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Abstract—Bending of shear-deformable orthotropic cylindrical shells. reinforced by ring stiffeners.
manufactured from a cylindrically-orthotropic material. in a steady-state thermal field, is considered.
The difference between the temperatures outside and inside the shell remains constant. The material
properties of the shell and the stiffeners can depend on the temperature. Closed-form solutions are
obtained in a number of important particular cases. Numerical examples illustrate that even
moderate differences between the external and internal temperatures can result in significant stresses
and deformations of the shell.

INTRODUCTION

Thermoclastic problems of composite material structures represent significant interest for
acrospace, shipbuilding and pressurc-vessel industrics. [n particular, composite cylindrical
shells reinforced in the axial and/or circumfergntial directions are an important structural
clement. Static and dynamic problems of reinforced composite cylindrical shells and panels
have been studied by Thiclemann (1960), Block (1968), Bogdanovich and Koshkina (1983,
1984), Bogdanovich (1986), Bushncll ¢f al. (1988), Birman (1988, 1990a—) and Birman
and Bert (1990). Thermal effects have been considered in two of the papers listed above
(Birman, 1990b; Birman and Bert, 1990). However, material properties were assumed to
be independent of temperature in these papers.

In the present study, an axisymmetric thermoelastic problem of ring-reinforced com-
posite cylindrical shells with material propertics affected by temperature is considered. A
steady-state thermal ficld is due to a constant difference between the temperatures outside
and inside the shell. The shell material is shear deformable and specially orthotropic so
that the fibers' directions coincide with the shell axis. The ring stiffeners are cylindrically
orthotropic and equally spaced.

The closed-form solutions are obtained for deformations (and stresses) of the shell
between the stiffeners and for compliances of the stiffeners manufactured from materials
with temperature-independent properties. If the properties of the stiffeners depend on
temperature, an approximate solution can be obtained by the collocation method as shown
in this paper.

ANALYSIS

Consider a specially-orthotropic circular cylindrical shear-deformable shell reinforced
by equally-spaced ring stiffcners, Fig. 1. The fibers are oriented along the axis so that the
shell material is transverscly isotropic. The movements of the end cross-sections in the axial
direction arc not restricted. A stcady-state thermal field is characterized by constant external
and internal temperatures, denoted T, and T, respectively. In addition, a uniform pressure
p is applied to the external surface of the shell.

The stress analysis is carried out as follows. First, deflections within a bay between
two adjacent stiffeners are considered. The boundary conditions necessary to specify these
deflections are determined from the analysis of the radial deformations of the ring stiffeners.
Finally, the stresses in the shell and in the stiffeners are calculated. A similar approach was
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Fig. 1. Cylindrical shell between two adjacent ring stiffencrs and coordinate systems used in the
analysis.

applied to the study of the bending of ring-reinforced isotropic cylindrical shells without
thermal effects by Papkovitch (1947).

(1) Axisymmetric heat transfer problem for a cylindrical shell with thermal conductivity
dependent on temperature

A bay between two adjacent rings represents a cylindrical shell as shown in Fig. 1. The
thermal field being independent of the axial (x) coordinate, the heat conduction cquation
reads

(kvlT.rl).rl + (k)'l’r.}'l).yl = 0 (l)

where &,y and k,, are thermal conductivities. In the problem considered here, the thermal
conductivities &, and &,; are equal at any point, i.e. k,; = k,; = k(7).

Introducing cylindrical coordinates one can transform the heat conduction equation :
|
k\T,+-T |+k,T, =0. (2)
r

Now the relationship & = k(r) has to be specified. In this paper it is assumed that the
thermal conductivity in the direction perpendicular to the fibers is a lincar function of the
temperature. Even if this assumption is not applicable, the analysis shown below can be
used. In this case the shell must be subdivided into a number of cylindrical sublayers of
very small thickness so that within each sublayer the relationship £(T) can be replaced by
a best-fit linear function. The analysis can be carried out for each sublayer whilc tem-
peratures at the boundaries of adjacent sublayers should be determined from the continuity
conditions and from the boundary conditions 7(r,) = T, T(r;) = T.

