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Abstract—With the increasing popularity of smartphones and
with the fact that they are connected to the Internet most of
the time, people manage to stay online everywhere they go. They
can access online services remotely at any time they want, using
their mobile devices. However, in order to make the best out of
these circumstances, the users have to use sophisticated mobile
applications. These applications do not have to only address
key aspects like collaboration and cooperation between various
devices but have to deal also with the involvement of the users in
order to achieve the desired outcome. The main contribution of
this paper is to present a solution, i.e., Proactive Engine for Mobile
Devices (PEMD), together with its implementation for Android-
based systems, for enhancing mobile devices with proactive
properties. The model serves as a basis for developing smart
applications that are able to perform complex real-world tasks.
Furthermore, it provides a method for achieving cooperation,
coordination and collaboration of multiple smart devices. Finally,
we provide the performance experiments and we discuss the
results and the effects of using PEMD on different devices.

Keywords—Mobile devices; Collaborative architectures and
mechanisms, Proactive Computing.

I. INTRODUCTION

Smartphones and tablets have become more and more pop-
ular and more powerful in terms of their computing capacity
[1]. This opens numerous possibilities for developing new
types of software applications and, for the existing ones, to
expand, to incorporate new features and to provide better
services to their users. Also, due to the latest advances in
computer hardware technology [2] [3], mobile devices are
more than ready to be enhanced with proactive features and
properties. These properties are essential for enhancing mobile
devices with collaborative methods for their applications.

A great challenge of today’s mobile world is to provide
services and applications that support collaboration and dis-
tributed tasks. Middleware systems are seen very often as
solutions for supporting the construction of mobile collabo-
rative applications [4]. We investigated how to implement a
more specific category of middleware systems, i.e., rule-based
middleware systems, because they offer various advantages
over other middleware systems such as the possibility of
having rules where the developers can easily insert their in-
structions. These rules, among others, can deal with unforeseen
situations, can predict future events and can be programmed
to take appropriate actions in most of the situations. The main
difficulty consists of implementing this kind of systems on
mobile devices because they are very complex and they need
many resources, depending on which kind of applications they
are executing. Having desktop rule-based systems executing all
the tasks of the mobile devices is not a valid solution as the
communication between them is not very stable because of

the mobility of the mobile devices. The probability of having
successful collaborative tasks increases when each mobile
device has an integrated middleware architecture, capable of
initiating collaborations and performing distributed jobs. The
major advantage of our middleware architecture is that it
is capable of communicating with other mobile devices and
desktop computers without any compatibility issues.

The contribution of this paper is three-fold. First, it pro-
poses a rule-based engine capable of performing complex
automated and distributed tasks on mobile devices on behalf
of the user. Second, it offers details about the implementation
of our model on Android-based mobile devices. And third, it
shows how the model was tested on real devices and provides
an evaluation of their performance.

The rest of the paper is organized as follows: Section II
describes the state of the art related to this study. Section III
provides the main characteristics of our model in terms of
interaction with the operating system, communication mech-
anisms, information sharing strategies and data storage. In
Section IV, we present the tests that were done to evaluate
our model, what methodology was used, then we provide an
analysis of these results and, at the end of the section, we
discuss the future implications of the results. Finally, Section V
concludes the paper and indicates the next research directions
that will follow after this work.

II. STATE OF THE ART

Proactive Computing was introduced in [5] and was de-
scribed as a new computational way in which software systems
can operate and can perform different tasks. It was initially
seen as a solution for removing humans from the compu-
tational loop, for moving from human-centred computing to
human-supervised computing. Proactive Systems were charac-
terised as those systems that can work for the user and that
can take decisions on their own initiative, without necessarily
involving the user in this process [6].

More recent studies [7][8] describe Proactive Systems as
being aware of the changes, which occur in their surrounding
environment, being able to react to foreseen events and of
adapting their behaviour in order to address the increasing
needs of their users. Recent empirical investigations [9][10]
support these properties and provide additional examples of the
advantages that Proactive Systems have to offer in numerous
domains of Computer Science. For instance, enhancing Learn-
ing Management Systems (LMSs) with Proactive Computing
led to an increase of the online participation of the students
[9], helped improve the assignment system [11] and raised the
chances of student to obtain higher grades at their final exams
[10].



