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We consider synchronization and stability of two unbalanced rotors reversely and fast excited by induction motors fixed on an
oscillating body. We explore the energy balance of the system and show how the energy is transferred between the rotors via the
oscillating body allowing the implementation of the synchronization of the two rotors. An approximate analytical analysis, energy
balance method, allows deriving the synchronization condition, and the stability criterion of the synchronization is deduce by
disturbance differential equations. Later, to prove the correctness of the theoretical analysis, many features of the vibrating system
are computed and discussed by computer simulations. The proposed method may be useful for analyzing and understanding the
mechanism of synchronization, stability, and energy balance of similar fast rotation rotors excited by induction motors in vibrating
systems.

1. Introduction

Synchronization is commonly observed to occur in nature,
such as synchronous oscillations of the nuclei and cells of
malignant tumors in biological objects and geosynchronous
satellites rotating around the earth in celestial mechanics.
All synchronous regimes arise due to natural properties of
the process themselves and their natural interaction. The
history of synchronization investigation goes back to the
17th century when Huygens observed weak synchronization
of two pendulum clocks in a ship [1], and his work has
attracted attention of many scientists in other subjects. For
example, synchronization in acoustic and electroacoustic
systems was discovered by Rayleigh [2]. At the 19th century,
van der Pol found synchronization of a certain electrical-
mechanical system [3]. They called synchronization as “fre-
quency capture” or “frequency synchronization.” A well-
known example is frequency synchronization of oscillating
and rotating bodies inmechanical system,which is also called
self-synchronization. Many research methods to the rotor-
synchronization have been proposed by many scholars. In
the 1960s, Blekhman firstly studied the synchronization and
stability theory of mechanical rotors with nonlinear theory

and wrote some classical monograph [4]. In the 1980s, Wen
proposed average method to explore the theory of synchro-
nization and stability of rotors and successfully applied it
to vibration engineering [5]. Recently, combining nonlinear
theory with average method, Zhang et al. developed the
theory of synchronization and stability of unbalanced rotor
systems in the light of the variable parameter of angular veloc-
ity of induction motors, and they employ the method and
some experiments to investigate the rotor-synchronization
and the synchronous stability in diversity vibrating systems
[6, 7]. Fang et al. also used it to investigate the self-
synchronization of two homodromy rotors coupled with a
pendulum rod in a far-resonant vibrating system [8]. Sperling
et al. presented analytical and numerical investigations of
a two-plane automatic balancing device for equilibration of
rigid-rotor unbalance [9]. In addition, Balthazar et al. [10, 11]
dealt with self-synchronization of two and four nonideal
exciters with numerical simulations. These studies to the
synchronization and the stability related to vibrating systems
greatly facilitate the development of a number of vibratory
ore processing machines and lead to many inventions or
patents including the self-synchronous vibrating feeders, self-
synchronous vibrating conveyors, self-synchronous vibrating
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Figure 1: Dynamic model of the vibration system.

screens, and synchronous rolling mills. The aforementioned
investigation is mainly for the rotor-synchronization or
exciter-synchronization in vibrating system, and the phe-
nomenon of synchronization of pendulums hanging on a
common moveable beam is another research subject by a
number of authors. By the Poincare method and the small
parameter method, Jovanovic and Koshkin have studied syn-
chronization and stability of Huygens’ clocks [12]. Recently,
Koluda and Perlikowski derived the synchronization condi-
tions and explained the energy transmission between double
pendula via an oscillating beam with energy balance method
[13–15]. Kapitaniak et al. explored synchronous states of
slowly rotating pendula considering the oscillating beam
moving in a single DOF [16, 17]. Pena-Ramı́rez concerned
the synchronized motion of Huygens’ model building on
the original work of Blekhman [18, 19]. Yurchenko et al.
described synchronization of rotating parametric pendulums
combining stochastic calculus [20]. The works of these
authors have been facilitating the significant development in
synchronization of pendula.

In this paper, we further extend investigation of a
generalization of the vibrating system on synchronization
and stability of unbalanced rotors fast excited by induction
motors and show how the energy is transferred between
rotors via the oscillating body allowing the implementation
of synchronization of rotors. We use the type model where
two rotors reversely and fast excited by the induction motors
are fixed on an oscillating body in a far-resonant vibrating
system (i.e., the operating frequency of the system is about
4–10 times of its natural frequency, and the damping value is
very small). The performed approximate analytical analysis
allows deriving the synchronization condition and stability
criterion, in addition to explaining the synchronization dis-
cipline with considering diversity features of the vibrating
system. Finally, some numerical simulations are performed
to prove the correctness of the theoretical analysis.

This paper is organized as follows. Section 2 describes
the dynamic model of the proposed vibrating system. In
Section 3 we deduce the energy balance of the synchronous
state (or steady state) of the system. The synchronization
condition and the stability criterion of the two rotors have

been identified in Section 4. Section 5 presents the results
of our numerical simulations and describes the energy
balance of the synchronous states of the system. Finally, we
summarize our results in Section 6.

2. The Dynamic Model of System

The analyzed system is shown in Figure 1. It consists of an
oscillating body and two unbalanced rotors fixed on it. The
oscillating body of mass 𝑚 can move in 𝑥-, 𝑦-, and 𝜓-
directions, and its movement is described by coordinates 𝑥,
𝑦, and 𝜓. The oscillating body is connected to the refuge
by four linear springs installed symmetrically with stiffness
coefficient 𝑘

𝑥
/2 and damping coefficient 𝑓

𝑥
/2 in 𝑥-direction,

with stiffness coefficient 𝑘
𝑦
/2 and damping coefficient𝑓

𝑦
/2 in

𝑦-direction, with stiffness coefficient 𝑘
𝜓
and damping coeffi-

cient 𝑓
𝜓
in 𝜓-direction. Each unbalanced rotor preserves an

eccentric length 𝑟 and a mass 𝑚
𝑖
, where 𝑖 = 1, 2, mounted

at two identical induction motors’ shaft, respectively. The
motion of each rotor is described by angle 𝜑

𝑖
. Parameter 𝑇

𝑒𝑖

represents the electromagnetic moment, which provides the
energy needed to compensate the energy dissipation due to
viscous forces and to keep the rotor rotation. The point 𝑜 is
themass center of the oscillating body. Points 𝑜1 and 𝑜2 are the
rotating centers of the unbalanced rotors 1 and 2, respectively.
Coordinate 𝑜𝑥𝑦 is the fixed frame; coordinate 𝑜



𝑥


𝑦
 is the

moving frame; coordinate 𝑜


𝑥


𝑦
 is the rotation frame. The

dynamic equation of the system can be given as follows [5]:

𝐽0𝑖�̈�𝑖 +𝑓
𝑖
�̇�
𝑖
+𝑚
𝑖
𝑟 ̈𝑦 cos𝜑

𝑖
+ (−1)𝑖𝑚

𝑖
𝑟�̈� sin𝜑

𝑖
+ (−1)𝑖

⋅ 𝑚
𝑖
𝑙
𝑖
�̈� cos (𝜑

𝑖
+𝛽
𝑖
) + (−1)𝑖𝑚

𝑖
𝑟𝑙
𝑖
�̇�
2 sin (𝜑

𝑖
+𝛽
𝑖
)

= 𝑇
𝑒𝑖
, (𝑖 = 1, 2) ,

(1)

(𝑚+

2
∑

𝑖=1
𝑚
𝑖
) �̈� +𝑓

𝑥
�̇� + 𝑘
𝑥
𝑥

=

2
∑

𝑖=1
(−1)𝑖+1 𝑚

𝑖
𝑟 (�̇�

2
𝑖
cos𝜑
𝑖
+ �̈�
𝑖
sin𝜑
𝑖
) ,

(2)
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(𝑚+

2
∑

𝑖=1
𝑚
𝑖
) ̈𝑦 +𝑓

𝑦
̇𝑦 + 𝑘
𝑦
𝑦

=

2
∑

𝑖=1
𝑚
𝑖
𝑟 (�̇�

2
𝑖
sin𝜑
𝑖
− �̈�
𝑖
cos𝜑
𝑖
) ,

(3)

𝐽�̈� +𝑓
𝜓
�̇� + 𝑘
𝜓
𝜓 =

2
∑

𝑖=1
(−1)𝑖

⋅ 𝑚
𝑖
𝑟𝑙
𝑖
[�̇�

2
𝑖
sin (𝜑

𝑖
−𝛽
𝑖
) − �̈�
𝑖
cos (𝜑

𝑖
−𝛽
𝑖
)] .

