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Abstract-Bending of shear-deformable orthotropic cylindrical shells. reinforced by ring stiffeners. 
manufactured from a cylindrically-orthotropic material. in a steady-state thermal field. isconsidered. 
The difference between the temperatures outside and inside the shell remains constant. The material 
properties of the shell and the stiHeners can depend on the temperature. Closed-form solutions are 
obtained in a number of important particular cases. Numerical examples illustrate that even 
moderate diffcrcnces between the external and internal temperatures can result in significant stresses 
and deformations of the shell. 

Thcrmoclnstic prohlcms of composite matcri;ll structures represent significant interest for 

acrospi~cc. shipbuilding and prcssurc-vcsscl industries. In particular. composite cylindrical 

shells rcinforccd in the axial and/or circumfcr~ntial directions arc an important structural 

clcmcnt. Static and dynamic problems of rcinforccd composite cylindrical shells and panels 

have been studied by Thiclcmann (1960). Block (1968). Bogdanovich and Koshkina (1983. 

I984). Bogdanovich (1986). Bushnell CI ~1. (1988). Errnan (1988, 1990a-c) and Birman 

and Ucrt (IWO). Thermal cffccts have been considcrcd in two of the papers listed above 

(Rirmnn. I99Ob; Birman and Ikrt, 1990). I-lowcver, material properties were assumed to 

bc indcpendcnt of tcmpcraturc in thcsc papers. 

In the present study, an axisymmctric thcrmoelustic problem of ring-reinforced com- 

posite cylindrical shells with material propcrtics afl’ected by temperature is considered. A 

steady-state thermal field is due to a constant diffcrencc between the temperatures outside 

and inside the shell. The shell material is shear dcformablc and specially orthotropic SO 

that the fibers’ directions coincide with the shell axis. The ring stiffeners are cylindrically 

orthotropic and equally spud. 

The closrd-form solutions arc obtained for deformations (and stresses) of the shell 

bctwecn the stiffcncrs and for compliances of the stiffeners manufactured from materials 

with temperature-indepcndcnt properties. If the properties of the stiffeners depend on 

temperature, an approximate solution can be obtained by the collocation method as shown 

in this paper. 

ANALYSIS 

Consider a specially-oithotropic circular cylindrical shear-deformable shell reinforced 

by equally-spaced ring stifTcners, Fig. I. The fibers are oriented along the axis so that the 

shell material is transversely isotropic. The movements of the end cross-sections in the axial 
direction arc not restricted. A steady-state thermal field is characterized by constant external 
and intcrnnl tempcraturcs, dcnotcd T, and T, rcspcctively. In addition, a uniform pressure 

p is applied to the external surface of the shell. 
The stress analysis is carried out as follows. First, deflections within a bay between 

two adjacent stiflcncrs are considered. The boundary conditions necessary to specify these 
deflections are determined from the analysis of the radial deformations of the ring stiffeners. 

Finally, the stresses in the shell and in the stitTcners are calculated. A similar approach was 
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Fig. I. Cylindrical shell between two adjacent ring stikncrs 
analysis. 

applied to the study of the bending of ring-reinforced 

thermal etTcct~ by I’apkovitch (1947). 

and coordinate systems used in the 

isotropic cylindrical shells without 

A bay bctwcen two adjacent rings represents a cylindrical shell as shown in Fig. I. The 

thermal field bring independent of the axial (x) coordinate, the heat conduction equation 

reads 

where k,., and k,? are thermal conductivities. In the problem considered here, the thermal 

conductivities k,, and k,Vr are equal at any point, i.e. k,, = kYz = k(T). 

Introducing cylindrical coordinates one can transform the heat conduction equation : 

Now the relationship k = k(r) has to be specified. In this paper it is assumed that the 

thcrmal conductivity in the direction perpendicular to the fibers is a linear function of the 

temperature. Even if this assumption is not applicable, the analysis shown below can be 

used. In this cast the shell must be subdivided into a number of cylindrical sublaycrs of 

very small thickness so that within each sublayer the relationship k(T) can be replaced by 

a best-fit linear function. The analysis can be carried out for each sublaycr while tem- 

peratures at the boundaries of adjacent sublayers should be determined from the continuity 

conditions and from the boundary conditions T(r,) = T,.. T(r,) = r. 

If 

k = k,T+k, (3) 

where k, and k, are constants, eqn (2) reads 
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NOW a new variable is introduced : 

so that eqn (4) can be transformed to 

FY,? = const 

where 

? = r/r,. 