Rule 102
Description: This Rule was activated by Rule 101 and started
creating a Community of Practice for new cities detected from
the student’s profile.
data acquisition
String groupName = cityName;
String [] students = getStudentFromSameCity (cityName);
activation guards
return groupExists(cityName);
conditions
return true;
actions
foreach student in students []
if(userIsNotPartOfGroup(student.ID, groupName)))
inscribeUserInGroup(student.ID, groupName);
end if
end foreach
rules generation
if (activationGuard());
createRule103(groupName());
end if
cloneRule(Rule102);

Figure 1. A Proactive Rule in pseudo-code

More precisely, using a Proactive Engine (PE) aside the
LMS transformed the LMS from a static system into a pro-
active system. The PE was created as a structure capable or
executing Proactive Rules [12], which are simple mechanisms
for executing specific actions, like, for instance, sending emails
to the users. They were designed for offering developers the
possibility of implementing proactive actions in a simple way,
without having to have advanced knowledge about proactive
systems and their implementation. In Figure 1, an example
of a Proactive Rule is given in pseudo-code. The rule was
implemented in Java and was used as part of a predefined
scenario for automatically creating certain Communities of
Practice inside a LMS [13].

Multiple collaborative middleware systems for mobile de-
vices are available on the market, e.g., [14]-[16]. They differ
by their type: event-based architectures, e.g., for supporting lo-
cation aware-mobile applications [17], or publisher-subscriber
architectures, e.g., for [4] systems. These frameworks offer
communication services for the mobile devices, which use
them for performing collaborative tasks. Our framework does
not only achieve message passing from one device to another
but also permits more complex actions like remote rule acti-
vations, parallel commands or complex reasoning algorithms.

Rule-based systems, like Java Expert System Shell (JESS)
[18] or C Language Integrated Production System (CLIPS)
[19], are powerful desktop-based general-purpose tools, which
give the possibility of programming expert systems. With
the help of their scripting language facts and rules can be
uniformly defined and described. For example, JESS employs
the Rete [20] algorithm for compiling and executing forward-
chain rules. These rules are simple statements, composed of a
left side, i.e., the IF portion, and of a right side, i.e., the THEN
portion. Unfortunately, they represent solutions only for the
server side and are not suitable for mobile devices as these
devices are quite limited in terms of computing power. We
do not only propose an engine for mobile devices capable of

executing complex rules but we propose a technique, called
Global Proactive Scenario (GPaS) [21], for breaking down
complex scenarios or applications in multiple sets of Proactive
Rules. More about this technique is explained in subsection
11-D.

Existing rule-based systems [22][23][24] for mobile de-
vices solve only simple tasks and do not provide methods for
achieving more complex tasks like distributed reasoning, task
distribution, data sharing, acquiring global context information
or/and collaborative filtering. And most of all, these systems
do not take advantage of the global information that can be
built with information from each particular mobile device.
IF THIS THEN THAT [24] is a mobile application that
realizes automation for small tasks between Internet-connected
services. The user can write simple rules, also called recipes,
in order to achieve different goals like adding the photo
of a user to the cloud-based archive if the user has been
tagged in that particular photo on Facebook [25]. These rules,
however, are just simple conditional statements. HeaRT [22],
a lightweight rule-based inference engine designed for mobile
devices, was used in [26] for providing simple tasks like
online reasoning, part of a bigger plan to develop context-
aware mobile applications. The rules that are written for this
engine can achieve local reasoning only based on the internal
sensors of a mobile device and do not explore the possibility of
having multiple engines performing global reasoning. Minimal
Rule Engine (MiRE) [23], a context-aware processing engine,
was implemented in order to obtain an engine capable of
processing rules on mobile devices. However, the rules are
written in Extensible Markup Language (XML) and, due to
their structure, are not capable of integrating more complex
logics. The above approaches, [22]-[24], try to address the
growing demand of using rule-based tools on mobile platforms
and manage to do it but for a very narrow type of applications.

