomitant decrease in 
net photosynthesis, internal CO2 concentration and 
transpiration rate (Ashraf, 2004). However, other factors 
are also held responsible for the decrease in net 
photosynthetic rate, e.g., inhibited sink activity and 
enhanced degradation of photosynthetic pigments 
(Khatkar & Kuhad, 2000; Vasantha et al., 2010).    

 
Table 1. Analysis of variance (mean squares) of data for photosynthetic pigments measured at different growth 

stages of two wheat (Triticum aestivum L.) cultivars when grown in salinized hydroponic culture. 
S.O.V df Chl. a Chl. b Chl. a/b 
Cultivar (Cv) 1 7.927*** 1.4845*** 0.805ns 
Stage (Stg) 2 1.282*** 0.2532*** 0.454ns 
Salt (S) 3 4.201*** 0.5137*** 0.564ns 
Cv X Stg 2 0.789*** 0.1260*** 0.517ns 
Cv X S 3 0.043 ns 0.0143ns 1.180* 
Stg X S 6 0.040 ns 0.0277* 1.261** 
Cv X Stg X S 6 0.038 ns 0.0096ns 0.337ns 
Error 72 0.098 0.0095 0.370 
*, **, ** * = Significant at 0.05, 0.01 and 0.001 levels, respectively 
ns =  Non-significant 

 

            
Fig. 1. Photosynthetic pigments of two wheat (Triticum aestivum L.) cultivars at different growth stages when grown in a salinized 
hydroponic culture (n=4±S.E.). 
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Fig. 2. Gas exchange attributes (A, E, gs, A/E) of two wheat (Triticum aestivum L.) cultivars measured at different growth stages in a 
salinized hydroponic culture (n=4±S.E.). 
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Fig. 3. Gas exchange attributes (Ci, Ci/Ca, A/gs) of two wheat (Triticum aestivum L.) cultivars measured at different growth stages in a 
salinized hydroponic culture (n=4±S.E.). 
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Table 2. Analysis of variance (mean squares) of data for gas exchange attributes measured at different growth 
stages of two wheat (Triticum aestivum L.) cultivars when grown in salinized hydroponic culture. 

S.O.V df A E Ci gs 

Cultivar (Cv) 1 196.76*** 0.0098 ns 4189.68*** 6501.04*** 

Stage (Stg) 2 29.74* 1.0762*** 9417.39*** 5297.13*** 

Salt (S) 3 159.99*** 0.7893*** 18134.72*** 61861.46*** 

Cv X Stg 2 298.12*** 3.0015*** 412.06 ns 13097.14*** 

Cv X S 3 3.44 ns 0.0149 ns 130.96 ns 6053.12*** 

Stg X S 6 2.61 ns 0.0786 ns 1555.91*** 1091.93** 

Cv X Stg X S 6 2.29 ns 0.0277 ns 915.32* 921.09* 

Error 72 6.62 0.0403 322.67 334.55 

S.O.V df Ci/Ca A/E A/gs  

Cultivar (Cv) 1 0.0338*** 426.470*** 0.00220*  

Stage (Stg) 2 0.0760*** 43.189*** 0.00052ns  

Salt (S) 3 0.1463*** 160.190*** 0.00580***  

Cv X Stg 2 0.0033 ns 29.059** 0.00240**  

Cv X S 3 0.0011 ns 6.628 ns 0.00220***  

Stg X S 6 0.0126*** 11.502* 0.00042ns  

Cv X Stg X S 6 0.0074* 3.162 ns 0.00016ns  

Error 72 0.0026 5.158 0.00032  
*, **, ** * = Significant at 0.05, 0.01 and 0.001 levels, respectively; ns=  Non-significant 
A = Net CO2 assimilation rate, E = Transpiration, gs = Stomatal conductance; 
A/E =  Water use efficiency, A/gs= Intrinsic water use efficiency 

 
Chlorophyll fluorescence is an excellent measure of 

functioning of photosystem II (Saleem et al., 2011). 
Likewise, in the present investigation, salinity-induced 
damage to PS II was detected in both wheat cultivars at 
all growth stages, being more prominent in cv. MH-97. In 
the present investigation, different chlorophyll 
fluorescence attributes were altered markedly by salt 
stress in both cultivars. For example, in the present study, 
salinity stress caused a marked decrease in Fo, Qp, leaf 
Fm, Y and Fv/Fm at different growth stages in both wheat 
cultivars. However, this salt-induced decrease was more 
prominent in cv. MH-97 than that in cv. S-24. In contrast, 
salinity stress caused a significant increase in ETR at the 
vegetative and boot stages, and NPQ at all growth stages 
in both wheat cultivars, being more prominent in cv. S-24 
(Table 3; Figs. 4, 5, 6). These chlorophyll fluorescence 
attributes are excellent measures of stress-induced 
damage to photosystem II. For example, the salt-induced 
decrease in Fo indicates the loss of energy transfer from 
antenna complex to reaction centers (Lutts et al., 1996; 
Baker, 2008). Qp tells the proportion of inactivated 
photosystem II reaction centers (Sayed, 2003; 
Slapakauskas & Ruzgas, 2005; Moradi & Ismail, 2007; 
Abdeshahian et al., 2010). Likewise, the salt-induced 
decrease in this attribute could have been due to the 
separation of light harvesting complex II from the PSII 
reaction center (Xue-Xia Wu et al., 2010). The decrease 
in Y represents impairment of the ability of plants to 
repair the salt-induced damage to photosystem II 