[
k =k T+kq (&)

where &k, and kq are constants, eqn (2) reads
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(knT+ko)<T.,,+ ;T.,)+k.(T.,)3 =0. )

Now a new variable is introduced :

(kY

so that eqn (4) can be transformed to

7Y ;= const (6)
where
F=rfr. (7
The solution of (6) yiclds
r= - SR ®)

where

('/;—7;)(’1;+'1'.+220) koY
A R S ,,,,l_ . B = (T.+ .0) . (9)
\/In rr, “

Note that if thermal conductivity is independent of temperature, the relationship (8) should
be replaced by the well-known result

T=A,InF+ B,
TC—T‘I

"'l = BI = 7‘l‘ (IO)
Inr,/r,

(2) Axisymmetric stress problem for a shear-deformable cylindrical shell
The strain-displacement relationships for such a shell read

Er = u..r+-lll..r ﬂ: = 7“‘ = “I’_r.‘ = 0

w
s_v —

R Vo2 ™ 'p+ W (1

where w and w are the axial and radial displacements, respectively, the coordinate - is
positive in the inward direction and ¢ is the bending slope.

The constitutive equations for a specially-orthotropic shell undergoing axisymmetric
deformations are
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a-: = r\_\' = r_l': = 0 . (12)

where @, are the reduced stiffnesses and x, are the coefficients of thermal expansion which
are. in general, functions of temperature.
The equilibrium equations are

Nv..t = 0 Q,r.x + — + ‘V\'w.,\'x +P = O Q.r = A[\'.,r (l3)

where N, and N, are in-surface stress resultants, Q. is a transverse shear stress resultant
and M is a stress couple. These stress resultants and the stress couple can be obtained in
a form resembling the expressions used if the material properties are independent of
temperature

W

R
= A ,— A "'+B l!/ —-N!
MU vy 4 .
124 ’..R 12¥ v

=
!

+Blll/’.\—N\r

= A u,—d;,

c =z
o

=AY +w))
= B..u.‘+o,.w.\,—6.:',; -M7 (14)

=
S~
-

l

(h'2

{A11 A2 Ass) {Q11(2),01:(2), Qss(2)} dz

Johi2

*h:2

l

(B, B:} 1011(2). Q1:(2)} = d:

Joh2

"h 2

D, = Q,,(:)::d:

Ny T

2 (" 1(z) AH

[err‘ Iwrr] = J‘ {QH(Z) 1.rdT+le(3) j %dT}[l,:] d:-

~h/2 Jo

hi2 (7 ()

N = f {Ql:(:) 2. dT+Q1s(2) j a,dT}d:. (15)
2 J 0

h being the thickness of the shell.

The integrals in (15) depend on the particular relationships 7(z), 2(7) and Q,(T). If
analytical expressions for the cocflicicnts of thermal expansion and the moduli of elasticity
are known, and the temperature-radius formulae (8) or (10) arc used. these integrals can
be evaluated numerically or, sometimes, analytically. Note that to perform the integration
the radius » in (8) and (10) should be related to the radial coordinate by - = R—r.

The integration of the equations of equilibrium is carried out as follows. The stress
resultant N is constant according to the first eqn (13).i.e. N, = N? where N? is the stress
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resultant of the external axial loads applied to the ends of the shell. Then the first two eqns
(14) yield

Alﬂ
N, =—=
’ Ay

A:‘y W A.B
(NI+ND)-NT+ (T:;—Azz)§+(a.:— ;““)%. (16)

Substitution of N, given by (16) and Q, given by (14) into the second eqn (13) results in
!l/_‘ = Sl +SZ“‘.\'1+S}“. (17)

where

Ay NT
S, = —[p+ T RWVHND - }/S
i

A, R
Sy = —(Ass+NJ)/S
A%Z 2
5= ~<An —An)/SR
Ayl I
S=Ass+(3:z“‘A::Bn)‘k— (18)

Now the third eqn (13) can be written in terms of w only:

8:’.) ( 83‘) Bud: B
D= = ) SaW ere Dy = == S, 4 —r—r e
( nT AW g, +[ 1 A v+ AR R

—Ags(l +Sz)]w.x.r°AssSJ" = A58 (19)

The solution of (19) is

L Sy
W= Z K e — — 20
Pl S

where the K, are constants of integration and the 4, are the non-zero roots of the cor-
responding characteristic equation.
The values of four constants of integration can be evaluated from the symmetry

conditions:
L
w, <Z’:) =W, (_ g) = 0 2n

L L
w (i‘ f) = gQ. (i ‘2‘) (22)

where g is the compliance of the ring stiffener calculated in the following sections. The
transverse shear stress resultant @, can be evaluated in terms of w from the third eqn (13)
where the stress couple has to be represented as M, (w) using eqns (14) and (17).