Until now, Proactive Engines were only used on desktop
computers [13][27][28], which limited a lot their usability.
Analysing the advantages and functionalities of mobile devices
makes it clear that mobile devices offer new possibilities for
Proactive Systems, as well as the other way around. Proactive
Computing can help mobile device become smarter in terms of
how they make use of the data coming from all the sensors, of
how they exchange information, of how they execute complex
tasks and in terms of how they provide services to their users.
We therefore developed a PE for mobile devices.

III. THE ARCHITECTURE OF PROACTIVE
ENGINES FOR ANDROID-BASED MOBILE DEVICES

In order to better understand the structure of the new
engine we will now first explain parts of the already existing
server-based engine. The Rules Engine is the core piece of
the engine. It consists of two First In First Out (FIFO) lists:
the Current Queue, which contains the rules that are currently
being executed and the Next Queue, which contains the rules
that were created during the current iteration of the Rules
Engine and that will be executed at the next iteration. During
an iteration, the Rules Engine will execute the rules that are
stored in the Current Queue one by one. Proactive Rules
can perform different operations like checking for special
conditions or constraints, saving events or relevant context
information into the local database, or cloning themselves in



order to run at the next iteration. They can also generate other
Proactive Rules during the rules generation phase, which is
one of the five phases that compose a Proactive Rule, as
shown in Figure 1. The new rules, created during the rules
generation phase are stored in the Next Queue. An iteration
finishes its execution if there are no more rules in the Current
Queue or if there were already N rules executed during the
current iteration or if the execution time exceeded the time
limit F, an internal parameter of the PE, which represents the
frequency of activation periods. At the end of the iteration
all rules contained in the Next Queue are added to the Current
Queue and the Next Queue gets cleared. The Current Queue is
then saved into the database and the Rules Engine will continue
with the next iteration. This Rules Engine is the basis for the
implementation of our PE for Mobile Devices (PEMD). Other
components like the database also had to be adapted in order
to fit the requirements of mobile devices.

A. The Rules Engine as background service

The Rules Engine was designed to run constantly in the
background in order to allow the user to interact with different
applications. On Android this can be achieved with the help
of background services. However, these services cannot run
constantly as they might be killed or stopped by the Operating
System if they use too many resources over an extended period
of time. Therefore, the existing solution for desktop computers
needed to be adapted in order to still allow the PE to execute
Proactive Rules. This was done using an Alarm Manager
that activated the background service every F seconds and
that executed one iteration of the Rules Engine. The Alarm
Manager was triggered by the onBoot event.

The added essential functionalities are the communication
of PEs, explained in detail in Section III-C, and the possibility
of notifications to the user from within rules, briefly explained
at the end of section III-B.

B. Data Storage

Data storage is an important part of the application. The
rules in the Current Queue of the Rules Engine need to be
saved at every iteration so that the PEMD can recover in
case of failure by using a previous state. This is particularly
important as the Android Operating System (OS) may decide
to kill the background service that contains the Rule Engine,
if the system is low on memory. If the Current Queue is not
saved at every iteration, the Rules Engine would recover the
state it had when it first started, meaning that every progress
in the execution of the Rules is lost. Also, the rules need to
be saved when the device shuts down so that the engine can
recuperate and continue executing them when the device is
turned on again. The saving process of the Current Queue is
performed in a transaction, both for performance and failure
recovery reasons.

Additionally, the sent and received messages need to be
saved to allow the engine to resend lost messages and also
the notifications displayed to the user. As there will likely
be different types of rules and notifications depending on
the purpose of the rules engine, the proposed solution will
automatically create the appropriate database table upon in-
stallation or update of the application, which is achieved

through the Object Relational Mapping Lite (ORMLite) [29]
package framework for Android. The ORMLite package is a
lightweight package for persisting Java objects to Structured
Query Language (SQL) databases. To add new types of rules
or notifications to the PEMD, one has only to create the
appropriate file with the correct annotations and the PEMD
will take care of creating the correct tables and of the saving.
Notifications use the internal notification system provided by
Android and can be further customised and modified by the
applications developers if needed.