The solution of (6) yields 

T= 
k,, -i_ + Jr Inf+B 

I 

521 

(1) 

(3 

(6) 

(7) 

(8) 

whcrc 

(9) 

Note that if thermal conductivity is independent oftcmperature, the relationship (8) should 

bc rrplacctl by the well-known result 

T= A,InF+B, 

B, = T,. (10) 

(2) Axisymrirlric strew prohknr for u sirc~crr-~l~~brm~~bl~~ c~*lifdricul slrrll 

The strain-displacement relationships for such a shell read 

where u and w are the axial and radial displacements. respectively, the coordinate : is 

positive in the inward direction and t+S is the bending slope. 

The constitutive equations for a specially-orthotropic shell undergoing axisymmetric 

deformations are 
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where Q,, are the reduced stiffnesses and z, are the coefficients of thermal expansion which 
are. in general, functions of temperature. 

The equilibrium equations are 

Nr., = 0 Qt., + ; + N,~~,,, +p = 0 Q, = Al,, (13) 

where N, and N, are in-surface stress resultants, Qr is a transverse shear stress resultant 
and M, is a stress couple. These stress resultants and the stress couple can be obtained in 
a form resembling the expressions used if the material properties are independent of 

temperature : 

(14) 

where 

Il. 2 

{s,,,H,,;. = (Q, I(:). Q,:(z)) =cl= 
-I, ? 

s 

I,. ? 
D II = _,, ? QI ,W=‘d= 

h being the thickness of the shell. 

The integrals in (15) depend on the particular relationships T(z), r,( 7) and Q,,(T). If 
analytical expressions for the cocfhcicnts of thermal expansion and the moduli of elasticity 
are known, and the temperature-radius formulae (8) or (IO) arc used. these integrals can 
be evaluated numerically or. sometimes, analytically. Note that to perform the integration 
the radius r in (8) and (IO) should be related to the radial coordinate by c = R-r. 

The integration of the equations of equilibrium is carried out as follows. The stress 
resultant N, is constant according to the first eqn (13). i.e. N, = NY where NY is the stress 
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resultant of the external axial loads apptied to the ends of the shell. Then the first two eqns 
(14) yield 

N,=~(~+N;)-N:+ A- A,:! (“if );+ (B,2-T)$_C. (16) 

Substitution of NJ given by (16) and QI given by (14) into the second eqn (13) results in 

where 

Now the third cqn (13) can be written in terms of w only: 

The solution of (19) is 

where the K, are constants of integration and the I, are the non-zero roots of the cor- 
responding characteristic equation. 

The values of four constants of integration can be evaluated from the symmetry 
conditions : 

and from the conditions 

(22) 

where g is the compliance of the ring stiffener calculated in the following sections. The 
transverse shear stress resultant Q.r can be evaluated in terms of IV from the third eqn (I 3) 
where the stress couple has to be represented as M,(W) using eqns (14) and (17). 

If shear deformability can be neglected, $ = - )v, and expressions (14) are modified 
accordingly. The equilibrium equations become 
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Transformations yield 

iv_, = 0 (23) 

(24) 

=p+$+(N.:+N:)- 2. (25) 
II 

The solution of eqn (25) is similar to that of (19). This equation is simplified even more if 

material properties can be assumed insensitive to temperature and N_f = 0. In the latter 

case the coetlicient at H:,~, is equal to zero and standard solutions can be used. 

(3) A.ris_vmmelric hear transfer problem for qvlindrically-orthotropic rinq stiffeners 
Two possibilities are considered here, i.e. the case of very thin rings attached to the 

internal surface of the shell and the case of thicker rings which arc either attached to a very 

thin shell or extend to the external surface. Obviously, in the first case it is safe to assume 

that the tcmpcraturc is constant throughout the ring. i.e. T = T,. In the latter case a 

distribution of tempcraturc in the ring can bc obtained from the heat conduction equation. 

This equation is written here by the assumption that the thermal conductivities in the radial 

and thickness directions arc indcpcndent of temperature: 

LT.,, + k<T.!, = 0 (26) 

where k, and ki are the thermal conductivities and the coordinate i is introduced according 

to Fig. 2. The solution of (26) must satisfy the following boundary conditions: 

5-0.1: T= T, 

r = ?, : T= T, 

r = iC: T= T,. (27) 

Conditions (27) imply that the thickness of the shell is negligible compared to the depth of 

the stiffener. The solution is sought in the form 

Fig. 2. Geometry of the ring stifTener. 
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T = ?-R(r) T,(Z). (28) 

Substitution of (28) into (26) and some transformations yield 

T R = (29) 

where A,, E,. CR and L are constants which can be found from the boundary conditions. 
Consider, for example. the case where T, = 0. Then 

where 

fn(r) = sinh (T&r)-tanh (y &i.)cosh (y&r). 