If shear deformability can be neglected, ¢ = —w, and expressions (14) are modified
accordingly. The equilibrium equations become

and from the conditions

SAS 24:7-8
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N,
N,.=0 M +Nw.  + i' +p=0. (23)
Transformations yield
"_‘=(N£+A|:E+B||W_u+NI)/An (24)

Bi,) [ ( B,.A,‘)l 0] l < Al )
Dy———|w ux,\'+ 2 B pla ~ )= —Nr “'.t.\'+ 2\ = +A 2 w
( a Ay : A, /R R* Ay, :

A|2 0 T
=p+ 2 NT)— =2,
p+A[|R(N‘+ ¥ R

T
v

(25)

The solution of eqn (25) is similar to that of (19). This equation is simplified even more if
material properties can be assumed insensitive to temperature and N? = 0. In the latter
case the coefficient at w . is equal to zero and standard solutions can be used.

(3) Axisymmetric heat transfer problem for cylindrically-orthotropic ring stiffeners

Two possibilities are considered here, i.e. the case of very thin rings attached to the
internal surface of the shell and the case of thicker rings which are cither attached to a very
thin shell or extend to the external surface. Obviously, in the first case it is safe to assume
that the tempcrature is constant throughout the ring, i.e. T= T, In the latter case a
distribution of tempcrature in the ring can be obtained from the heat conduction equation.
This equation is written here by the assumption that the thermal conductivities in the radial
and thickness directions arc independent of temperature:

krT.rr +k, T..‘.' =0 (26)

where &, and k, are the thermal conductivities and the coordinate 7 is introduced according
to Fig. 2. The solution of (26) must satisfy the following boundary conditions :

7=0,1: T=T,
r=F: T=T,
r=F: T=T. 27

Conditions (27) imply that the thickness of the shell is negligible compared to the depth of
the stiffener. The solution is sought in the form

-]
"
o
o~

Fig. 2. Geometry of the ring stiffener.
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T =Tx(NT.C5). (28)

Substitution of (28) into (26) and some transformations yield

A i A
T,=CRsinh—r+cosh—"—r T.=A.sin—-—-f+B.cos—A—= 29)

where A, B., Cr and 4 are constants which can be found from the boundary conditions.
Consider, for example, the case where T, = 0. Then

x

T=
LE] I.ZJ.S nnj:l c)

Jo(r )sm— (30)

where

f,(r) = sinh <’—tt2 \/%r)— tanh <EF \/E )cosh (n[n \/::r> 31

(4) Compliances of cylindrically-orthotropic heated annular plates

Consider now the problem of axisymmetric deformations of cylindrically-orthotropic
annular plates subject to a uniform compressive loading of intensity q at the outer boundary.
The strain-displacement relationships are

G=id, = (32)

i being a radial displacement.
The constitutive relationships read

o, —{ &+ Vo£g— f (e (T)+Va,aa(7')]dT}

L= v4¥o

0y = {s.,+ Voo, — f (2 T) + v, (T)] dT} (33

- VooVor

where Poisson’s ratios v, and v,, can be assumed to be independent of the temperature.
Substitution of (32) into (33) and subsequent integration throughout the plate thickness
yield the stress resultants:

-~

- u T
Nr = Anu,r'*'Al)r; "'Nr

-~

Ny = Aol + A.,,,g —NT. (34)

In (34)