C. Communication of Proactive Engines

The most important part of the PEMD architecture is the
communication between several devices as this allows the de-
vices to exchange information. There are several technologies
available for smartphones to achieve this, each with their own
advantages and disadvantages. After analysis of alternatives,
we decided that the solution, which suits our needs best and
which was used in our implementation of the PEMD is Google
Cloud Messaging (GCM). There are another few alternatives
on the market like Parse [30], PubNub [31] or UrbanAirship
[32]. Nevertheless, while these services make it easier to
develop push notifications for iOS and Android, they are still
using GCM. One alternative, which does not use GCM at all,
is Pushy [33]. However, Pushy’s architecture is very similar to
GCM, maintaining its own background socket connection, to
receive push notifications [34].

1) Google Cloud Messaging: GCM for Android is a
service provided by Google, which allows the sending and
reception of data between a server and Android-based smart-
phones. The GCM service handles the delivery process of the
messages, meaning that it takes care that the messages are
delivered to the correct device. In the case where a message
is sent to an offline device, GCM temporarily stores the
message until the receiving device comes back online. In
order to use GCM for device-to-device communication, we
proposed an architecture, illustrated in Figure 2 and Figure 3.
The registration process of two devices is shown in Figure
2, while Figure 3 is showing the communication between
already registered devices. The devices first have to register
at the GCM and get a registration ID. They then communicate
this ID along with a username to the server, which stores
them in a database. If an already registered device now wants
to communicate with another registered device, it sends its
message along with the receiving device’s username to the
server, which retrieves the correct ID and pushes the message
along with ID to the GCM, which then takes care of the
delivery of the message.

2) Message Structure: The messages exchanged between
PEMDs need to follow the same standards. The messages
are encoded with JavaScript Object Notation (JSON) and
have different attributes depending on the type of message.
The only attribute that is common to all message types is
the instruction attribute that allows the receiving PEMD to
parse incoming messages correctly. There are currently two
types of messages, the activate Rule message type and the
confirmation message type. The activate Rule message type has
the following attributes:instruction,msgID, senderID, receiver
ID, ruleName, parameterList.
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The msgID along with the senderID allows the receiving
PEMD to keep track of already received messages. This will
be explained in more detail in the error handling section. The
ruleName and parameterList attributes are the core of the
communication process. They allow the creation of a Rule
on another PEMD. The ruleName attribute contains the name
of the rule that will be created on the receiving device and
the parameterList contains the parameters necessary to create
this rule dynamically. After the rule is created, it will be
added to the Next Queue of the Rules Engine. An example
of a message exchanged between PEMDs, which contains a
command to active a Proactive Rules, can be seen in Figure
4. The confirmation message only contains three attributes:
instruction, msglD, receiverID, where msgID is the ID of the
message whose delivery is confirmed.

3) Error Handling: In a distributed environment, messages
are not guaranteed to arrive, as they can be lost along the
communication process. In order to prevent the loss of mes-
sages, PEMDs keep track of sent and received messages,

{ ‘instruction’:‘activate rule’,

‘msgld’: ‘messagelD °,

‘senderID’:‘ID ’,

‘receiverID’:[ ‘registrationID ’],
‘ruleName’: ‘R004 °,

‘parameterList *:[‘param] ’, ‘param?2 ’] }

Figure 4. Example of a message exchanged between 2 PEMDs, which
contains a command to activate a Proactive Rule

including their senders and receivers, by saving them locally in
a database table. After sending a message, the PEMD saves it
to the database. If no confirmation message is received within
a given time period, the message is sent again. The time period
varies depending on the priority level of the message, which
can be set when sending it. It is also possible to set no priority
level at all so that the message does not have to be confirmed.
This is quite useful to do broadcasts in order to find other
devices with the same preferences, where it is not important
that really every device receives the broadcast. Upon receiving
the confirmation for a specific message, this message is deleted
from the database.