(4)

In (1)∼(4), 𝑙
𝑖
is the distance between the rotating center of the

unbalanced rotors and themass center of the oscillating body;
𝛽
𝑖
is the angle between 𝑜



𝑜
𝑖
and 𝑥-direction (𝛽1 = 𝜋 − 𝛽2); 𝐽

is the moment of inertia of the whole vibrating system about
the mass center of the oscillating body; 𝐽0𝑖 is the moment of
inertia of the unbalanced rotor i; ( ̇∙) and ( ̈∙) represent 𝑑(∙)/𝑑𝑡

and 𝑑
2
(∙)/𝑑𝑡

2, respectively.

3. Energy Balance of the System

In synchronous state, multiplying (1) by the angular velocity
of the rotor and integrating it over the periodT, we obtain the
equation of the energy balance:

∫

𝑇

0
𝐽0𝑖�̈�𝑖�̇�𝑖𝑑𝑡 +∫

𝑇

0
𝑓
𝑖
�̇�
𝑖
�̇�
𝑖
𝑑𝑡 +∫

𝑇

0
𝑚
𝑖
𝑟 ̈𝑦�̇�
𝑖
cos𝜑
𝑖
𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟�̈��̇�
𝑖
sin𝜑
𝑖
𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑙
𝑖
�̈��̇�
𝑖
cos (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟𝑙
𝑖
�̇�
2
�̇�
𝑖
sin (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡

= ∫

𝑇

0
𝑇
𝑒𝑖
�̇�
𝑖
𝑑𝑡, (𝑖 = 1, 2) .

(5)

The first component of (5) indicates the energy produced by
the inertia force where the induction motors act on the 𝑖th
rotor. However, the value of the energy in synchronous state
is approximately zero:

𝑊
INERT
𝑖

= ∫

𝑇

0
𝐽0𝑖�̈�𝑖�̇�𝑖𝑑𝑡 ≈ 0. (6)

The second component of (5) represents energy dissipated by
the 𝑖th rotor in the joints between the roller and the shaft of
the induction motor:

𝑊
DAMP
𝑖

= ∫

𝑇

0
𝑓
𝑖
�̇�
𝑖
�̇�
𝑖
𝑑𝑡. (7)

The next four components describe the energy transferred by
the 𝑖th rotor to the oscillating body:

𝑊
SYS
𝑖

= ∫

𝑇

0
𝑚
𝑖
𝑟 ̈𝑦�̇�
𝑖
cos𝜑
𝑖
𝑑𝑡 +∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟�̈��̇�
𝑖
sin𝜑
𝑖
𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑙
𝑖
�̈��̇�
𝑖
cos (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟𝑙
𝑖
�̇�
2
�̇�
𝑖
sin (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡.

(8)

Integral on the right hand side of (5) describes the part of the
work performed by the induction motors, that is, the part of
this work which is connected with the motion of rotors:

𝑊
DRIVE
𝑖

= ∫

𝑇

0
𝑇
𝑒𝑖
�̇�
𝑖
𝑑𝑡. (9)

Substituting (6)∼(9) into (5) one gets the energy balance of
the 𝑖th rotor:

𝑊
SYS
𝑖

+𝑊
DAMP
𝑖

= 𝑊
DRIVE
𝑖

(𝑖 = 1, 2) . (10)

Adding the energy balance of the two rotors according to (10),
we have

2
∑

𝑖=1
𝑊

SYS
𝑖

+

2
∑

𝑖=1
𝑊

DAMP
𝑖

=

2
∑

𝑖=1
𝑊

DRIVE
𝑖

. (11)

The total synchronization energy, that is, the energy trans-
ferred by the rotors to the oscillating body, is given by

2
∑

𝑖=1
𝑊

SYS
𝑖

=

2
∑

𝑖=1
[∫

𝑇

0
𝑚
𝑖
𝑟 ̈𝑦�̇�
𝑖
cos𝜑
𝑖
𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟�̈��̇�
𝑖
sin𝜑
𝑖
𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑙
𝑖
�̈��̇�
𝑖
cos (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟𝑙
𝑖
�̇�
2
�̇�
𝑖
sin (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡] .

(12)

The total energy dissipated in the joint connecting rotors is
given by

2
∑

𝑖=1
𝑊

DAMP
𝑖

=

2
∑

1
∫

𝑇

0
𝑓
𝑖
�̇�
𝑖
�̇�
𝑖
𝑑𝑡. (13)

Moreover, the total energy of the two induction motors is
given by

2
∑

𝑖=1
𝑊

DRIVE
𝑖

=

2
∑

𝑖=1
∫

𝑇

0
𝑇
𝑒𝑖
�̇�
𝑖
𝑑𝑡. (14)

Nextmultiplying (2) by the velocity of the oscillating body
in the 𝑥-direction and integrating it over the period 𝑇, we
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obtain the equation of the energy balance of the oscillating
body:

∫

𝑇

0
(𝑚+

2
∑

𝑖=1
𝑚
𝑖
) �̈��̇� 𝑑𝑡 +∫

𝑇

0
𝑓
𝑥
�̇��̇� 𝑑𝑡 +∫

𝑇

0
𝑘
𝑥
𝑥�̇� 𝑑𝑡

=

2
∑

𝑖=1
∫

𝑇

0
(−1)𝑖+1 𝑚

𝑖
𝑟 (�̇�

2
𝑖
cos𝜑
𝑖
+ �̈�
𝑖
sin𝜑
𝑖
) �̇� 𝑑𝑡.

(15)

The first component on the left hand side of (15) represents
the increase of the kinematic energy of the oscillating body
and two rotors during the period T, which should be equal
to zero (because of the periodic motion of oscillating body in
the synchronous state):

𝑊
INERT
𝑥

= ∫

𝑇

0
(𝑚+

2
∑

𝑖=1
𝑚
𝑖
) �̈��̇� 𝑑𝑡 = 0. (16)

The next component represents the dissipated energy in the
spring damp 𝑓

𝑥
in the x-direction:

𝑊
DAMP
𝑥

= ∫

𝑇

0
𝑓
𝑥
�̇��̇� 𝑑𝑡. (17)

The last component on the left hand side standing for the
work performed by the force in the springs, due to the
potential character of the force, is equal to zero:

𝑊
POT
𝑥

= ∫

𝑇

0
𝑘
𝑥
𝑥�̇� 𝑑𝑡 = 0. (18)

On the right side of (15) it gives the resultant force of the two
rotors acting on the oscillating body in 𝑥-direction:

𝑊
SYS
𝑥

=

2
∑

𝑖=1
∫

𝑇

0
(−1)𝑖+1 𝑚

𝑖
𝑟 (�̇�

2
𝑖
cos𝜑
𝑖
+ �̈�
𝑖
sin𝜑
𝑖
) �̇� 𝑑𝑡. (19)

Substituting (16)∼(19) into (15), the energy balance of the
oscillating body in 𝑥-direction can be written as follows:

𝑊
DAMP
𝑥

= 𝑊
SYS
𝑥

. (20)

Then multiplying (3) by the velocity of the oscillating
body in the 𝑦-direction and integrating it over the period 𝑇,
we obtain the equation of the energy balance of the oscillating
body:

∫

𝑇

0
(𝑚+

2
∑

𝑖=1
𝑚
𝑖
) ̈𝑦 ̇𝑦 𝑑𝑡 +∫

𝑇

0
𝑓
𝑦

̇𝑦 ̇𝑦 𝑑𝑡 +∫

𝑇

0
𝑘
𝑦
𝑦 ̇𝑦 𝑑𝑡

= ∫

𝑇

0

2
∑

𝑖=1
𝑚
𝑖
𝑟
𝑖

̇𝑦 (�̇�
2
𝑖
sin𝜑
𝑖
− �̈�
𝑖
cos𝜑
𝑖
) 𝑑𝑡.