(30) 

(31) 

(4) Cotnpliances of c~linnri~all,v-orfhotropic heated annular plates 
Consider now the problem of axisymmetric deformations of cylindrically-orthotropic 

annular plates subject to a uniform compressive loading of intensity q at the outer boundary. 
The strain-displaccmcnt relationships are 

u’ 
&r = u,, Eo=;r (32) 

ii being a radial displaccmcnt. 
The constitutive relationships read 

a, = {C.,V&- J^b [a,(T) + wdT)l dT }A 
[ati(T) + QA(T)I dT }& (33) 

where Poisson’s ratios vu, and v,~, can be assumed to be independent of the temperature. 

Substitution of (32) into (33) and subsequent integration throughout the plate thickness 

yield the stress resultants : 

N, = A,$, + A”, ; -NT 

a 

N,, = A,li,+A,; -N:. 

In (34) 

(A,,. &I = o’ i--& I (l.ve,)dr 
, 

(34) 
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[r,(T) + r,,,r,,( 7-l] dif dZ 

[T,,( 7-l + r,,,x,( 731 cl T d:. (35) 

Obviously. the stiffnesses and thermal terms in (35) depend on the particular relationships 

E,(T). E,,(T). vJT). ra,(7”). r,(T) and x,,(T). If these relationships are known. the 
substitution of T = T((z. r) and integrations according to (35) yield ‘-l,,(r). . . _, ,V$(r). 

The equation of equilibrium is 

frN,)., - N,, = 0 (36) 

which upon substitution of (34) yields a second-order differential equation for 17: 

r4,lj.w + [(rrl,,)., + A,,, - A,,,]ii,, + (rrl I,,., - rl ,,,,I -- - (r/V;),, + Nd = 0. 
r 

(37) 

In a general case this equation has variable cocllicicnts and cannot bc integrated in a closed 

form. The boundary conditions at the external and internal boundaries arc : 

r = ?, : N,=O: r = 2,: N, = il. (38) 

The solution can bo found by a collocation method using power ssrics to rcprcscnt radiai 
displaccmonts : 

Substitution of (34) and (30) into (3X) yicltls 

An additional (HI-- 2) algebraic equations are obtained from the equilibrium equation if 

one requires it to be Wished at (UI -2) points throughout the depth of the plate: 

c {hJ(~l- 1) + [(rh),, + &, - &]rJ + f.+fr,r., - .&,I), -,,(J,,r; ’ 
R - 2 

where 

(42) 

and k varies from one to (m - 2). 

The substitution of q = I yields the values of n,, corresponding to a unit load. Now 
ii can be calculated; this value is equal to one half of the compliance of the stitfener 
since each annular plate supports two adjacent spans. Therefore. the value of the compliance 
in (22) should be taken as being equal to g = 3i(Fc: q = I). 
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(5) Particular case : cylindrically-orthotropic annular plates with temperature-independent 
properties 

In this case the A,, given by (35) are constant. If the stiffener is very thin so that T z r 
the thermal terms become 

NT= (A~.t5~,+~,s~,)~ (s.j= r.6). (43) 

If T = T(r,?). then the thermal terms can be evaluated depending on a particular dis- 

tribution of temperature. For example. if this distribution is given by (30). 

N- = B(A,z,+A,,z,)T,t i 
h(r) 

ns I. I. 5 . (nwx) * 

The equilibrium eqn (37) is simplified : 

_ 

rff ,,C.,, + ( A ,,, - &F., - 4~ 3 = f(r) (45) 

where j‘(r) is a function which depends on a particular temperature distribution. The 

homogeneous equation corresponding to (45) can bc reduced to Euler’s equation. Then the 

solution of (45) can bc written as 

ri = C.‘,r”l + C2r”’ + (b(r) (-I(,) 

whcrc C, and C: arc constants of inlcgration. 

(47) 

and (b(r) is a particular integral of the non-homogeneous equation which can bc easily 

evaluated for the thermal terms given by (43) or (44). Constants of integration are obtained 

from the boundary conditions (38). 

NUMERICAL EXAMPLES 

The purpose of the following examples is to illustrate that even moderate temperature 

gradients in the radial direction (of the order of 100°F) can result in large deflections and 

stresses of composite shells. The material of the shell considered in the examples was 

boron/Al7178-T6 with the following properties: E, = 213.75 GPa. E? = 131.01 GPa. 

Y ,, = 0.255. SL, = 5.16 x low6 (F’) ‘, z2 = IO-’ (F’) _I. These properties were assumed to 

remain constant since fluctuations of tcmpsrature in the thickness dirtxtion were limited. 