Similarly after receiving a message, the message is saved in
the database and a confirmation message is sent to the sender
of the message. In the case the confirmation message does
not arrive, the sending device resends the message and as
the receiving device has saved the message in its database, it
ignores the second message. The stored messages are deleted
after a fixed time period. In order to take care of the resending
and ignoring of messages, there are two rules constantly
running on the engine; one rule that takes care of the messages
that were sent and one rule that takes care of the received
messages.

4) Limitations of GCM and Workarounds: GCM has two
main disadvantages, a size limit on the messages and a limit on
the number of devices a message can be simultaneously sent to.
The size limit on the messages is of 4 Kb. A lot of messages
of our application can be delivered using the direct method
as they are smaller than 4Kb. If the size limit is exceeded,
our server will store the complete message in its database and
just send a small message to the receiving device to notify it
that a message is available. The device will then download the
message directly from the server and add the rule to the queue.

The second restriction of GCM is that a message can only
be sent to 1000 devices simultaneously. In our application this
can only happen if a broadcast is sent to all devices. In this
case, the server just splits the list of all devices into packets
of 1000 and pushes the same message for every packet to the
GCM.

D. Information Sharing Strategies between Proactive Engines

As explained in Section I, GPaSs [21] were proposed
in order to address complex situations or tasks like the
collaboration and collaboration between multiple Proactive
Engines. Depending on their complexity, GPaSs contain one
or more Proactive Rules from different categories of rules
like Adaptation Rules, Cooperation Rules, Coordination Rules,
Communication Rules and Notification Rules. For example,
an application that would automatically form social groups
of people based on common interests or activities would
use Cooperation Rules to exchange information between the
devices, Context-Awareness Rules to obtain details about the
user’s context and Notification Rules to keep the users up-to-
date with the application’s latest actions. The developers have
to focus more on how to decide what functionalities they want
to include into the application and how to transform it into
Proactive Rules then to take care of how the PE executes the
rules or how the information is exchanged between multiple
PEs.



IV. RESULTS AND DISCUSSIONS

Performance is an important aspect of software devel-
opment, especially when designing and implementing smart
applications for mobile devices. It was thus necessary to
investigate how PEMD perform on different devices and what
are the factors that influence the overall performance of GPaSs.

In this section, we present the hardware and software
specifications of the devices on which PEMD was tested, we
explain which type of experiments were performed, why we
chose to carry out these experiments and we discuss the results
that we collected after the tests.

A. Hardware and Software specifications

Three different computing systems were included in our
tests: a smartphone, a tablet and a desktop computer. In Figure
5 we provide, for each device, the most important software
and hardware specifications at the moment the tests were
performed. These specifications include the versions of the
Operating System and of the Kernel, the types of central
processing units (CPU) and graphics processor units (GPU)
used, the amount of random access memory (RAM), the
available sensors and the types of communication protocols
that could be used by the devices. The smartphone and the
tablet have been available on the market since a couple of
years. They were chosen for the tests to show how PEMD
behave on devices that are used by the majority of the existing
applications on the market and which contain stable version of
the OS and of the other frameworks used. The PC was included
in our tests to check if there are any specific factors on mobile
devices that are influencing the performance of PEMD.

B. Methodology

Our main goal was to see approximatively what is the
highest number of Proactive Rules PEMDs are able to run
on various mobile devices without affecting the overall per-
formance of these devices. More precisely, we focused on
evaluating the how many Proactive Rules can be executed by
the PEMD in a reasonable amount of time in order to still be
able to provide real-time services to the user.

Our method for analysing the performance of the PEMD
involved measuring the time between two consecutive itera-
tions of the Rules Engine. An iteration is an executing instance
composed of a set of Proactive Rules in the Rules Engine and
can be measured in terms of duration. Ten different sets of
Proactive Rules were considered for the tests: starting from
small sets containing 100 rules until large sets with 1000 rules.
From a technical point of view, an iteration is composed of two
main operations: the execution phase and the saving phase.