(Allakhverdiev et al., 2002; Amirjani, 2010). Similarly, 
salt-induced decrease in Fv/m corresponds to the salt-
induced decrease in maximum fluorescence (Fm) 
exhibiting the disruption of antenna complex of PSII, 
increase in dissipation of energy and destruction of 
photosystem II reaction center (Lutts et al., 1996; 
Maxwell & Jhnson, 2000; Santos et al.,  2001). 
Furthermore, the decrease in Fv/m indicates that 
regeneration of RUBP could have been disrupted by salt 
stress (Kafi, 2009). In addition, it has been reported that 
salt-induced increase in photorespiration in C3 plants like 
wheat is the main reason for the increase in the rates of 
electron transport (Megdiche et al., 2008). Salinity-
induced increase in NPQ exhibits an adaptive energy 
dissipation process protecting the photosynthetic 
apparatus against photo-damage (Netondo, et al., 2004). 

It can be concluded from the results presented here 
that both wheat cultivars were more sensitive to salinity-
induced damage at early growth stages (vegetative and 
boot) than at later growth stages as is evident from more 
chlorophyll degradation, marked reduction in various gas 
exchange attributes and more prominent alterations in a 
number of chlorophyll fluorescence attributes at the two 
early growth stages. Furthermore, cv. S-24 was more 
tolerant to salinity in terms of maintenance of relatively 
higher photosynthetic rates, less salinity-induced damage 
to PS-II and photosynthetic pigments as compared to cv. 
MH-97 at all growth stages. 
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Fig. 4. Chlorophyll fluorescence attributes of two wheat (Triticum aestivum L.) cultivars measured at different growth stages in a 
salinized hydroponic culture (n=4±S.E). 
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Fig. 5. Chlorophyll fluorescence attributes of two wheat (Triticum aestivum L.) cultivars measured at different growth stages in a 
salinized hydroponic culture (n=4±S.E). 
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Fig. 6. Chlorophyll fluorescence attributes of two wheat (Triticum aestivum L.) cultivars measured at different growth stages in a 
salinized hydroponic culture (n=4±S.E). 
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Table 3.  Analysis of variance (mean squares) of data  for different chlorophyll fluorescence  attributes measured at 
different growth stages of two wheat (Triticum aestivum L.) cultivars when grown in  salinized hydroponic culture. 

S.O.V df Ft Fs Fo Fms 
Cultivar (Cv) 1 108563.92*** 28935.18*** 22417.59*** 590.04 ns 
Stage (Stg) 2 23869.01*** 2637.42* 14082.57*** 10375.98* 
Salt (S) 3 27983.04*** 36895.83*** 7761.87*** 147051.08*** 
Cv X Stg 2 16763.13*** 3318.16* 1551.47* 52475.76*** 
Cv X S 3 3735.21*** 3453.07** 3888.28*** 795.68 ns 
Stg X S 6 6374.59*** 1621.23* 1543.68** 2665.86 ns 
Cv X Stg X S 6 3285.80*** 260.09 ns 576.66 ns 4763.40 ns 
Error 72 600.77 694.82 431.36 2526.50 
S.O.V df Qp Fm Y Qn 
Cultivar (Cv) 1 0.0188* 8797.51ns 0.0466*** 0.0018 ns 
Stage (Stg) 2 0.00930* 82.94ns 0.0077** 0.0019 ns 
Salt (S) 3 0.04280*** 138552.13*** 0.0197*** 0.0021** 
Cv X Stg 2 0.01210* 44715.98*** 0.0039* 0.0334*** 
Cv X S 3 0.00029ns 24485.53*** 0.0029* 0.0519*** 
Stg X S 6 0.00250ns 71173.95*** 0.0026* 0.0119** 
Cv X Stg X S 6 0.00280ns 30617.77*** 0.0005ns 0.0181*** 
Error 72 0.00270 2727.12 0.0011 0.0032 
S.O.V df Fv/Fm ETR NPQ  
Cultivar (Cv) 1 0.0263*** 110.010*** 0.0287*  
Stage (Stg) 2 0.0106** 32.887*** 0.0491**  
Salt (S) 3 0.0269*** 13.425*** 0.2217***  
Cv X Stg 2 0.0063* 20.318*** 0.1708***  
Cv X S 3 0.0036 ns 31.937*** 0.0399**  
Stg X S 6 0.0085*** 7.698** 0.1267***  
Cv X Stg X S 6 0.0099*** 11.234*** 0.0877***  
Error 72 0.0015 2.077 0.0070  
*, **, ** * = Significant at 0.05, 0.01 and 0.001 levels, respectively; ns = Non-significant 
Ft = Minimal fluorescence; Fs = Fluorescence at steady state; Fo = Minimal fluorescence; Fms = Maximum fluorescence at steady 
state; Qp = Photochemical fluorescence quenching; Fm = Maximum fluorescence; Y = Quantum yield of electron transport; Qn = 
Non-photochemical fluorescence; ETR= Electron transport rate; NPQ = Non-photochemical chlorphyll fluorescence quenching 
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