(21)

The first component on the left hand side of (21) represents
the increase of the kinematic energy of the oscillating body
and both rotors during the period T, which should be equal
to zero (because of the periodicmotion of the oscillating body
in the synchronous state):

𝑊
INERT
𝑦

= ∫

𝑇

0
(𝑚+

2
∑

𝑖=1
𝑚
𝑖
) ̈𝑦 ̇𝑦 𝑑𝑡 = 0. (22)

The next component represents the dissipated energy in the
spring damp 𝑓

𝑦
in the 𝑦-direction:

𝑊
DAMP
𝑦

= ∫

𝑇

0
𝑓
𝑦

̇𝑦 ̇𝑦 𝑑𝑡. (23)

The last component on the left hand side standing for the
work performed by the force in the springs in the𝑦-direction,
due to the potential character of the force, is equal to zero:

𝑊
POT
𝑦

= ∫

𝑇

0
𝑘
𝑦
𝑦 ̇𝑦 𝑑𝑡 = 0. (24)

On the right side of (21) it gives the resultant force of the two
rotors acting on the oscillating body in 𝑦-direction:

𝑊
SYS
𝑦

= ∫

𝑇

0

2
∑

𝑖=1
𝑚
𝑖
𝑟
𝑖

̇𝑦 (�̇�
2
𝑖
sin𝜑
𝑖
− �̈�
𝑖
cos𝜑
𝑖
) 𝑑𝑡. (25)

Substituting (22)∼(25) into (21) the energy balance of the
oscillating body in 𝑦-direction can be rewritten as follows:

𝑊
SYS
𝑦

= 𝑊
DAMP
𝑦

. (26)

At last, multiplying (3) by the velocity of the oscillating
body in the 𝜓-direction and integrating it over the period 𝑇,
we obtain the equation of the energy balance of the oscillating
body:

∫

𝑇

0
𝐽�̈��̇� 𝑑𝑡 +∫

𝑇

0
𝑓
𝜓
�̇��̇� 𝑑𝑡 +∫

𝑇

0
𝑘
𝜓
𝜓�̇� 𝑑𝑡

=

2
∑

𝑖=1
∫

𝑇

0
(−1)𝑖

⋅ 𝑚
𝑖
𝑟𝑙
𝑖
�̇� [�̇�

2
𝑖
sin (𝜑

𝑖
−𝛽
𝑖
) − �̈�
𝑖
cos (𝜑

𝑖
−𝛽
𝑖
)] 𝑑𝑡.

(27)

The first component on the left hand side of (27) represents
the increase of the kinematic energy of the oscillating body
and rotors during the period T, which should be equal to zero
(because of the periodic motion of oscillating body):

𝑊
INERT
𝜓

= ∫

𝑇

0
𝐽�̈��̇� 𝑑𝑡 = 0. (28)

The next component represents the dissipated energy in the
spring damp 𝑓

𝜓
in the 𝜓-direction:

𝑊
DAMP
𝜓

= ∫

𝑇

0
𝑓
𝜓
�̇��̇� 𝑑𝑡. (29)

The last component on the left hand side standing for the
work performed by the force moment in the spring in the 𝜓-
direction, due to the potential character of the force, is equal
to zero:

𝑊
POT
𝜓

= ∫

𝑇

0
𝑘
𝜓
𝜓�̇� 𝑑𝑡 = 0. (30)
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On the right side of (27) it gives the resultant moment of the
two rotors acting on the oscillating body in 𝜓-direction:

𝑊
SYS
𝜓

=

2
∑

𝑖=1
∫

𝑇

0
(−1)𝑖

⋅ 𝑚
𝑖
𝑟𝑙
𝑖
�̇� [�̇�

2
𝑖
sin (𝜑

𝑖
−𝛽
𝑖
) − �̈�
𝑖
cos (𝜑

𝑖
−𝛽
𝑖
)] 𝑑𝑡.

(31)

Substituting (28)∼(31) into (27) the energy balance of the
oscillating body in 𝜓-direction can be written as follows:

𝑊
DAMP
𝜓

= 𝑊
SYS
𝜓

. (32)

Adding together (20), (26), and (32) we obtain the energy
balance of the oscillating body in 𝑥-, 𝑦-, and 𝜓-directions:

∑

𝑗=𝑥,𝑦,𝜓

𝑊
DAMP
𝑗

= ∑

𝑗=𝑥,𝑦,𝜓

𝑊
SYS
𝑗

. (33)

4. Synchronization Condition
and Synchronous Stability Criterion
of the System

4.1. Synchronization Condition. Adding (11) and (33) we get
the energy balance of the whole system in the following form:

2
∑

𝑖=1
𝑊

INERT
𝑖

+

2
∑

𝑖=1
𝑊

SYS
𝑖

+

2
∑

𝑖=1
𝑊

DAMP
𝑖

+ ∑

𝑗=𝑥,𝑦,𝜓

𝑊
DAMP
𝑗

=

2
∑

𝑖=1
𝑊

DRIVE
𝑖

+ ∑

𝑗=𝑥,𝑦,𝜓

𝑊
SYS
𝑗

.

(34)

During the synchronous state oscillations the energy supplied
by the motors is dissipated by the dampers: that is,

2
∑

𝑖=1
𝑊

DAMP
𝑖

+ ∑

𝑗=𝑥,𝑦,𝜓

𝑊
DAMP
𝑗

=

2
∑

𝑖=1
𝑊

DRIVE
𝑖

, (35)

with

2
∑

𝑖=1
𝑊

SYS
𝑖

= ∑

𝑗=𝑥,𝑦,𝜓

𝑊
SYS
𝑗

. (36)

Substituting (33) into (35) and considering (36), the energy
balance of the whole system during the steady periodic
oscillations (or during the synchronous state) can be written
by

2
∑

𝑖=1
𝑊

SYS
𝑖

+

2
∑

𝑖=1
𝑊

DAMP
𝑖

=

2
∑

𝑖=1
𝑊

DRIVE
𝑖

. (37)

Equation (37) describes the energy balance of the whole
system within the energy transmission. It can be said that the
sum of the synchronization energy and the energy dissipated
by the rotors in the joints is equal to the energy produced by
the induction motors.

In actual engineering applications, the same type of
motors keeps the different electrical characteristics as manu-
facturing tolerances. According to (10) and (37), a subtraction
operation on the balance equation of the two rotors, the
equation of the energy difference of the system in the
synchronous state is given by:

2
∏

𝑖=1
𝑊

SYS
𝑖

+

2
∏

𝑖=1
𝑊

DAMP
𝑖

=

2
∏

𝑖=1
𝑊

DRIVE
𝑖

. (38)

We assume that the average phase angular and rotation
velocity of the rotors are 𝜑 and 𝜔

𝑚
, respectively, when the

vibrating system operates in synchronous state. We obtain

�̇� = 𝜔
𝑚

= constant,

�̈� = 0.
(39)

As shown in Figure 1, assuming the average phase and the
phase difference of the two unbalanced rotors to be 𝜑 and 2𝛼,
respectively, then we have

𝜑1 = 𝜑+𝛼,

𝜑2 = 𝜑−𝛼.