' E
(Arn Aﬂr) = J‘ l (l vt)r) d"
0 — VegVo,

(Ao Arg) = f (1,vg)dZ

0 l—Vra Or
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~,

-r ’ Er d =
N = j o A AT F v (T AT d3
[

o l — V,a¥e,

NI = f I—w‘--—‘— {J [xA T) +v,02, (T)]dT} dz. (35)
0 L=V¥y,

Obviously. the stiffnesses and thermal terms in (35) depend on the particular relationships
E(T), EAT). v(T). vo(T), 2(T) and 2,(T). If these relationships are known, the
substitution of T = T(Z, r) and integrations according to (35) yield A,.(r). . ... NI

The equation of equilibrium is

(rN), =N, =0 (36)

which upon substitution of (34) yields a second-order differential equation for i:
1
r"lrrﬁ,rr + [(rArr).r + ANr - 44rﬂ]ﬁ,r + (rAl)rJ i Am)) ,: — (rfvrr).r + N!f = O (37)

In a general case this equation has variable coeflicients and cannot be integrated in a closed
form. The boundary conditions at the external and internal boundarics arc:

r=Fr: N, =0: r=r. N, =q. 38)

The solution can be found by a collocation method using power series to represent radial
displacements:

i = Z aur". (39)

Substitution of (34) and (39) into (38) yiclds

S ALY+ A (Pl = NIGF) =0

n

Z [nA (P + A (F]a iy ' =N](F) = 4. (40

An additional (m—2) algebraic equations are obtained from the equilibrium equation if
one requires it to be satisfied at (s —2) points throughout the depth of the plate:

”n

z {An"(” -1+ [(r/‘rr)‘r + oy, — Anl]" +rdg,— A }r «r,_“nr;: '

n=2

+ {(r"‘rr)vr + /‘Hr - f‘rﬂ+ r"‘lh’,r - "‘mi]r - r‘"! - (r‘vrlx - N!{)r =y = 0 (4¥ )

where
Ffo—F
Iy = ;.+ R l\' (42)
m—|

and & varies from one to (m—2)

The substitution of ¢ = | yiclds the values of a, corresponding to a unit load. Now
u(Fe) can be calculated ; this value is equal to one half of the compliance of the stiffener
since each annular plate supports two adjacent spans. Therefore, the value of the compliance
in (22) should be taken as being equal to g = 27,1 ¢ = 1).
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(5) Particular case: cylindrically-orthotropic annular plates with temperature-independent
properties

In this case the A, given by (35) are constant. If the stiffener is very thinso that T = T,
the thermal terms become

N.rr = (‘4J11K+A131])T‘I (S.j= r. 0) (43)

If T = T(r,Z). then the thermal terms can be evaluated depending on a particular dis-
tribution of temperature. For example. if this distribution is given by (30),

i Ja(r)

NI =8(A,2,+ A,2) Tt — . H
( N s, L) )
The equilibrium eqn (37) is simplified :

FA it (Ai— Adit, = Ao = £(r) (45)

r

where f(r) is a function which depends on a particular temperature distribution. The
homogencous equation corresponding to (45) can be reduced to Euler's equation. Then the
solution of (45) can be written as

= Cr' 4+ Cyr's 4+ (r) (46)

where Cy and C, are constants of integration,

VA, +dg—dAdy V(A +A0—A, ¥  Aw
Bi2= Y i\/4 AT + a. (47)

and ¢(r) is a particular integral of the non-homogeneous cquation which can be easily
evaluated for the thermal terms given by (43) or (44). Constants of integration are obtained
from the boundary conditions (38).

NUMERICAL EXAMPLES

The purpose of the following examples is to illustrate that even moderate temperature
gradients in the radial direction (of the order of 100°F) can result in large deflections and
stresses of composite shells. The material of the shell considered in the examples was
boron/A17178-T6 with the following propertics: E, = 213.75 GPa, E, = 131.01 GPa,
vi2=0.255a,=516x10"¢(F’) ' ay=10"*(F") "'. Thesc properties werc assumed to
remain constant since fluctuations of temperature in the thickness direction were limited.
The direction of the fibers coincided with the shell axis. The geometry of the shell was
h=0004m, R=2mand L =0.5m (except for Fig. 5§ were L varied). The ring stiffeners
were assumed to be rigid so that w(+ L/2) = 0. In the cxamples presented here N? = 0, i.c.
the shell is neither restricted nor loaded in the axial direction.

