
ReWiFlow: Restricted Wildcard OpenFlow Rules
Sajad Shirali-Shahreza, Yashar Ganjali

Department of Computer Science
University of Toronto

Toronto, Canada
{shirali,yganjali}@cs.toronto.edu

ABSTRACT
The ability to manage individual flows is a major benefit of
Software-Defined Networking. The overheads of this fine-grained
control, e.g. initial flow setup delay, can overcome the benefits,
for example when we have many time-sensitive short flows.
Coarse-grained control of groups of flows, on the other hand, can
be very complex: each packet may match multiple rules, which
requires conflict resolution. In this paper, we present ReWiFlow,
a restricted class of OpenFlow wildcard rules (the fundamental
way to control groups of flows in OpenFlow), which allows
managing groups of flows with flexibility and without loss of
performance. We demonstrate how ReWiFlow can be used to
implement applications such as dynamic proactive routing. We
also present a generalization of ReWiFlow, called Multi-
ReWiFlow, and show how it can be used to efficiently represent
access control rules collected from Stanford’s backbone network.

Categories and Subject Descriptors
C.2.3 [Communication Networks]: Network Operations –
Network monitoring

General Terms
Management, Measurement, Performance.

Keywords
OpenFlow, Proactive Routing, SDN, Wildcard Rule.

1. INTRODUCTION
Software-Defined Networking (SDN) simplifies programmatic
manipulation and management of network traffic using a
centralized view of the network. The ability to easily access and
manage individual flows is a significant advantage of SDN in
general, and OpenFlow specifically. For example, the controller
can detect heavy-hitter flows, also known as elephant flows, and
route them separately for better throughput [4].

While managing heavy long-lived flows individually can be
beneficial, fine-grained management of short-lived flows can lead
to unacceptable side effects. In a typical data center, while there
are some heavy flows (e.g. VM migrations), the majority of flows
are short (e.g. 80% are less than 10KB [2]) and some of these
short flows are latency sensitive. In web service requests for
example, even a fraction of a second extra delay can have a
considerable effect on user experience [6].

The flow setup delay is one of the main side effects of
individually managing flows: the first packet of each flow is kept
in the first switch until the controller receives the Packet-In
message from that switch, processes it, and replies back with
instructions on how to handle that packet. Although this delay

may be negligible for large and long-lasting flows, it can be
significant for short and latency sensitive flows.

Buffer size limitation is another factor that impacts both short and
long flows. OpenFlow switches usually buffer received packets
and only send a small part of each packet to the controller when
the packet does not match any flow entry in the forwarding table.
However, switch buffers are usually small. Even in software
switches (which there is no cost or power issue), buffers are
relatively small. For example in the Open vSwitch
(http://openvswitch.org/) the default size of this buffer is only 256
packets. As a result, under heavy loads, this buffer could quickly
become full, forcing the switch to send the entire packets to the
controller, which increases both transmission delay and controller
load and leads to longer overall delays.

The limited size of flow tables in switches could also create
problems. When the flow table becomes full, the switch must
evict an old entry before inserting a new one. If the entry that is
removed represents an active flow in the network, then the switch
has to send any subsequent packets from that flow to the
controller, as they do not match any flow table entries. Not only
this creates a huge sudden load on the controller, it is possible that
at least one of these packets is dropped in the controller, resulting
in a significant drop in flow throughput.

Coarse-grained handling of flows, i.e. dealing with flows as
groups, is one way to overcome the aforementioned problems.
OpenFlow provides this functionality by wildcard rules. In
contrast to exact match rules that can be used to manage
individual flows, a wildcard rule describes how a set of flows
(e.g. all flows from host A) should be handled.

The OpenFlow specification seems to move in a direction that
exact match rules will be rarely used: while a flow entry match in
OpenFlow 1.0 specification is defined as a 12-tuple, the
OpenFlow Extensible Match (OXM) (introduced in OpenFlow
1.2) allows switches to support a variety of header fields. For
example in the latest version (1.5), 44 different types are defined.
As a result, almost all flow entries would become wildcard rules,
as they will not contain a value for all of defined header fields,
because some of those header fields are only applicable to
specific types of packets.