During the execution phase, the Rules Engine runs each
instruction, part of each Proactive Rule, which can contain
possible actions like acquiring data from the sensors or from
the local database, sending notification to the users or even
the generation of other rules for the next iteration. The saving
phase is mainly used for saving the set of rules that are to
be executed during the next iteration. A list of rules, together
with their parameters are saved into the local database. This
phase was created as a safety measure in case a crash occurs
or the Rules Engine is stopped. After a crash, when the Rules

Engines restarts, it reads the last list of rules that was saved
in the database and it will start executing them.

Multiple rounds of tests were performed, each round of
tests containing 10 evaluations for each device. The execution
time averages for all the tests were computed for obtaining
more accurate values. Other applications and services running
on the devices involved in the tests were not explicitly closed
because we wanted to analyse the performance of the PEMD
in the same circumstances that a common user would be using
his/her device.

C. Performance analysis

Table I contains the averages of the total amount of time in
milliseconds that one iteration required for running sets of 100,
300, 700 and 1000 Proactive Rules. The total time is divided
furthermore into Saving Time and Execution Time, which are
average values in milliseconds that represent the amount of
time needed by the Rules Engine for the Saving Phase and for
the Execution Phase. All the sets of rules contained clones of
the same basic Proactive Rule. This rule was designed specially
to see how much time does the Rules Engine need to save an
instance of all the rules that will run at the next iteration. This
explains the relatively low values for the Execution Time.

For example, running 100 Proactive Rules on the smart-
phone took, in average, 436 milliseconds for one iteration.
The time needed to save the rules for the next iteration took
329 milliseconds, representing 75% of the total amount of time
of the iteration. This case is confirmed by the values obtained
from running the same 100 Proactive Rules on the tablet, were
the time for saving the rules for the next iteration took 83% of
the total time of the iteration. The same results were obtained
for saving the rules in the was also confirmed by the values
obtained from running 300, 700 and 1000 rules. If for 100 rules
it took 75% of the total iteration time for saving the rules in
the database, for 1000 rules the percentage decreased to 60%
of the total iteration time and stabilised around that value.

Significant differences for running an instance with 1000
rules, between the smartphone, table and PC, appear in the
last column of Table I. If in the PC’s case the total time for
finishing the execution of one iteration took 220 milliseconds,
which is quite fast, the same operation took almost twice
more on the tablet and approximately 5 times more on the
smartphone.

The results in Table I also meet our expectations in terms of
computing capabilities of the involved systems. For instance,
executing one iteration with 100 rules required approximately
4 times more time on the tablet than on the PC and more than
8 times more on the smartphone that on the PC. The difference
did not change much when executing 300, 700 and 1000 rules.
This is mainly due to the particular hardware configuration of
each system as illustrated in Figure 5. The smartphone was
equipped with a 1 Gigabyte (GB) of RAM and a quad-core
1.4 Gigahertz (GHz) processor, while the tablet, which had
better performance results, was equipped with 2 GB of RAM
and a dual-core 1.7 GHz processor. The PC had the best results
as it had 8 GB of RAM and an i7 processor with 4 physical
cores capable of operating at frequencies up to 3.4 GHz.

In conclusion, saving rules on the database took a lot of
time in comparison with executing the rules. This may be



Device Samsung Galaxy S3 Nexus PC
Model GT-19300 10
OS Android 4.3 Android 4.4.4 Window7 64-bit
Baseband
C . 19300 XXUGNAS KTU84P
ompilation
Kernel 3.0.31-2429075
RAM 1 GB 2 GB 8 GB
Chipset Exynos 4412 Quad Exynos 5250 Intel 6 C200
Intel Core 17-2
CPU Quad-core 1.4 GHz Cortex-A9 Dual-core 1.7 GHz Cortex A15 34 G%Z 600
GPU Mali-400MP4 Mali-T604
Accelerometer. imit Accel t imit
Sensors , gyro, proximity, ccelerometer, gyro, proximity, None
compass, barometer compass, barometer
Wi-Fi 802.11, a/b/g/n, dual-band, Wi-Fi 802.11, a/b/g/n, dual-band,
WLAN Wi-Fi Direct, DLNA, DLNA, Wi-Fi Direct, DLNA, DLNA, None
Wi-Fi hotspot Wi-Fi hotspot
Figure 5. Hardware and software specifications of the devices used in the experiments
TABLE I. Iteration average time on different devices
#rules/iteration 100 300 700 1000
Tteration Time
Smartphone ) 436.7 672.5 1099.8 1294.2
Saving  Execution 329 107.7 475 197.5 6714 4284 7722 522
Time Time (T5%)  (25%) (T1%)  (29%) (61%)  (39%) (60%)  (40%)
(ms) (ms) -
Tteration Time
Tublet ) 130.5 2332 383.9 4955
ST“.““g Execution 1086 219 1754 578 2754 1085 3524 1431
ime Time 83%)  (17%) (75%)  (25%) (71%)  (29%) M%) (29%)
(ms) (mg) ( 0 ‘0 ‘0 0 ‘0 0 0 ‘0
Iteration Time
pC ) 05 68.5 1275 220
ST“.Vmg E";“““O“ 6.5 36 2 66.5 245 103 354 184.6
1me 1me (15%)  (85%) GB%  (97%) (19%)  (81%) (16%)  (84%)