The dircztion of the fibers coincided with the shell axis. The geometry of the shell was 

/I = 0.004 m. R = 2 m and L = 0.5 m (cxccpt for Fig. 5 were L varied). The ring stifTcncrs 

wcrc assumed to be rigid so that W( f L/3) = 0. In the cxamplcs presented here N,: = 0. i.e. 

the shell is neither restricted nor loaded in the axial direction. 

The thermal terms given by (15) can be easily calculated in this case: in the following 
formulae they are complemcntcd by AU,: which is necessary to calculate the strcsscs : 

where 
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F, = ~,r,[(R+I;)ln(I?+i;)-Z~]+B,h 

F2 = .-t,r’[~(8’-~)ln(R+i;)-R~] 

R = R r, /i= h3, 

d, and B, are given by (IO). (49) 

As follows from the calculations, the effect of shear deformability is negligible for a shell 
with the chosen geometry. Therefore, the analysis was based on eqns (24). (25) where 
B,j = 0 since the properties are independent of c. 

The effect of the external temperature on the radial deflections at the midspan is shown 
in Fig. 3 (deflections are measured in meters in Figs 3-5). It appears that a shell subject to 
an elevated temperature on the external surface will bend in the outward direction. A 
uniformly-distributed external pressure (p > 0) reduces deflections. On the other hand. as 
would be expected. internal pressure (p < 0) results in larger deformations. An elevated 

I lO+Ji 
3 

1 

1.0 I& 2 
0 100 *. 

Fig. 3. Ellh of cntcrnal tcmpcraturc and prcssurc on radial deformation ; K = 0. curve I : p = 0. 
curve 2 : p = 50 kh. curve 3 : p = - 50 kP;t. 

1.0 

0 

I 
100 *. - *I 

Fig. 4. EITwI of temperature gradient and pressure on radial deformation; T, = 50 F, curve I : 
p=O,curve2:p=S0kPa,curvc3:p= -5OkPa. 

I 

0 0.2 0.3 0.4 0.5 L 

Fig. 5. EfTcct of spacing of ring stiffeners on radial deformation : r = 0. p = 0. curve I : TC = 100’. 
curve?: T,= I5O‘.curvc3: T,=NO. 
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0 100 =. 

Fig. 6. Maximum strews at midspan in megapascals: c = 0. p = 0. 

temperature results in outward radial deflections. even if it is uniform. as follows from Fig. 

4. Additional outward deformations appear as a result of an increasing outside temperature 

or internal pressure. 

The influence of the spacing of the stiffeners on the deflections of the midspan is shown 

in Fig. 5. Note that there is a value of the span L corresponding to the maximum deflection. 

This conclusion is not surprising since a similar phenomenon was observed for beams on 

elastic foundation and for cylindrical shells subject to concentrated loading; set Figs 9.8 

and 9.18 in the book by Calladine (1983). 

Finally, maximum stresses at the midspan and at the cross-sections over the ring 

stifTcncrs are shown in Figs 6 and 7. As follows from thcsc figures, larger stresses exist at 

the cross-sections whcrc the shell is supported by the ring stiffcncrs than at the midspan. 

The lines Ia, and tar( in Fig. 6 almost coincide. Note that in this example n, is iI 

bending stress while n,. includes both bending and mcmbranc portions. Mcmbrnnc strcsscs 

0,. arc tcnsilc at the midspan and comprcssivc at .V = 1 L/2. The strcsscs arc quite significant 

cvcn at a rather small (100 F) dilrcrcncc bctwccn the tcmpcraturcs outside and inside the 

shell. The maximum stress in the circumfcrcntial direction at x = + I,/?. i.c. 96.5 MI%. is 

cqual to 58.5% of the yield strcsscs in the direction pcrpcndiculnr to the libcrs (I65 Ml%). 

Thcrcforc. cvcn ;I moclrratc dilrcrcncc bctwccn the tcmpcraturcs on thccxternal and internal 

surfaces can result in very high strcsscs in the shell. 

CONCLUSIONS 

Stcndy-state thrrmoclastic bending problems of shear-deformable spcciully-ortho- 

tropic cylindrical shells, reinforced by cylindrically-orthotropic ring stifrcners. are 

considcrcd. The solutions obtained in the paper make it possible to include the cffccts of 

temperature on material proprrtirs in the analysis. The analytical solutions for the shells 

are obtained in a closed form. The solutions for the ring stilTcncrs which arc ncccssary both 

to cvaluatc their compliances as well as to check the strength can bc obtained in a closed 

form (propcrtics indcpendcnt of tcmpcrature) or by the collocation method (gcncral case). 

0 100 =. 

Fig. 7. maximum stresses in stiffener cross-section (in mcgapascals): T, = 0. p = 0 
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It is shown that high stresses can exist in shells due to relatively small differences between 
the outside and inside temperatures. 
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