Although wildcard rules resolve most of the limitations of exact
match rules, they have their own set of challenges. Programming
complexity is the main challenge of using wildcard rules: the
inherent freedom and flexibility of choosing which header fields
to match makes the problem combinatorially complex. We will
review these challenges in more details in Section 2.

In this paper, we propose ReWiFlow, a restricted class of
wildcard rules that make it easier to use wildcard rules, while
improving performance. The basic idea is to trade the flexibility

ACM SIGCOMM Computer Communication Review 30 Volume 45, Number 5, October 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357240243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of wildcard rules with the ease of dealing with them. In
ReWiFlow, there is a defined ordering among all possible header
fields that can appear in a wildcard rule. A header field can be
present in the rule only if all prior fields (in the defined order) are
present. For example, if destination IP is before destination port in
the ordering, the destination port can appear (as an exact match)
in the rule if the destination IP is also present.

We note that there is a partial ordering present in the current
OpenFlow specification, known as flow match field prerequisite.
However, it is defined for a small number of pairs. For example,
if TCP Port is present, the IP Protocol should also be present and
equal to TCP. What we propose here is a full ordering that, as we
will show, has new advantages.

We prove the prefix property of ReWiFlow rules, which enables
us to easily manage a collection of rules. We also present a
generalization of ReWiFlow called Multi-ReWiFlow, which
includes multiple groups of ReWiFlow rules with different
orderings. This enables us to have the benefits of ReWiFlow in
scenarios that no single ordering can accommodate all the
required rules. We demonstrate how we can represent more than
1,600 access control rules (ACLs) of Stanford backbone network
[20] with only 5 groups of ReWiFlow rules.

ReWiFlow mainly aims to reduce the programming complexity
and overcome the hardware limitations of wildcard rules, but does
not address loss of visibility that happens due to aggregation of
flows. However, combining ReWiFlow with the recently
proposed sampling extension FleXam [15] provides the best of
both worlds: reduced complexity and improved efficiency without
loss of visibility. We believe this combination leads to an elegant
solution for some of the current challenges in. It can also open
new doors to solve challenging problems such as anomaly and
attack detection [14].

2. WILDCARD RULE CHALLENGES

2.1 Programming Complexity
The first challenge in dealing with wildcard rules is their
programming complexity. To deal with network dynamics, we
need to add new rules, delete rules, or split existing rules. There is
an inherent complexity in choosing which header fields to select.
Furthermore, different wildcard rules may interact with each other
(e.g. a newly installed rule may match some of the packets that
were handled by a previously installed rule), and analyzing such
interactions is a complex and computationally intensive task [3].

Even managing Access Control Lists (ACLs), which are special
wildcard rules that usually only contain source, destination,
protocol and port number, is difficult for trained professionals.
The existing solutions focus and are limited to visualization [10]
and inconsistency checks [5]. Providing an automated solution to
deal with wildcard rules in general is even more challenging.

In the case of OpenFlow wildcard rules, we need to automatically
generate and update wildcard rules. For example in proactive
routing, we start with a set of wildcard rules that can route all
network traffic towards their destination. Since this is done a
priori, the rules might not be optimal as network traffic changes
over time. So we need to update the rules installed on switches by
splitting existing rules, merging them, or adding new rules.

Rule Priorities. Each packet can match at most one exact match
rule. However, a packet may match multiple wildcard rules.

Therefore, when using wildcard rules, we should consider rule
overlaps, and assign priorities to ensure packets match the desired
rule. Finding rule overlaps is not the only source of complexity.
Assume we have rules A, B, and C that match a given set of
packets, and the integer priority we assign to them is such that
PA > PB > PC (i.e. A has higher priority than B, etc.) If we want to
break rule B into two new rules B1 and B2 with PB1 > PB2, then
we need to have PA > 1+PC. Otherwise, we have to change the
priority of A and C, and potentially a series of other rules. We
might even reach a state that it is not possible to assign priorities
anymore.

Rule Deletion. Similar to the priority assignment problem during
new flow installation, handling flow removals (either because it is
expired, evicted due to table becoming full, or as requested by the
controller) is not simple in the presence of wildcard rules. When a
flow entry is removed, the packets that were matched to it may
now match (potentially several) other rules. In addition to the
complexity of identifying such rules, this may require a large
number of new flow installations or updates to resolve conflicts.