The thermal terms given by (15) can be easily calculated in this case; in the following
formulae they are complemented by M which is necessary to calculate the stresses :

(NILMD} =(Q12+Qi222) {F), F}
{NILM]} =(Q:2)+Q:222) {F\, F3} (48)

where
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F, = A,r,[(R+kR)In(R+h)-2h]+ Bk
AR =R In(R+h)— RA)
R=Rr h=h2r
A, and B, are given by (10). (49)

o
I

As follows from the calculations, the effect of shear deformability is negligible for a shell
with the chosen geometry. Therefore, the analysis was based on eqns (24), (25) where
B,; = 0 since the properties are independent of =.

The effect of the external temperature on the radial deflections at the midspan is shown
in Fig. 3 (deflections are measured in meters in Figs 3-5). It appears that a shell subject to
an elevated temperature on the external surface will bend in the outward direction. A
uniformly-distributed external pressure (p > 0) reduces deflections. On the other hand, as
would be expected. internal pressure (p < 0) results in larger deformations. An elevated

| 10%W|

[+] 100 T

Fig. 3. Effect of external temperature and pressure on radial deformation; 7, = 0, curve | p = 0,
curve 2: p = S0 kPy, curve 3: p = — 50 kPa.

| 10%W|
2.0} 3
1
2
1.0
o 100 T, - T,

Fig. 4. Effect of temperature gradient and pressure on radial deformation; 7, = 50°F, curve |
p=0,curve2: p = 50 kPa, curve 3: p = —50 kPa.

|10%w]
3
2-0 -l /_\
/—\2
1.0 ¢
1
[¢] 0.2 0.3 0.4 0.5 L

Fig. 5. Effect of spacing of ring stiffeners on radial deformation: 7, = 0, p = 0, curve 1 : T, = 100°,
curve 2: T, = 150, curve 3: T, = 200"
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CAPRA

50 ¢
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0 100 T,

Fig. 6. Maximum stresscs at midspan in megapascals: 7, =0, p = 0.

temperature results in outward radial deflections, even if it is uniform, as follows from Fig.
4. Additional outward deformations appear as a result of an increasing outside temperature
or internal pressure.

The influence of the spacing of the stiffeners on the deflections of the midspan is shown
in Fig. 5. Note that there is a value of the span L corresponding to the maximum deflection.
This conclusion is not surprising since a similar phenomenon was observed for beams on
clastic foundation and for cylindrical shells subject to concentrated loading ; see Figs 9.8
and 9.18 in the book by Calladine (1983).

Finally, maximum stresses at thc midspan and at the cross-sections over the ring
stiffeners are shown in Figs 6 and 7. As follows from thesc figures, larger stresses cxist at
the cross-sections where the shell is supported by the ring stiffeners than at the midspan.
The lines |a (T)] and |o(T,)| in Fig. 6 almost coincide. Note that in this example o, is a
bending stress while g, includes both bending and membrane portions. Membrane stresses
g, are tensile at the midspan and compressive at x = + £L/2. The stresses are quite significant
even at a rather small (100 F) difference between the temperatures outside and inside the
shell. The maximum stress in the circumferential direction at x = +£/2, i.¢. 96.5 MPa, is
cqual to 58.5% of the yield stresses in the direction perpendicular to the fibers (165 MPa).
Therefore, even a moderate difference between the temperatures on the external and internal

CONCLUSIONS

Steady-state thermoelastic bending problems of shear-deformable specially-ortho-
tropic cylindrical shells, reinforced by cylindrically-orthotropic ring stiffeners, are
considered. The solutions obtained in the paper make it possible to include the cffects of
temperature on material properties in the analysis. The analytical solutions for the shells
are obtained in a closed form. The solutions for the ring stiffeners which are necessary both
to evaluate their compliances as well as to check the strength can be obtained in a closed
form (propertics independent of temperature) or by the collocation method (general case).

lo, e |o,l
200t o,
100
%
0 100 T,

Fig. 7. maximum stresses in stiffener cross-section (in megapascals): 7, =0, p = 0.
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It is shown that high stresses can exist in shells due to relatively small differences between
the outside and inside temperatures.
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