(40)

According to (2)∼(4) and (39), in the synchronous state
the response of the vibrating system can be expressed as
follows:

𝑥 = − 𝑟𝑟
𝑚
𝜇
𝑥
[cos (𝜑 + 𝛼+ 𝛾

𝑥
) − 𝜂 cos (𝜑 − 𝛼+ 𝛾

𝑥
)]

𝑦 = − 𝑟𝑟
𝑚
𝜇
𝑦
[sin (𝜑 +𝛼+ 𝛾

𝑦
) + 𝜂 sin (𝜑 −𝛼+ 𝛾

𝑦
)]

𝜓 = − 𝑟𝑟
𝑚
𝜇
𝜓

[−

𝑟
𝑙1 sin (𝜑 + 𝛼 + 𝛽

𝑖
+ 𝛾
𝜓
)

𝑙
𝑒

+

𝜂𝑟
𝑙
𝑟
𝑙1sin (𝜑 − 𝛼 + 𝛽

𝑖
+ 𝛾
𝜓
)

𝑙
𝑒

] ,

(41)

where 𝜔
𝑛𝑥

= √𝑘
𝑥
/𝑀, 𝜔

𝑛𝑦
= √𝑘

𝑦
/𝑀, 𝜔

𝑛𝜓
= √𝑘

𝜓
/𝐽, 𝜉
𝑛𝑥

=

𝑓
𝑥
/√4𝑘
𝑥
𝑀, 𝜉
𝑛𝑥

= 𝑓
𝑥
/√4𝑘
𝑥
𝑀, 𝜉
𝑛𝜓

= 𝑓
𝜓
/√4𝑘
𝜓
𝐽, 𝜇
𝑥

= 1/(1 −

𝜔
2
𝑛𝑥

/𝜔
2
𝑚
), 𝜇
𝑦

= 1/(1 − 𝜔
2
𝑛𝑦

/𝜔
2
𝑚
), 𝜇
𝜓

= 1/(1 − 𝜔
2
𝑛𝜓

/𝜔
2
𝑚
), 𝑟
𝑚

=

𝑚1/𝑀, 𝜂 = 𝑚1/𝑚2, 𝑙𝑒 = √𝐽/𝑀, 𝑟
𝑙1 = 𝑙1/𝑙𝑒, 𝑟𝑙2 = 𝑙2/𝑙𝑒, 𝛾𝑗 =

[2𝜉
𝑛𝑗
(𝜔
𝑛𝑗
/𝜔
𝑚
)]/[1 − (𝜔

𝑛𝑗
/𝜔
𝑚
)
2
], (𝑗 = 𝑥, 𝑦, 𝜓), and 𝑟

𝑙
= 𝑙2/𝑙1.

𝜉
𝑛𝑗
is the damping ratio of the springs in the 𝑗-direction (𝜉

𝑛𝑗
≤

0.07 in this paper). Differentiating the formulas in (41) with
respect to time 𝑡, we can obtain �̈�, ̈𝑦, �̇�, and �̈�.

In the synchronous state of the two rotors, the phase
angle difference 𝜑1 − 𝜑2 = 2𝛼 should be a constant and
independent of the initial conditions.Therefore, the dynamic
parameters of the vibrating system should satisfy the energy
balance equation and the energy difference equation, that is,
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(37) and (38). Substituting those dynamic parameters above
into (37) and (38), we have

2
∑

𝑖=1
∫

𝑇

0
𝑚
𝑖
𝑟𝜔
𝑚

̈𝑦 cos𝜑
𝑖
𝑑𝑡 +∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟𝜔
𝑚
�̈� sin𝜑

𝑖
𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟𝜔
𝑚
�̈� cos (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟𝜔
𝑚
𝑙
𝑖
�̇�
2 sin (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡

+∫

𝑇

0
𝑓
𝑖
𝜔
2
𝑚
𝑑𝑡 =

2
∑

𝑖=1
∫

𝑇

0
𝑇
𝑒𝑖
𝜔
𝑚
𝑑𝑡,

2
∏

𝑖=1
∫

𝑇

0
𝑚
𝑖
𝑟𝜔
𝑚

̈𝑦 cos𝜑
𝑖
𝑑𝑡 +∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟𝜔
𝑚
�̈� sin𝜑

𝑖
𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟𝜔
𝑚
𝑙
𝑖
�̈� cos (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡

+∫

𝑇

0
(−1)𝑖𝑚

𝑖
𝑟𝜔
𝑚
𝑙
𝑖
�̇�
2 sin (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝑡

+∫

𝑇

0
𝑓
𝑖
𝜔
2
𝑚
𝑑𝑡 =

2
∏

𝑖=1
∫

𝑇

0
𝑇
𝑒𝑖
𝜔
𝑚
𝑑𝑡.

(42)

Considering 𝜔
𝑚0𝑑𝑡 = 𝑑𝜑, (42) can be rewritten as

2
∑

𝑖=1
∫

2𝜋

0
𝑚
𝑖
𝑟 ̈𝑦 cos𝜑

𝑖
𝑑𝜑+∫

2𝜋

0
(−1)𝑖𝑚

𝑖
𝑟�̈� sin𝜑

𝑖
𝑑𝜑

+∫

2𝜋

0
(−1)𝑖𝑚

𝑖
𝑟�̈� cos (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝜑

+∫

2𝜋

0
(−1)𝑖𝑚

𝑖
𝑟𝑙
𝑖
�̇�
2 sin (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝜑

+∫

2𝜋

0
𝑓
𝑖
𝜔
𝑚
𝑑𝜑 =

2
∑

𝑖=1
∫

2𝜋

0
𝑇
𝑒𝑖
𝑑𝜑,

2
∏

𝑖=1
∫

2𝜋

0
𝑚
𝑖
𝑟 ̈𝑦 cos𝜑

𝑖
𝑑𝜑+∫

2𝜋

0
(−1)𝑖𝑚

𝑖
𝑟�̈� sin𝜑

𝑖
𝑑𝜑

+∫

2𝜋

0
(−1)𝑖𝑚

𝑖
𝑟�̈� cos (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝜑

+∫

2𝜋

0
(−1)𝑖𝑚

𝑖
𝑟𝑙
𝑖
�̇�
2 sin (𝜑

𝑖
+𝛽
𝑖
) 𝑑𝜑

+∫

2𝜋

0
𝑓
𝑖
𝜔
𝑚
𝑑𝜑 =

2
∏

𝑖=1
∫

2𝜋

0
𝑇
𝑒𝑖
𝑑𝜑.

(43)

Substituting �̈�, ̈𝑦, �̇�, and �̈� into (43) and integrating themover
𝜑 = 2𝜋, we have

1
2
𝑚1𝑟

2
𝜔
2
𝑚

[𝑇
𝑆+

+ 2𝑇
𝑆
cos (2𝛼+ 𝜃

𝑆
)] + (𝑓1 +𝑓2) 𝜔

𝑚

= 𝑇
𝑒1 +𝑇
𝑒2,

1
2
𝑚1𝑟

2
𝜔
2
𝑚

[𝑇
𝑆−

+ 2𝑇
𝐶
sin (2𝛼+ 𝜃

𝐶
)] + (𝑓1 −𝑓2) 𝜔

𝑚

= 𝑇
𝑒1 −𝑇
𝑒2,

(44)

where

𝑇
𝑆+

= 𝑇
𝑆1 +𝑇
𝑆2,

𝑇
𝑆−

= 𝑇
𝑆1 −𝑇
𝑆2;

𝑇
𝑆1 = 𝑟

𝑚
(𝜇
𝑦
sin 𝛾
𝑦
+𝜇
𝑥
sin 𝛾
𝑥
+ 𝑟

2
𝑙1𝜇𝜓 sin 𝛾

𝜓
) ,

𝑇
𝑆2 = 𝜂

2
𝑟
𝑚

(𝜇
𝑦
sin 𝛾
𝑦
+𝜇
𝑥
sin 𝛾
𝑥
+ 𝑟

2
𝑙
𝑟
2
𝑙1𝜇𝜓 sin 𝛾

𝜓
) ;

𝑇
𝑆
= 𝜂𝑟
𝑚





𝑎
𝑆





,

𝑇
𝐶

= 𝜂𝑟
𝑚





𝑎
𝐶





;

𝑎
𝑆
= 𝜇
𝑦
sin 𝛾
𝑦
−𝜇
𝑥
sin 𝛾
𝑥
−𝜇
𝜓
𝑟
𝑙1𝑟𝑙2 sin 𝛾

𝜓
,

𝑎
𝐶

= −𝜇
𝑦
cos 𝛾
𝑦
+𝜇
𝑥
cos 𝛾
𝑥
+𝜇
𝜓
𝑟
𝑙
𝑟
2
𝑙1 cos 𝛾𝜓;

𝜃
𝑆
=

{

{

{

0, 𝑎
𝑆
≥ 0

𝜋, 𝑎
𝑆
< 0,

𝜃
𝐶

=

{

{

{

0, 𝑎
𝐶

≥ 0

𝜋, 𝑎
𝐶

< 0.