Large Search Space. The third problem arises when the
controller needs to break down a wildcard rule. The search space
is large since there are different header fields that we can add to
the match list, leading to reduced efficiency of the process.

2.2 Loss of Visibility
The second challenge of using wildcard rules is losing visibility:
the controller sees the packets matching any wildcard rule as one
flow, and thus has limited (or no) knowledge of the individual
flows that are aggregated. In reactive routing, each new flow in
the network will trigger a Packet-In message, which informs the
controller of its existence. Furthermore, when a flow is finished,
the associated flow entry in the switch will expire after the
defined timeout, which triggers another Flow-Removed message
to the controller. As a result, the controller is aware of active
flows in the network, which is essential for many network
monitoring and management applications. The controller visibility
over active flows is lost when it uses wildcard rules.

2.3 Hardware Challenges
It is easier, cheaper, and faster to implement exact match rules in
comparison to wildcard rules. Dealing with wildcard rules requires
specific and complex hardware, such as TCAM, whereas exact
match rules can be implemented through hash tables [1]. As a
result, the number of wildcard rules that can be handled by a switch
is usually much smaller than the number of exact match rules.

A remedy that is used is to focus on a specific class of wildcard
rules. For example, if we limit the rules to only specify the
destination MAC address, we can implement them in the MAC
lookup hardware table of a layer two switch (instead of TCAM).
Similarly, we can restrict rules to source/destination IP address
and netmask and deploy them in longest prefix matching
hardware tables of layer three switches. However, it is not clear
how one can mix and match such solutions with unrestricted
wildcard rules, due to complications of dealing with priorities.

3. PROPOSED SOLUTIONS

3.1 Increase Visibility
Two different approaches have been proposed to increase the
controller visibility. FleXam [15] is a flexible sampling extension

ACM SIGCOMM Computer Communication Review 31 Volume 45, Number 5, October 2015

for OpenFlow that provides selective sampling. It enables the
controller to sample packets (stochastically, or deterministically)
and to define where sampled packets should be sent. In the
context of wildcard rules, the controller can gain significant
visibility by appropriately sampling packets from wildcard rules.
FlowInsight [19] proposes another approach where switches
handle different individual flows matching a wildcard rule
separately, allowing the controller to query and receive
information about them when needed.

3.2 Reduce Programming Complexity
Handling wildcard rules is a complex task for applications. The
general idea behind proposed solutions in this area is to describe
and implement control applications in a higher level of
abstraction, and then to automatically generate the necessary rules.

In one group of these proposals, control applications are
implemented in a high level language and abstraction and then
compiled into low level flow entries. A well-known example is
NetCore [11], which is a high-level, declarative language to
describe packet forwarding. There are other proposed
programming languages built on top of NetCore such as Pyretic
[12] and Flowlog [13].

Another group of solutions create and maintain an abstract state
of the network. Control applications can access the network state,
and request changes to the state using a well-defined API that
hides the lower-level boilerplates. A well-known example of this
approach is Onix [8].

Our proposal in this paper is orthogonal to these attempts. Unlike
prior works that try to completely hide wildcard rules from the
user, ReWiFlow provides a subset of wildcard rules that are easier
to use and manage. ReWiFlow aims to complement those
approaches and provide a more comprehensive suite of tools for
using wildcard rules. For example, it can be used for security
applications (e.g. port scan detection [14]), which are usually
difficult to implement in systems that do not allow access to
packet level information [8].

Furthermore, restricting wildcard rules will make it easier to
create, merge, or split rules automatically, which eases compiler
development and enables more efficient rule generation (e.g.
reduce the number of generated rules, which is now done through
a series of heuristics after rule generation [11]). The prefix
property of ReWiFlow (which we will define and prove later on)
can also be used to make automatic handling of rule deletion
easier. This is an essential addition to languages such as NetCore
as it gives them the ability to generate temporary wildcard rules
(e.g. block a host for an hour due to suspicious activity) as
opposed to permanent rules, which is what they support currently.