(ms) (ms)

caused by the ORMLite package framework used for data
storage on Android. On the other hand, the data storage on
the PC was done with the help of MySQL [35] and Hibernate
ORM [36] frameworks and needed far less time than for
executing rules. A possible solution for avoiding time losses
is to remove the feature of saving rules at each iteration and
to set up a Saving Phase for the Rules Engine only once,
e.g., at the shutdown event of the mobile devices. Another
important conclusion is that running a big amount of rules on
the smartphone and tablet is a time-consuming process and,
for the moment, these devices are able to run only limited sets
of Proactive Rules, while still being able to provide real-time
services to their users. This amount of rules is directly related
to the computing capabilities of each device and the libraries
used to ensure different functionalities of the PEMD.

Other series of tests were conducted between the smart-
phone and the tablet to measure the duration of their commu-
nication. In Figure 2 from section III, we illustrated the steps
necessary to send a message and to get the confirmation that
the message has been successfully received. Both operations
need 3 steps. We measured how much time it took for sending
and receiving the message, meaning the first 3 steps of the
communication process, between the two registered devices.
After 10 tests, in average, it took 751.3 milliseconds for the
following operations: the creation of the message on device 1,
sending the messages to the relay server, sending the message

to Google’s Cloud Messaging server and then, receiving the
message on device 2. The message used in the experiments
was the same one as the one as presented in Figure 4. It
contained specific instructions for activating a rule on device
2. The Relay Server was running on the PC with the software
and hardware configurations shown in Figure 5. The entire
communication process also depends on external factors like
the network bandwidth and latency, and on the response time
of Google’s Cloud Messaging Server, which is also not part
of our system and cannot be controlled.

Figure 6 and Figure 7 illustrate better the differences of
running one iteration between the different devices. They
include the average results of all the 10 sets of Proactive
Rules that were performed on all 3 devices. The scale for
the execution time of one iteration was kept on purpose to
show the major difference between amount of time needed
for one iteration with the saving phase and without the saving
phase. In Figure 6 we can notice quite big fluctuations in the
execution time of one iteration on the smartphone. It is not
linear like in the tablet’s case and the PC’s case. If until running
iteration of 800 rules the time increased in an expected manner,
afterwards, it started to rise up quickly. It means that for
iterations with more than 800 rules the smartphone is starting
to consider the PEMD quite heavy in terms of the processing
resources needed. It can also slow down other applications that
need to access the same resources. In Figure 7 , however, the
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Figure 6. Total time of one iteration on all the devices when saving the rules
at the end of the iteration

distribution of execution time without saving the rules in the
database is increasing constantly, meaning that the duration
time can be anticipated for various number of rules.

D. Battery Consumption

Mobile devices obtain the necessary energy for performing
complex operations from their batteries ,which implies that
analysing power consumption on these devices is very impor-
tant. Our approach to calculate energy consumption was to
measure the battery level on the smartphone using Android’s
internal system functions calls [37].