(45)

The first formula of (44) is the equation of torque balance
of the vibrating system in the synchronous state, which
serves to find the approximation of angular velocity 𝜔

𝑚
.

Moreover, the second formula of (44) is balance equation of
the torque difference of the two rotors in the synchronous
state, which serves to determine the approximation of stable
phase difference 2𝛼.

Specifying 𝑇
𝑉
as the vibratory torque of the vibrating

system, we have

𝑇
𝑉

= 𝑚1𝑟
2
𝜔
2
𝑚
𝑇
𝐶
. (46)

Then assigning 𝑇
𝐸
as the excessive torque of the rotors, we

have

𝑇
𝐸

= 𝑇Residual1 −𝑇Residual2, (47)

where𝑇Residual1 and𝑇Residual2 represent the residual torques of
rotor 1 and 2, respectively. They can be written as

𝑇Residual1 = 𝑇
𝑒1 −𝑓1𝜔𝑚 −

1
2
𝑚1𝑟

2
𝜔
2
𝑚
𝑇
𝑆1,

𝑇Residual2 = 𝑇
𝑒2 −𝑓2𝜔𝑚 −

1
2
𝑚1𝑟

2
𝜔
2
𝑚
𝑇
𝑆2.

(48)
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Rewriting the second formula of (44), we can obtain

2𝛼 = arcsin 𝑇
𝐸

𝑇
𝑉

− 𝜃
𝐶
. (49)

To ensure the existence of the solution to 2𝛼, we should
have | sin 2𝛼 + 𝜃

𝐶
| ≤ 1. Therefore, the vibratory torque of

the vibrating system 𝑇
𝑉
must be equal to or greater than the

absolute value of the excessive torque of the rotors |𝑇
𝐸
|. This

is the synchronization condition of the vibrating system, and
it could be expressed as

𝑇
𝑉

≥




𝑇
𝐸





. (50)

In this case, the synchronous angular velocity 𝜔
𝑚
and the

phase difference 2𝛼 of the two rotors can be solved to
(49) with a numeric method. If the excessive torque of the
motors approaches to zero (i.e., |𝑇

𝐸
| → 0), the residual

electromagnetic torque of motor 1 is approximately equal to
that of motor 2. In this case, the two rotors can easily operate
synchronously.

4.2. Synchronization Stability Criterion. The stability crite-
rion of the synchronous state of the two rotors in the vibrating
system will be discussed in the following section by solving
a disturbance differential equation. Introducing disturbance
parameters Δ�̈�1, Δ�̇�1, Δ𝛼1, Δ�̈�2, Δ�̇�2, and Δ𝛼2 into (1)
and substituting them into (43), the disturbance differential
equation of the synchronous state of the two rotors can be
obtained by

𝐽01Δ�̈�1 +𝑓1Δ�̇�1 +

1
2
𝜂𝑚1𝑟

2
𝜔
2
𝑚
𝑟
𝑚

{[−𝜇
𝑦
sin (2𝛼− 𝑟

𝑦
)

+ 𝜇
𝑥
sin (2𝛼− 𝑟

𝑥
) + 𝜇
𝜓
𝑟
2
𝑙2 sin (2𝛼− 𝑟

𝜓
)] cos (Δ𝛼1

−Δ𝛼2) + [−𝜇
𝑦
cos (2𝛼− 𝑟

𝑦
) + 𝜇
𝑥
cos (2𝛼− 𝑟

𝑥
)

+ 𝜇
𝜓
𝑟
𝑙1𝑟𝑙2 cos (2𝛼− 𝑟

𝜓
)] sin (Δ𝛼1 −Δ𝛼2) + 𝜇

𝑦

⋅ sin (2𝛼− 𝑟
𝑦
) − 𝜇
𝑥
sin (2𝛼− 𝑟

𝑥
) − 𝜇
𝜓
𝑟
2
𝑙2 sin (2𝛼

− 𝑟
𝜓
)} = 0,

𝐽02Δ�̈�2 +𝑓2Δ�̇�2 +

1
2
𝜂𝑚1𝑟

2
𝜔
2
𝑚
𝑟
𝑚

{[𝜇
𝑦
sin (2𝛼+ 𝑟

𝑦
)

+ 𝜇
𝑥
sin (2𝛼+ 𝑟

𝑥
) − 𝜇
𝜓
𝑟
2
𝑙2 sin (2𝛼+ 𝑟

𝜓
)] cos (Δ𝛼1

−Δ𝛼2) + [𝜇
𝑦
cos (2𝛼+ 𝑟

𝑦
) − 𝜇
𝑥
cos (2𝛼+ 𝑟

𝑥
)

− 𝜇
𝜓
𝑟
𝑙1𝑟𝑙2 cos (2𝛼+ 𝑟

𝜓
)] sin (Δ𝛼1 −Δ𝛼2)

− 𝜇
𝑦
sin (2𝛼+ 𝑟

𝑦
) − 𝜇
𝑥
sin (2𝛼+ 𝑟

𝑥
)

+ 𝜇
𝜓
𝑟
2
𝑙2 sin (2𝛼+ 𝑟

𝜓
)} = 0.

(51)

From (51), it is noted that [Δ𝛼1, Δ𝛼2]
𝑇

= [0, 0]𝑇 is an equi-
librium solution when the two rotors rotate synchronously.
Then linearizing (51) around [Δ𝛼1, Δ𝛼2]

𝑇

= [0, 0]𝑇 we have

𝐽01Δ�̈�1 +𝑓1Δ�̇�1 +

1
2
𝜂𝑚1𝑟

2
𝜔
2
𝑚
𝑟
𝑚

[−𝜇
𝑦
cos (2𝛼− 𝑟

𝑦
)

+ 𝜇
𝑥
cos (2𝛼− 𝑟

𝑥
) + 𝜇
𝜓
𝑟
𝑙1𝑟𝑙2 cos (2𝛼− 𝑟

𝜓
)] (Δ𝛼1

−Δ𝛼2) = 0,

𝐽02Δ�̈�2 +𝑓2Δ�̇�12 +

1
2
𝜂𝑚1𝑟

2
𝜔
2
𝑚
𝑟
𝑚

[𝜇
𝑦
cos (2𝛼+ 𝑟

𝑦
)

− 𝜇
𝑥
cos (2𝛼+ 𝑟

𝑥
) − 𝜇
𝜓
𝑟
𝑙1𝑟𝑙2 cos (2𝛼+ 𝑟

𝜓
)] (Δ𝛼1

−Δ𝛼2) = 0.