3.3 Increase Matching Speed
The last group of proposals focus on how to increase the speed of
finding the rule matching an incoming packet. Directly comparing
with wildcard rules requires the use of TCAMs, which are both
expensive and power hungry. This limits the number of wildcard
rules that can be stored in a switch. On the other hand, it is more
efficient to search among exact match entries, and BCAMs or
SRAMs can be used instead of TCAMs [18]. So the general idea
to speed up matching is creating a list of exact match rule instance
of a wildcard rule each time a new flow matching that rule is
observed, and always search in the exact match field first. This

idea is used for both hardware switches [18] as well as software
switches such as Open vSwitch. However, this approach
introduces new complexities in switch implementation: after each
change such as a new rule addition or deletion, the exact match
table should be checked and updated for any possible conflict.

MegaFlows is another similar concept introduced in Open
vSwitch 1.11. The main goal of MegaFlows is supporting
wildcard matching in the kernel module (in contrast to only
performing exact matches). The kernel module has the power to
restrict wildcard rule by changing some of the wildcard fields to
the value of the packet that it matches. This adds more complexity
to the switch implementation: the user space program controlling
the kernel module is expected to ensure that each incoming packet
matches at most one exact or wildcard rule. Furthermore, the user
space program should also keep track of how the kernel module
restricts installed wildcard rules. These clearly add more
programming complexity, even though they might lead to an
increase in speed.

4. REWIFLOW
ReWiFlow is a restricted class of OpenFlow wildcard rules, where
there is a defined ordering among all possible header fields that
can appear in a wildcard rule. This restriction does not require any
changes to the OpenFlow specification: ReWiFlow rules are valid
OpenFlow rules that can be accepted by any OpenFlow
compatible switch and controller.

At the same time, this restriction makes it easier to design
algorithms using wildcard rules, without significantly limiting the
flexibility. It can also be implemented more efficiently, as we will
discuss later on.

4.1 Definition
Before delving into ReWiFlow, let us formally define OpenFlow
rules. Assume that H is the set of all header fields h1, h2, …, hn
that can appear in a flow rule (h1 can be the source IP, h2 the
source port, etc.). A flow match rule f is represented as:

f ={(hj, vj) | hj  H},

where each pair (hj, vj) means that header field hj should be equal
to the value of vj (we will discuss mask support later).

The main idea behind ReWiFlow is to have a strict ordering
function among all possible header fields. Assume that m is such
an ordering. Each of numbers 1..n are assigned exactly to one hj:

m: H→[n] | m(hi) = m(hj) ↔ hi = hj.

We say a wildcard rule fi is a ReWiFlow rule with mapping m if:

 (hj, vj)  f &  hi  H | m(hi) < m(hj) → vi | (hi, vi)  f.

In other words, f is a ReWiFlow rule with mapping m if for every
header field hj that is present in f, all header fields that are before
hj in the ordering of m are also present.

Assume that the ordering is m(hi)=i, i.e. hi is the i-th header field
in the ordering. If hi is present, then h1, h2, …, hi-1 will also be
present, and we can represent f as:

f = [(h1,v1), (h2,v2), …, (hi,vi)].

In other words, a ReWiFlow rule will only have header field h1,
h2, … , hi for a known i. This property is very similar to prefix

ACM SIGCOMM Computer Communication Review 32 Volume 45, Number 5, October 2015

property of netmasks in IP addresses, i.e. a predefined set of all
possible header fields can appear in a ReWiFlow rule.

Example. Assume that we have 7 different header fields: VLAN
ID, Source IP, Destination IP, Source TCP Port, Destination TCP
Port, Source UDP Port, and Destination UDP Port. A possible
ordering is: VLAN ID, Destination IP, Destination TCP Port,
Destination UDP Port, Source IP, Source TCP Port, and Source
UDP Port. In this ordering, VLAN ID must be present in all
ReWiFlows, because it comes before all other fields. The simplest
rules will match traffic with a specific VLAN tag. We can restrict
such rules by limiting them to those designated to a specific IP.
We can continue this by requiring a specific destination port
(either TCP or UDP), and so on.

Masked Header Fields. OpenFlow allows some header fields to
be masked. In ReWiFlow we can break a field into subfields to
allow masks. For example, to support CIDR masks for the IP
destination field, we can split that field into multiple parts such
that each valid mask that we want to support will set the first few
parts and leave the rest to be wildcard. For instance, if we want to
support netmasks /8, /20 and /32, we can split the destination IP
field into 3 parts of length 8, 12 and 12. The /8 mask will have the
first part as exact match and the rest as wildcard and /24 will have
the first two parts as exact match and the fourth part as wildcard.
These sub-fields will be treated like any other field, i.e. there is no
need that all of these fields be adjacent in the ordering.