1) Benchmarks: We ran three types of benchmarks. The
first one was designed for testing only the PEMD alone,
which was executing sets of 100 Proactive Rules each 30
seconds. The Proactive Rule used in these tests was designed
to simulated rules that would be used in different real-world
applications. In the second benchmark, we simulated the
interaction of a user with the screen of his/her smartphone by
using a wakelock application that woke up the screen of the
device, at 100% brightness, for a total of 18 minutes per hour.
And, in the last benchmark, both the PEMD and the wakelock
application were running simultaneously on the smartphone.

For all three benchmarks, 10 executions of 1 hour each
were performed in order to compute their averages. During
the tests the smartphone’s Global Positioning System (GPS),
Wireless fidelity (Wi-Fi), Bluetooth and the other mobile data
connections were turned off.

2) Results: The results, shown in Table II, indicate first
that executing Proactive Rules on a running PEMD, during 1
hour, takes only 1.5% of the total amount of the battery of the
smartphone and second that a standard application consumes
significantly more energy than a PEMD. The results of the
third benchmark confirm the difference obtained between the
first two benchmarks.
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—o— pPC
1,000 + |

500 - 1
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| | | | |
200 400 600 800 1,000

# of rules executed per iteration(ms)
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Figure 7. Iteration time on different devices without saving the rules at the
end of the iteration

TABLE II. Average Battery Consumption

Applications Average
PEMD 1.5%
Wakelock app 4.3%
Wakelock app + PEMD 5.4%

E. Discussions

Our tests were necessary for estimating the optimal number
of Proactive Rules, which can be executed in one iteration by
the Rules Engine on a smartphone and on a tablet, without
having big delays. This aspect is very important when we want
to design applications that can execute Proactive Rules on each
device.

Our energy consumption analysis on the smartphone in-
dicates that PEMDs do not take much battery consumption,
which is a key aspect when developing models for smart
applications.

In the future, the PEMDs should be able to allow multiple
applications to execute concurrently Proactive Rules. This
opens new perspectives and new challenges. If we take 5
applications with peak periods of approximately 250 rules
instances for each we reach easily a number bigger than 1000
rules. And, if for now, running 1000 Proactive Rules on mobile
devices does not raise performance issues, for bigger sets of
Proactive Rules we could imagine slight problems. Solutions
for this problem can be developed either by dividing rules into
optimal sets of rules for running at each iteration or setting up
a priority mechanism to distinguish between the crucial rules
that need to be executed and the rules that can wait a couple
of more iterations to be executed.

V. CONCLUSION AND FUTURE WORK

In this paper, we indicated the need of a rule-based engine
for mobile devices capable of executing complex tasks like
on the desktop computers. We also showed how few and
limited possibilities are currently available for having rule-
based systems on mobile devices. Then, we introduced a new



model capable of enhancing mobile devices with Proactive
Computing properties and with support for executing collab-
orative applications. Our experiments indicate that Proactive
Engines can be successfully integrated into mobile devices,
that the model is able to run on different mobile devices
and that the processes of our model are very efficient from
a computational point of view and do not affect the overall
performance of a device. Moreover, the performance of the
PEMDs on smartphones and tablets was analysed and com-
pared to the performance of PEs on desktop computers. A
solution was provided for improving significantly the execution
time of Proactive Rules by saving them when shutdown events
occur instead of saving them during each iteration of the
PEMD.

More tests are to be completed, to check the duration
of the communication operation when multiple devices are
involved in this process. For instance, we would like to
know how much time it would take for a message to arrive
to its destination when there are hundreds or thousands of
this kind of operations performed at the same time. Also,
future tests will include measurements to check how a device
handles multiple receiving operations at the same time, like,
for example, when more than 100 messages are sent to the
same device at the same time. Also, our next evaluations will
include services like Pushy instead of GCM for exchanging
messages between the Proactive Engines, in order to check if
these frameworks affect the overall performance of the mobile
devices.

Future work will include developing smart applications
capable of collaborating together and of performing joint
complex actions. Our current work includes the development
of a version of an PE for mobile devices running on iOS, and,
on developing modified version of the Proactive Engine for
wearable devices, which are capable of performing complex
tasks, like the new generation of smartwatches.
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