(52)

According to (44), (52) can also be rewritten as

Δ�̈�1 +

𝑓1
𝑚1𝑟

2Δ�̇�1 +

𝜂

2

⋅ 𝜔
2
𝑚

[𝑇
𝐶
cos (2𝛼+ 𝜃

𝐶
) +𝑇
𝑆
sin (2𝛼+ 𝜃

𝑆
)]

⋅ (Δ𝛼1 −Δ𝛼2) = 0,

Δ�̈�2 +

𝑓2
𝜂𝑚1𝑟

2Δ�̇�2 +

𝜂

2

⋅ 𝜔
2
𝑚

[−𝑇
𝐶
cos (2𝛼+ 𝜃

𝐶
) +𝑇
𝑆
sin (2𝛼+ 𝜃

𝑆
)]

⋅ (Δ𝛼1 −Δ𝛼2) = 0.

(53)

When the following parameters of the damping coefficient
of the two motor shafts in the system satisfy the condition,
that is, 𝑓1 ≈ 𝑓2/𝜂, the disturbance differential equation can
be obtained with subtracting each equation of (53):

Δ�̈� +

𝑓1
𝑚1𝑟

2Δ�̇� + 𝜂𝜔
2
𝑚

[𝑇
𝐶
cos (2𝛼+ 𝜃

𝐶
)] Δ𝛼 = 0, (54)

whereΔ�̈� = Δ�̈�1−Δ�̈�2,Δ�̇� = Δ�̇�1−Δ�̇�2, andΔ𝛼 = Δ𝛼1−Δ𝛼2.
Symbols Δ�̈�, Δ�̇�, and Δ𝛼 denote acceleration, velocity, and
displacement of the phase difference of the two rotors when
a disturbance acts on the vibrating system, respectively.

According to the stability theory, the coefficient of the
third item of (54) must be positive because the coefficient of
the first two items is obviously greater than zero. In this case,
the synchronous state of the vibrating system can be stable.
As 𝜂 > 0 and 𝜔

2
𝑚

> 0, the criterion of the synchronization
stability of the system can be expressed as

𝑇
𝐶
cos (2𝛼+ 𝜃

𝐶
) > 0. (55)

In the far-resonant vibrating system we have 𝑇
𝐶

> 0 by
𝜇
𝑦

≈ 𝜇
𝑥
, cos 𝛾

𝑦
≈ cos 𝛾

𝑥
, 𝜇
𝜓

> 0, 𝑟
𝑙
> 0 and cos 𝛾

𝜓
> 0; thus,

it leads to 𝜃
𝐶

= 0, and so cos(2𝛼 + 𝜃
𝐶
) = cos 2𝛼. In the light

of the criterion of the synchronization stability of the system
(i.e., (55)), only if parameter cos(2𝛼) > 0 can be satisfied,
the stability of the synchronous rotation of the two rotors
can be implemented. However, parameter cos(2𝛼) > 0 also
indicated that 2𝛼 ∈ (𝜋/2, −𝜋/2) is the interval of the stable
phase difference of the two rotors during the synchronous
operation.
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5. Numerical Verification

5.1. Numerical Discussion for Stable Phase Difference. In our
numerical verification, we consider the following values of
the system parameters. We assume the parameters of the
two motors are identical (i.e., rated power 0.7 Kw, rated
voltage 220V, rated frequency 50Hz, pole pairs 2, stator
resistance 0.56Ω, rotor resistance 0.54Ω, stator inductance
0.1 H, rotor inductance 0.12H, mutual inductance 0.13H, and
the damping coefficient of shafting 0.04Nm/(rad/s)). And
the parameters of the vibrating system are 𝑀 = 120 kg,
𝑚1 = 4 kg, 𝑓

𝑥
= 0.38 kN⋅s/m, 𝑓

𝑦
= 0.38 kN⋅s/m, 𝑓

𝜓
=

0.034 kN⋅m/(rad/s), 𝑓1 = 0.003 kN⋅m/(rad/s), 𝑟 = 0.05m,
𝑙
𝑒

= 0.3m, 𝑟
𝑙1 = 1, 𝑟

𝑙
= 0 ∼ 5, 𝛽1 = 45∘, 𝛽2 = 135∘,

𝜂 = 0.4 ∼ 1, 𝑘
𝑥

= 63 kN/m, 𝑘
𝑦

= 63 kN/m, 𝑘
𝜓

= 5 kN⋅m/rad,
and 𝑓2 = 0.003 kN⋅m/(rad/s).

Section 4.1 has given some theoretical analyses in the
simplified form on synchronization problem. In this section,
we will quantitatively discuss the numerical results of the
stable phase difference considering many kinds of features
of the vibrating system: the first is that the two nonidentical
rotors are installed symmetrically; the second is that the two
nonidentical rotors are installed asymmetrically; the last is
that the power source of the second rotor is cut off. From
(44)∼(49), the main parameters that influence the stable
phase difference are 𝑇

𝑒1, 𝑇
𝑒2, 𝑓1, 𝑓2, 𝑇

𝑆1, 𝑇
𝑆2, and 𝑇

𝐶
. In

addition, 𝑇
𝑆1, 𝑇𝑆2, and 𝑇

𝐶
are functions of the dimensionless

parameters 𝑟
𝑚
, 𝑟
𝑙
, 𝑟
𝑙1, 𝜂, 𝜇

𝑥
, 𝜇
𝑦
, and 𝜇

𝜓
. In a far-resonant

vibrating system [8], the value of parameters 𝜇
𝑥
, 𝜇
𝑦
, and 𝜇

𝜓

ranges from 1.01 to 1.07, and so we focus on the effect of
dimensionless parameters 𝑟

𝑚
, 𝑟
𝑙
, 𝑟
𝑙1, and 𝜂 on the stable phase

difference between the two rotors. When the two identical
motors are taken to drive two nonidentical rotors, we have

𝑇
𝐸

=

1
2
𝑚1𝑟

2
𝜔
2
𝑚

(𝑇
𝑆2 −𝑇
𝑆1) . (56)

We assume here that𝑇
𝑒1−𝑓1𝜔𝑚−(𝑇

𝑒2−𝑓2𝜔𝑚) = 0.Therefore,
(49) can be simplified in the form

2𝛼 = arcsin
𝑇
𝑆2 − 𝑇

𝑆1
2𝑇
𝐶

. (57)

According to (57) the stable phase difference between
the two rotors can be numerically performed. Figure 2(a)
shows the value of the stable phase difference between the
two rotors installed symmetrically. It can be seen that the
change of parameter 𝑟

𝑚
has little influence on the value of the

stable phase difference, and the value gradually approaches
to zero with increase of the value of parameter 𝜂. Figure 2(b)
shows the stable phase difference between the two rotors
installed asymmetrically. It is indicated that the value of the
stable phase difference also gradually approaches to zero with
increasing the value of parameter 𝜂, and the value is inversely
proportional to parameter 𝑟

𝑙
. To sumup, although parameters

𝜂, 𝑟
𝑚
, and 𝑟

𝑙
are changed suitably in the vibrating system, the

phase difference will be located at vicinity of zero degree.