4.2 Advantages
To show how ReWiFlow can simplify programming using
wildcard rules, let us prove a special characteristic of ReWiFlow
rules first: the Prefix Property.

Theorem 1. If a packet matches two ReWiFlow rules fi and fj,
then one of these rules is a subset of the other one, i.e. one of
them only matches a subset of flows that are matched by the other
one. Considering the set definition for rules, this can be
represented as fi  fj or fj  fi.

Proof. Without loss of generality and to simplify the proof, let us
assume that m(hi) = i, i.e. the ordering among header fields is
h1 < h2 < … < hn. Also, assume that if a flow rule f requires
header field h to be v, we represent that as f (h) = v.

Assume that fi  fj and fj  fi, and a = |fi| ≤ |fj| = b, i.e. fi is the
smaller flow based on the number of header fields that are
present. Based on the definition of ReWiFlow rules, both rules fi
and fj check the first a header fields h1, h2, …, ha. If fi(hl) = fj(hl)
for all of these a fields, then fj will only match a subset of packets
that match fi, because every packet that match fj will also match fi.
So fi  fj which contradicts the assumption of fi  fj.

If there is a mismatch between the two rules among these header
fields, then there is a header field l that fi(hl) ≠ fj(hl). This is a
contradiction since the field hl in the packet that matches both of
these rules is vl, or fi(hl) = vl = fj(hl). This completes the proof. ■

4.2.1 Rule Priorities
The priority of ReWiFlow rules can be easily set to their length,
i.e. the number of header fields in them. Based on Theorem 1, if
two rules fi and fj are overlapping, then one of them is matching a
subset of the other and will be longer, hence it should have a
higher priority (otherwise the longer rule with lower priority will

match no packet). This is similar to longest prefix matching in IP
network routing: the longest matching rule will be selected.

4.2.2 Removed Rules
It is easy to find which of the remaining rules will match packets
of a deleted rule. All we need to do is to sort the present header
fields based on their ReWiFlow order, and remove the header
fields from the highest one in the order one by one. We continue
until we reach another rule that is present. This is the rule that will
match packets belonging to the deleted rule. If the set becomes
empty, there is no match.

It is clear that in each step, we are generalizing the rule (matching
one less field), so the final rule will match all such packets. Let us
assume that with this process, we create a rule fj from the removed
rule fi, but the rule that will match those packets is fk. Based on
Theorem 1, we can see that fk  fi and fj  fi, since fi should have
higher priority than the other two, which means that it is longer
than both of them. Theorem 1 also shows that either fk  fj or fj 
fk. We cannot have fj  fk because in this case we should have
stopped when the rule set was equal to fk, contradicting that fj was
the first time that we reach one of the remaining rules. It also
cannot be the case that fk  fj since in this case fj will have a
higher priority (because it is longer), contradicting that fk is the
new matching rule.

We also note that in ReWiFlow all packets of a removed flow will
match at most one of the remaining rules. The prefix property
allows the controller to store all installed rules in a trie data
structure, which provides fast search to find the new rule that will
match the given packet. It also enables a quick way to find which
currently installed rules will be affected when a new rule is
installed (e.g. to check whether the new routing optimization rule
may interfere with a currently installed access control rule).

4.2.3 Simple Search Space
Rule breakdown, which is equivalent to searching for new sub-
rules, is very simple in ReWiFlow: the pre-specified ordering of
header fields defines which new field should be added to the
wildcard rule, and only its matching value should be searched.

4.2.4 Hardware Implementation
ReWiFlow converts the general wildcard search into a simple
prefix search: if we reorder the header fields based on the
ReWiFlow ordering, then finding the matching rule is equivalent
to finding the longest prefix matching in this reordered header.
Considering that IP routing and longest prefix matching is a well-
studied topic, it enables us to use a wide array of techniques and
algorithms such as special Bloom filters [9] and tries data
structures [16] that could significantly improve the performance
of hardware versus using plain TCAM for general wildcard
matching.