We assume 𝑇
𝑒2 = 0 and𝑓2𝜔𝑚−𝑓1𝜔𝑚 ≈ 0 when the power

source of the second rotors is cut off in synchronous state.
Therefore, (49) can be simplified in the form

2𝛼 = arcsin
2𝑇
𝑒1 + 𝑚1𝑟

2
𝜔
2
𝑚

(𝑇
𝑆2 − 𝑇

𝑆1)

2𝑚1𝑟
2
𝜔
2
𝑚
𝑇
𝐶

. (58)

According to [8], when an induction motor operates with
synchronization velocity 𝜔

𝑚
, its electromagnetic torque 𝑇

𝑒𝑖

can be simplified as

𝑇
𝑒𝑖

= 𝑛
2
𝑝

𝐿
2
𝑚𝑖

𝑈
2
𝑆0

𝐿
2
𝑠𝑖
𝜔
𝑠
𝑅
𝑟𝑖

(𝜔
𝑠
− 𝑛
𝑝
𝜔
𝑚
) , (59)

where 𝐿
𝑚𝑖

is the mutual inductance of the ith induction
motor; 𝐿

𝑠𝑖
is stator inductance of the ith induction motor;

𝑛
𝑝
is the number of pole pairs of the induction motor;

𝜔
𝑠
is synchronous electric angular velocity; 𝑅

𝑟𝑖
is the rotor

resistance of the ith induction motor; 𝑈
𝑆0 is the amplitude of

the stator voltage vector.
Subsisting the above given motors’ parameters into (59),

we can compute the value of parameter𝑇
𝑒𝑖
. Figure 2(c) shows

the stable phase difference between the two rotors in the
power-cutting state (suppose that the synchronous velocity
𝜔
𝑚
changes in the interval 156-157 rad/s and the electromag-

netic torque 𝑇
𝑒1 ranges in the interval 0.5–0.7N⋅m). It can

be seen that the stable phase difference in the power-cutting
state is larger than the power-supplying state. Moreover, the
value of the stable phase difference is inversely proportional
to parameters 𝑟

𝑙
and 𝜂.

5.2. Computer Simulations. Further analyses have been per-
formed by numerical simulations. Our results have been
obtained by numerical integration (by 4th order Runge-Kutta
method) of (1)∼(4). The following examples are simulated to
confirm the main results of the above theoretical analysis.

5.2.1. Synchronization in Power-Supplying and Power-Cutting
States. In calculations for synchronization of the two rotors
in power-supplying and power-cutting states, we consider
the following values of the dynamics parameters (identical
mass and symmetric location of the two rotors): 𝑟

𝑙1 =

1.0, 𝑟
𝑙

= 1.0, and 𝜂 = 1, and other parameters are the
same as the aforementioned. In the power-cutting state, the
implementation of the synchronization of the two rotors
should go through two operation steps. Firstly, the two rotors
connected with the induction motors are supplied with the
same power sources at the same time, which could be called
as power-supplying stage; secondly, the power of one of the
rotors is cut off during the synchronization operation, and
we could call the step as power-cutting stage. An example
of the synchronous operation of the two rotors in the
power-cutting state is performedwith numerical simulations.
Here the two rotors are supplied with power source at
first 2.5 s, and the power source on rotor 2 is cut off at
2.5 s.

Figures 3(a)–3(c) represent rotational velocities, torques,
and phase difference of the two rotors when the two different
states are implemented in the system, respectively. In the
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Figure 2: The stable phase difference with different features: (a) 𝑟
𝑙1 = 1.0 and 𝑟

𝑙
= 1.0; (b) 𝑟

𝑙1 = 1.0 and 𝑟
𝑙
= 0∼5.0; (c) 𝑟

𝑙1 = 1.0, 𝑟
𝑚

= 0.15,
𝑇
𝑒1 = 1.4, and 𝑇

𝑒2 = 0.

power-supplying stage, the synchronous rotational velocity
𝜔
𝑚
of the rotors stabilizes at vicinity of 156.6 rad/s; the elec-

tromagnetic torque of the induction motors is approximately
equal to 0.7N⋅m; the stable phase difference between the two
rotors 2𝛼 is 0.5∘. In the power-cutting stage, the synchronous
rotational velocity is decreased to 156.2 rad/s; the stable phase
difference is increased to 3.72∘ from 0.5∘, and this is according
to theory analysis in Section 5.1 (see Figures 2(b) and 2(c));
the electromagnetic torque of rotor 1 became zero as the
power source of induction motor 1 is cut off at 2.5 s (see
(60), 𝑇

𝑒2 = 0), and the electromagnetic torque of rotor 1 is
increased to 1.4N⋅m for balancing resistance and frictions of
the system.

Figures 3(d)∼3(f) describe the responses in 𝑥-, 𝑦-, and𝜓-
directions. In the starting stage the displacement in 𝑥-, 𝑦-,
and 𝜓-axes is by far larger than other stages as the exciting
frequency through the resonant region of the vibrating
system. During the synchronous state, the displacement in
𝑥- and 𝜓-directions is smaller as the stable phase difference
is equal to zero. Thus, the exciting forces produced by the
two rotors in 𝑥- and 𝜓-directions are offset; on the contrary,
exciting forces in 𝑦-direction are additive. In the power-
supplying stage, the displacement in 𝑥-axis and 𝜓-axis is
smaller than that in the power-cutting stage because of the
increase of the stable phase difference. As the small amplitude
of dynamic respond of the oscillating body in 𝑥- and 𝜓-axis,
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Figure 3: Numerical results for two identical opposite rotors.

in this case, we could consider the oscillating body as a pure
linear motion in the 𝑦-axis.

According to (5)∼(37), we can deduce the equation of
energy balance of the synchronization system.

In the power-supplying stage, the part energy supplied
by the two induction motors is dissipated by their friction
dampers (𝑊DAMP

1 and 𝑊
DAMP
2 ) and the other part is trans-

ferred to the oscillating body (synchronization energy 𝑊
SYS
1
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Figure 4: Energy transmission. Figures (a), (b), (c), and (d) are depicted according to (60), (61), (62), and (63), respectively.

and 𝑊
SYS
2 ) when the two rotors rotate synchronously. In

addition, the synchronization energy excites the oscillating
body (𝑊SYS

𝑦
) and is dissipated by the damper of the oscillating

body 𝑊
DAMP
𝑦

. Owing to the small values of the energy in 𝑥-
axis and 𝜓-axis (i.e., 𝑊SYS

𝑥
≈ 0 and 𝑊

SYS
𝜓

≈ 0), the energy
balance equation of the vibrating system during the power-
cutting stage can be expressed as

𝑊
DAMP
1 +𝑊

SYS
1 = 𝑊

DRIVE
1 ,

𝑊
DAMP
2 +𝑊

SYS
2 = 𝑊

DRIVE
2 ,

𝑊
DAMP
1 +𝑊

SYS
1 +𝑊

DAMP
2 +𝑊

SYS
2

= 𝑊
DRIVE
1 +𝑊

DRIVE
2 ,

𝑊
SYS
1 +𝑊

SYS
2 = 𝑊

SYS
𝑦

,

𝑊
SYS
𝑦

= 𝑊
DAMP
𝑦

.

(60)

In the power-cutting stage, the power source on the
second rotor is cut off, and so the electromagnetic torque
of the rotor is equal to zero within the synchronization
state; that is, 𝑊

DRIVE
2 = 0 (see Figure 3(b)). In this case

the synchronization energy (𝑊SYS
1 ) and dissipated energy

(𝑊DAMP
1 ) are balanced only by the electromagnetic torque

of the first motor through the oscillation of the oscillating
body, and synchronization energy (𝑊SYS

1 ) is transferred to
the oscillating body (𝑊SYS

𝑦
). Then the energy 𝑊

SYS
𝑦

of the
oscillating body is balanced by synchronization energy 𝑊

SYS
2

and dissipated energy (𝑊DAMP
𝑦

). At last, synchronization
energy𝑊

SYS
2 is balanced by dissipated energy (𝑊DAMP

2 ); thus,
maintenance of rotation takes place. Neglecting the energy

in 𝑥- and 𝜓-directions, the energy balance equation of the
system during the power-cutting state can be expressed as

𝑊
DAMP
1 +𝑊

SYS
1 = 𝑊

DRIVE
1 ,

𝑊
SYS
1 = 𝑊

SYS
𝑦

,

𝑊
SYS
𝑦

= 𝑊
DAMP
𝑦

+𝑊
SYS
2 ,

𝑊
SYS
2 = 𝑊

DAMP
2 .

(61)

Figures 4(a)-4(b) illustrate the energy balance of the vibrating
system in the power-supplying stage and power-cutting stage,
respectively.

5.2.2. Simulation Results for Two Nonidentical Rotors. In
calculations of the synchronization ability of the vibrating
system excited by the twononidentical rotors, we consider the
following values of the dynamics parameters (nonidentical
mass and symmetric location of the two rotors): 𝑟

𝑙1 = 1.0,
𝑟
𝑙
= 1.0, and 𝜂 = 0.6, and other parameters are also the same

as the aforementioned.
Figures 5(a)–5(c) describe rotational velocities, torques,

and phase difference of the two nonidentical rotors excited
by the identical induction motors, respectively. It can be seen
that the synchronous rotational velocity of the rotors stabi-
lizes at vicinity of 156.7 rad/s; the electromagnetic torques
of the induction motors are approximately equal to 0.5N⋅m;
the phase difference between the two rotors 2𝛼 stabilizes
at vicinity −0.3∘; this is in accordance with the theoretical
analysis above. Figures 5(d)∼5(f) describe the responses in 𝑥-
, 𝑦-, and 𝜓-directions. In the starting stage the displacement
in 𝑥-, 𝑦-, and 𝜓-axes is also by far larger than the stability
stage as the exciting frequency through the resonant region
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Figure 5: Numerical results for two no-identical opposite rotors.

of the vibrating system. Although the stable phase difference
is approximately equal to −0.3∘, the nonidentical mass of the
two rotors leads to the larger displacement in 𝑥-, 𝑦-, and 𝜓-
axes. As a result, the motion type of the oscillating body is an
ellipse in 𝑜𝑥𝑦-plane with a swing in 𝜓-axis.

In the synchronous state, the part energy supplied by the
two induction motors is dissipated by their friction dampers
(𝑊DAMP

1 and 𝑊
DAMP
2 ) and the other part is transferred to the

oscillating body (synchronization energy 𝑊
SYS
1 and 𝑊

SYS
2 ).

Moreover, the synchronization energy excites the oscillating
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body (𝑊SYS
𝑥

,𝑊SYS
𝑦

, and𝑊
SYS
𝜓

) and is dissipated by the damper
of the oscillating body (𝑊DAMP

𝑥
,𝑊DAMP
𝑦

, and𝑊
DAMP
𝜓

). So the
energy balance equation of the vibrating system during the
steady state can be expressed as

𝑊
DAMP
1 +𝑊

SYS
1 = 𝑊

DRIVE
1 ,

𝑊
DAMP
2 +𝑊

SYS
2 = 𝑊

DRIVE
2 ,

𝑊
SYS
1 +𝑊

SYS
2 = 𝑊

SYS
𝑥

+𝑊
SYS
𝑦

+𝑊
SYS
𝜓

,

𝑊
SYS
𝑥

+𝑊
SYS
𝑦

+𝑊
SYS
𝜓

= 𝑊
DAMP
𝑥

+𝑊
DAMP
𝑦

+𝑊
DAMP
𝜓

.

(62)

Figure 4(c) shows the energy transmission of the system
considering the nonidentical mass of the rotors.

5.2.3. Simulation Results for Asymmetric Location and Distur-
bance of Rotors. To further verify the synchronous stability
of the two rotors, it is necessary to perform simulations for
the vibrating system with a phase disturbance on the rotors.
We consider the following values of the system parameters
(identical mass and asymmetric location of the two rotors):
𝑟
𝑙1 = 0.5, 𝑟

𝑙
= 3.0, and 𝜂 = 1, and a disturbance

of phase 𝜋/2 is added to the second rotor at 3 s. Other
parameters of the vibrating system are also the same as the
aforementioned.

Figures 6(a)–6(c) show rotational velocities, torques, and
phase difference of the two rotors installed asymmetrically,
respectively. Without the disturbance, the synchronous rota-
tional velocity of the rotors stabilizes at vicinity of 156.4 rad/s;
the electromagnetic torque of the inductionmotors is approx-
imately equal to 0.5N⋅m; the stable phase difference between
the two rotors 2𝛼 is equal to 0.5∘. With the disturbance, the
electromagnetic torques where the coupling torques act on
the second rotors become the load torques. Oppositely, the
load torques on the first rotor become the driving torques (see
Figure 6(b)). This phenomenon leads to the decrease of the
rotational velocity of the first rotor and the increase of that of
the second rotor (see Figure 6(a)). With the self-adjustment
of the electromagnetic torque, the disturbed vibrating system
gradually returns to the previous synchronization state. In
addition, with the above process of disturbance added, the
displacements of the oscillating body have a large value
as the phase difference changes. If a disturbance of 𝜋/2
phase is added to the first rotor, the disturbed vibrating
system could also return to the previous synchronization
state. The simulation results demonstrate the stability of
synchronization of the system.

Figures 6(d)–6(f) describe the responses of the system
in 𝑥-, 𝑦-, and 𝜓-directions. In the synchronous state the
amplitude of the oscillating body can be ignored as the coun-
teraction of the vibration force produced by two identical
rotors in 𝑥-direction; on the contrary, the amplitude of the
oscillating body in 𝑦-direction is by far larger than that in
𝑥-direction on the account of the addition of the vibration

force of the two rotors. Owing to the asymmetric location of
the two induction motors, the oscillating body also swings
with a larger value in 𝜓-direction and so the motion type of
the oscillating body is linear in 𝑦-direction with a swing in
𝜓-direction.

In the synchronous state, the part energy supplied by the
two induction motors is dissipated by their friction dampers
(𝑊DAMP

1 and 𝑊
DAMP
2 ) and the other part is transferred to the

oscillating body (synchronization energy 𝑊
SYS
1 and 𝑊

SYS
2 ).

Moreover, the synchronization energy excites the oscillating
body (𝑊SYS

𝑦
, 𝑊

SYS
𝜓

) and is dissipated by the damper of the
oscillating body (𝑊DAMP

𝑦
,𝑊DAMP
𝜓

). Owing to the small values
of the energy in 𝑥-direction (i.e., 𝑊SYS

𝑥
≈ 0, 𝑊DAMP

𝑥
≈ 0), the

energy balance equation of the vibrating system during the
synchronous state can be expressed as

𝑊
DAMP
1 +𝑊

SYS
1 = 𝑊

DRIVE
1 ,

𝑊
DAMP
2 +𝑊

SYS
2 = 𝑊

DRIVE
2 ,

𝑊
SYS
1 +𝑊

SYS
2 = 𝑊

SYS
𝑦

+𝑊
SYS
𝜓

,

𝑊
SYS
𝑦

+𝑊
SYS
𝜓

= 𝑊
DAMP
𝑦

+𝑊
DAMP
𝜓

.

(63)

Figure 4(d) shows the energy transmission of the asymmetric
location of the two rotors when the two rotors rotate syn-
chronously.

6. Conclusions

In summary, the energy balance method is employed to
extend investigation of a generalization of the vibrating sys-
tem on synchronization and synchronous stability of unbal-
anced rotors excited by induction motors with fast rotation,
on which we show how the energy is transferred between
rotors via the oscillating body allowing the implementation of
synchronization of rotors. In order to ensure the synchronous
and stable operation of the rotors, the dynamics parameters
should satisfy both the condition of synchronization and the
criterion of synchronous stability. To prove the correctness of
the theoretical analysis, many features of the vibrating system
are computed and discussed with computer simulations. It
can be found that, in the power-supplying state nomatter how
larger value of parameters 𝑟

𝑙
and 𝜂 is, the phase difference

between the two rotors can stabilize at vicinity of zero
degree on account of the offsetting of the electromagnetic
moments of the rotors. However, the value of the stable
phase difference in the power-cutting state is larger than the
power-supplying state since the electromagnetic moments of
the rotor maintain the synchronous operation of the system.
While the vibrating system is disturbed by external forces, the
rotors can also return to its previous synchronous state. The
proposedmethodmay be useful for analyzing another similar
synchronization and stability of unbalanced rotors excited by
induction motors in vibrating systems.
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Figure 6: Numerical results for the asymmetric location and disturbance of rotors.
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