The strict ordering in ReWiFlow may enforce matching of header
fields that are not present in a rule. For example, if UDP port is
after TCP port, then to match UDP port we should also have TCP
port present in the rule. A simple solution to this problem is to set
the value of non-present header fields to 0 when the switch has to
match the field in a rule. In the TCP and UDP port example, we
can have the TCP port equal to 0 and UDP port equal to 53 in the
rule. This solution does not add any limitations to the system:
packets that should be matched are still matched, and those
packets that should not be matched will not. This simple

ACM SIGCOMM Computer Communication Review 33 Volume 45, Number 5, October 2015

technique allows us to take advantage of the prefix property: a
switch can create a fixed size bit string from each packet header
during the parsing phase (by using the ordering of m, values of
present fields, and zero for absent fields).

Note that, if the controller needs to install ReWiFlow rules in
current OpenFlow switches, it can simply remove the header field
parts that cannot appear in any of targeted packets (e.g.
destination TCP port in UDP packets).

Another advantage of the strict fixed ordering to specify header
field values is that if a considerable number of flows have a
specific length, then searching among them would be similar to
exact match if we only consider those header fields. As a result, a
hash table can be used to search among them. In other words, we
may have a number of hash tables that are used to search for rules
of different common length. If no matching rules are found, then a
general table with varying length (i.e. priority) is searched for
matching rules1. This idea is similar to tuple space search
classification (using hash value of header fields to find matching
wildcard rule) [17] that is currently used in Open vSwitch, which
is not possible to do with general wildcard rules in hardware.

4.3 Multi-ReWiFlow
Although the prefix property will ease working with wildcard
rules, the necessity of selecting matching value for previous
header fields in order to match a specific header field may inflate
the number of rules that should be installed, or make it impossible
to do that proactively. For example, if a group of rules only needs
to match source or destination ports (e.g. to block SMTP traffic),
while another group only needs to match source or destination IP
(e.g. block a specific target machine), then no ordering can
accommodate both groups of rules.

To solve this problem, we propose Multi-ReWiFlow, a
generalization of ReWiFlow where we can have multiple groups
of ReWiFlow rules each with a different orderings. The intuition
behind Multi-ReWiFlow is that while we may not be able to use a
single ordering to match all rules, we can match the majority of
network rules with only a few groups of ReWiFlow rules. For
example, we can have a group of rules ordered based on
destination IP, and destination port, and another group of rules
based on source IP, and source port. There is an optional group of
rules that have no explicit ordering (which we call exceptional
set), i.e. rules that do not fit in of the ordered sets. This can reduce
the number of ReWiFlow sets in cases that we need multiple new
orderings to match a few rules only.

To find the matching rule in the Multi-ReWiFlow, we first find
matching rules in each of ReWiFlow rule sets (and possibly in the
exceptional set), and then select the rule with highest priority
among them. Finding the match in those groups can be done in
parallel, which makes the search time independent of the number
of rule sets. Assuming the exceptional set of rules is also small,
we can have the simplicity and speed of ReWiFlow, without the
loss of generality.

1 Note that there are some implementation details that we skip,
such as searching among those tables from longer prefix to
shorter to obey priorities; and only put a rule in those exact
match tables if it has no sub-rule or all of its sub-rules are also
in some exact match table.

The tuple search space [17] approach that is currently used in
Open vSwitch can be seen as a special case of Multi-ReWiFlow
where we create a set for each combination of determined header
fields. For example, if a group of rules matches on source IP only,
and another set matches on source IP and destination IP, then
Open vSwitch will create two tuple groups, one for source IP only
and another one for source IP and destination IP. This can be done
in Multi-ReWiFlow by creating two sets of rules with identical
ordering of source IP and then destination IP, and by putting rules
with both source IP and destination IP filled only in the second set
(even though they could be inserted in the first set as well). As a
result, the equivalent Multi-ReWiFlow will have fewer number of
sets in comparison to the equivalent tuple search approach, as it
can merge tuples that are a subset of each other together. This can
reduce the number of different tables that we need to implement.

5. EXAMPLE APPLICATIONS
In this section, we demonstrate how we can use ReWiFlow and
Multi-ReWiFlow with two example applications. First, we present
how ReWiFlow can be used to implement a dynamic proactive
routing scheme. A system like this can reap the benefits of both
proactive and reactive routing, i.e. low setup delay, high visibility
and fine-grained control. Then, we show a preliminary set of
results that show how Muti-ReWiFlow can be used to represent
the access control rules of an operational network [20].

5.1 Proactive Routing
We consider a network that starts with a minimal set of rules to
route packets among hosts. Over time, the controller monitors
switch port loads, and whenever there is a significant imbalance,
it tries to either move some wildcard rules from one port to
another, or break down a wildcard rule by creating a sub-flow
from that rule and move that to the other port. To create a sub-
flow from a wildcard rule, we simply add the next header field
based on the selected ReWiFlow ordering, and select the best
value for that field to balance the load. The controller receives
sampled packets from the switches and buffers them for a period
of 1 second to be able to break down wildcard rules. This is an
example of applications that are not a good match for previous
solutions to reduce programming complexity, because state-based
solutions such as Onix are not designed to react to rapid changes
in traffic characteristics [8] and high-level languages like NetCore
are well suited for permanent changes and invariance [11].

For this experiment, we used the Mininet network simulator, with
a modified Open vSwitch and NOX controller that supports
FleXam [14]. We also used the common fat-tree topology (similar
to what used in DevoFlow [4] and FleXam [14]). Due to the
limitations of Mininet (e.g. 2Gbps total bandwidth), we performed
our simulation for a network with 16 hosts and 20 switches. The
workload was created based on flow characteristics of data center
networks reported by Kandula et al. [7] and MGEN toolkit
(http://cs.itd.nrl.navy.mil/work/mgen/) was used for traffic
generation. We simulated different network loads by multiplying
all flow inter-arrival times by a constant factor. We used four
different ReWiFlow orderings: (src ip, dst port, dst ip, src port),
(dst ip, src ip, dst port, src port), (src port, dst ip, src ip, dst port),
and (dst port, src ip, dst ip, src port).

Our preliminary results here are very promising: using wildcard
ReWiFlow rules eliminates the flow setup time, which translates
to reduced flow completion time (e.g. 75% reduction for small
flows (<10KB) in high load scenario). It also reduces the table

ACM SIGCOMM Computer Communication Review 34 Volume 45, Number 5, October 2015

occupancy and controller load (e.g. ~1K installed rules with
ReWiFlow vs. ~20K installed rules in reactive routing).

The difference between different ordering of header fields is more
prominent in higher loads. For example, the number of rules
installed by first ordering is less than 1/3 of third ordering in
extreme load scenario. The length of installed ReWiFlow rules
also depends on the selected ordering. E.g., more than 95% of
installed rules in third and fourth ordering have length 1, because
the first header field is source or destination port in those
ordering. On the other hand, more than 85% of installed rules for
the first ordering have length 2 under high load scenario.

5.2 Multi-ReWiFlow for Access Control Rules
As an example of how Multi-ReWiFlow can be used, we
demonstrate how access control rules (i.e. ACLs) of Stanford
backbone networks [20] can be represented by Multi-ReWiFlow.
There are a total of 1636 configured ACLs in Stanford backbone
routers. In each ACL, there is an action (permit/deny) and 5
header fields that can be determined to match packets: source IP,
destination IP, protocol, source port, and destination port.
Different rules define different subset of fields. For example, 160
rules defined the protocol and destination port, 136 rules only
defined the /32 source IP, and 156 rules defined the /32 source IP
and /27 destination IP.

To store these rules as a Multi-ReWiFlow, we tried various
orderings and found a group of 4 ReWiFlow rule sets that cover
85% of rules: The first ordering is [source IP (/0, /8, /12/, /14, /16,
/21, /22, /23, /24, /25, /26, /27, /29, /30, /32)2, destination IP (/0,
/16, /24, /27, /31, /32), protocol, destination port, source port],
which contains 708 ACLs (43% of all ACLs). The second
ordering is [destination IP, protocol, destination port, source IP,
source port] which contains 310 of remaining ACLs (19% of all
ACLs). The third ordering is [protocol, destination port, source
IP, destination IP, source port] which contains 289 of remaining
ACLs (18% of all ACLs). The fourth ordering is [source IP (/22),
destination IP (/23, /32), source IP (/23, /32), protocol, source
port, destination IP, destination port] which contains 81 of
remaining ACLs (5% of all ACLs). A fifth exceptional set will
cover the remaining 249 rules (15% of all ACLs).

The interesting observation about these ordering is that they also
provide insight about what rules in each category do: the first set
focuses on the communication between specific pairs of
machines, the second set is about restricting access to specific
machines, and the third one on specific types of traffic. As a
comparison, if we wanted to use the tuple search space method,
we need to have 13 different tables because there are 13 different
combinations of header fields in these rules, which is four times
higher than the number of sets for Multi-ReWiFlow.

6. CONCLUSION
In this paper, we proposed ReWiFlow as a restricted class of
OpenFlow wildcard rules that can reduce the programming
complexity of wildcard rules. We also presented Multi-
ReWiFlow, as a more flexible generalization of ReWiFlow. Our
preliminary experiments show that we can use ReWiFlow to
implement a dynamic proactive routing to eliminate the flow

2 The numbers inside parenthesis represent how this field is
broken down into multiple parts to support masks.

setup time and improve the overall flow completion time. We
have also promising results showing how Multi-ReWiFlow can be
used to represent ACLs of an operational network. An important
part of using ReWiFlow and Multi-ReWiFlow is selecting header
field orderings. We plan to develop automatic methods to extract
such orderings based on application needs, network
characteristics, and traffic.

7. REFERENCES
[1] M. Appelman. 2012. Performance Analysis of OpenFlow

Hardware. M.Sc. Thesis. University of Amsterdam.

[2] T. Benson, et al. 2010. Network traffic characteristics of data
centers in the wild. In IMC '10. 267-280.

[3] R. Bifulco, and F. Schneider. 2013. OpenFlow rules
interactions: definition and detection. In SDN4FNS 2013.

[4] A.R. Curtis, et al. 2011. DevoFlow: scaling flow
management for high-performance networks. In
SIGCOMM'11. 254-265.

[5] H. Hamed and E. Al-Shaer. 2006. Taxonomy of conflicts in
network security policies. Comm. Mag. 44(3). 134-141.

[6] C.Y. Hong, et al. 2012. Finishing flows quickly with
preemptive scheduling. In SIGCOMM '12. 127-138.

[7] S. Kandula, S., et al. 2009. The nature of data center traffic:
measurements & analysis. In IMC'09. 202-208.

[8] T. Koponen, et al. 2010. Onix: a distributed control platform
for large-scale production networks. In OSDI'10.

[9] H. Lim, et al. 2014. On Adding Bloom Filters to Longest
Prefix Matching Algorithms. IEEE Trans. Compu. 63(2).
411-423.

[10] F. Mansmann, et al. 2012. Visual analysis of complex
firewall configurations. In VizSec '12.

[11] C. Monsanto, et al. 2012. A compiler and run-time system
for network programming languages. In POPL '12. 217-230.

[12] C. Monsanto, et al. 2013. Composing software-defined
networks. In NSDI’13.

[13] T. Nelson, et al. 2014. Tierless Programming and Reasoning
for Software-Defined Networks. In NSDI’14. 519-531.

[14] S. Shirali-Shahreza and Y. Ganjali. 2013. Efficient
Implementation of Security Applications in OpenFlow
Controller with FleXam. In HotI 2013. 49-54.

[15] S. Shirali-Shahreza and Y. Ganjali. 2013. FleXam: Flexible
Sampling Extension for Monitoring and Security
Applications in OpenFlow. In HotSDN 2013.

[16] H. Song, et al. 2012. Efficient trie braiding in scalable virtual
routers. IEEE/ACM Trans. Netw. 20(5). 1489-1500.

[17] V. Srinivasan, et al. 1999. Packet classification using tuple
space search. SIGCOMM Comput. Commun. Rev. 29(4).
135-146.

[18] H. Yamanaka, et al. 2014. OpenFlow Networks with Limited
L2 Functionality. In ICN2014. 221-229.

[19] G Yao, et al. 2014. FlowInsight: Separating Visibility and
Operability in SDN Data Plane. In ONS 2014.

[20] H. Zeng, et al. 2012. Automatic Test Packet Generation. In
CoNEXT 2012.

ACM SIGCOMM Computer Communication Review 35 Volume 45, Number 5, October 2015

