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Abstract. Functional magnetic resonance (fMRI) data are often cor-
rupted with colored noise. To account for this type of noise, many pre-
whitening and pre-coloring strategies have been proposed to process the
fMRI time series prior to statistical inference. In this paper, a gener-
alized likelihood ratio test for brain activation detection is proposed in
which the temporal correlation structure of the noise is modelled as an
autoregressive (AR) model. The order of the AR model is determined
from experimental null data sets. Simulation tests reveal that, for a fixed
false alarm rate, the proposed test is slightly (2-3%) better than current
tests incorporating colored noise in terms of detection rate.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a noninvasive technique used
to detect brain activity. By utilizing the fact that the magnetic resonance signal
intensity is correlated with neural activity [1], fMRI can localize brain regions
that show significant neural activity upon stimulus presentation. fMRI data sets
typically consist of time series associated with the voxels of the brain. For each
voxel, the significance of the response to the stimulus is assessed by statistically
analyzing the associated fMRI time series. In this way, brain activation maps, or
statistical parametric maps (SPMs), reflecting brain activity can be constructed.

Nowadays, the most common approach is to model the time series of fMRI
data by a general linear model (GLM) disturbed by Gaussian distributed noise
[2,3]. Potential time trends can be included in the linear model by adopting extra
linear terms. The model contains one or more activation related parameters of
interest as well as nuisance parameters. Statistical parametric maps (SPMs) are
obtained by testing the significance of the activation related parameter(s) of the
linear model using standard statistical tools such as the (two-sided) t-test (in
the one parameter case) or the F -test (in the case of more than one parameters).

Current methods deal with temporally correlated noise by prewhitening the
data based on the estimated correlation matrix of the noise [3]. This correlation
matrix is estimated by fitting an autoregressive (AR) time series model to the
residuals obtained after fitting the general linear model to the fMRI time series
in least squares sense [4]. Since an estimate of the correlation matrix instead of
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the (unknown) true correlation matrix of the noise is used for prewhitening the
data, the assumption that the test statistic has a Student’s t distribution (upon
which inference on the significance of the response is based) is only approximately
valid. Obviously, this fact may harm the performance of the test.

In this paper, an alternative approach is proposed. This approach is also
based on a general linear model with correlated noise modelled as an AR process,
but, unlike the common GLM approach, it does not require a prewhitening step.
Instead, statistical inference is based on the exact likelihood function (LF) that
describes the statistics of the data including the temporal correlation structure
of the noise. No approximations are made. The order of the AR process, which is
fixed in the proposed test, is determined from practical null data sets (acquired
in the absence of activity). The performance of the proposed tests is evaluated
in terms of detection rate and false alarm rate properties.

The paper is organized as follows. In Section 2.1 and Section 3, statistical
inference incorporating colored noise model is reviewed. Section 4 describes a
novel approach for the construction of a statistical test that also accounts for
colored noise. Simulation and experimental results are presented in Section 5.

2 Statistical Inference Incorporating Colored Noise

2.1 The Statistical Model of the fMRI Time Series

An fMRI time series y = (y1, ..., yn)T (the superscript T denotes matrix trans-
position) of equidistant observations can in general be modelled as [2,5]

y = Xθ + v (1)

in which X is an n × m design matrix. It consists of m columns that model
signals of interest and nuisance signals such as potential drift. Furthermore, θ is
an m× 1 vector of unknown parameters and v is an n× 1 vector that represents
stochastic noise contributions. The noise is modelled as a stationary stochastic
AR process of order p (i.e., an AR(p) process):

vt + α1vt−1 + α2vt−2 + · · · + αpvt−p = e (2)

with α = (α1, . . . , αp)T the vector of AR parameters and e independent, zero
mean Gaussian distributed white noise with variance σ2

e . Let σ2
eV be the n × n

covariance matrix of the AR process, i.e., σ2
eV = E[vvT ] with E the expecta-

tion operator. For observations of stationary stochastic processes, the covariance
matrix of the AR(p) process vt may be written as

σ2
eV = σ2

v

⎛
⎜⎜⎜⎝

ρ(0) ρ(1) . . . ρ(n − 1)
ρ(1) ρ(0) . . . ρ(n − 2)

...
...

. . .
...

ρ(n − 1) ρ(n − 2) . . . ρ(0)

⎞
⎟⎟⎟⎠ (3)
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where ρ(k) = E[vtvt+k]/σ2
v and σ2

v is the variance of vt. Notice that it follows
from this definition that ρ(0) = 1. The elements of the matrix V can be expressed
in the AR parameters through the Yule Walker relations [6]:

ρ(k) + α1ρ(k − 1) + · · · + αpρ(k − p) = 0, k > 0, ρ(−k) = ρ(k). (4)

Several authors have performed analyses that indicate that AR models give an
accurate description of the actual temporal autocorrelation structure of the noise
that contaminates fMRI data [4,7]. The validity of the model will be assessed
using experimental data in section 5.1.

In this paper, the noise is assumed to be Gaussian distributed. Although
magnitude MR data are known to be Rician distributed, the Rice distribution is
nearly Gaussian at high SNR [8]. Hence, the test derived in this paper will only
be valid for high SNR fMRI magnitude data (i.e., SNR>10).

2.2 Statistical Inference

In the next two sections, two-sided as well as one-sided hypothesis testing will be
considered. If the test is two-sided, the null hypothesis H0 that the task-related
ith component θi of θ equals zero is tested against the alternative hypothesis H1
that θi �= 0. If it is known that θi > 0 (under H1), one may use a one-sided test
in which H0 that θi = 0 is tested against H1 where θi > 0:

H0 H1

one-sided test θi = 0 θi > 0 or θi < 0
two-sided test θi = 0 θi �= 0

3 The Common GLM Approach

The widely used GLM approach consists of two steps. First, an estimate of the
parameter vector θ is obtained by least squares fitting of the model described
by the right hand side of Eq. (1) to the data y. A closed form expression of this
so-called ordinary least squares (OLS) estimator is given by:

θ̂OLS = (XT X)−1XT y. (5)

Although not fully efficient, this estimator is unbiased [9]. Therefore, the resid-
uals y − Xθ̂OLS have zero expectation values and a correlation structure that is
approximately equal to that of the noise v. Assuming that the noise is generated
by an AR(p) model, the parameters of this model and hence the matrix V can
be estimated from the residuals [3]. The estimated covariance matrix will be
denoted as V̂ . Second, V̂ −1 is used as weighting matrix in a generalized least
squares (GLS) estimator of θ, which results in:

θ̂GLS = ŴXT V̂ −1y (6)
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where the m × m matrix Ŵ = (XT V̂ −1X)−1 is an estimator of the covariance
matrix of θ̂GLS described by Eq. (6). Notice that estimator (6) is equivalent
to applying the matrix V̂ −1 to the model given by Eq. (1) before applying an
ordinary least squares estimator. This is known as prewhitening of the data.

Finally, an estimator of σ2
e is given by

σ̂2
e =

(
y − Xθ̂GLS

)T (
y − Xθ̂GLS

)
/(n − m) (7)

of which the statistics are not known exactly.

3.1 Statistical Inference

Brain activation can now be detected by testing the significance of the task-
related parameter, say, θi of the linear model using standard statistical tools
such as the t-test or the F -test. The Student’s-t test statistic is given by

Tt =
[
θ̂GLS

]
i
/

√
Ŵiiσ̂2

e , (8)

where
[
θ̂GLS

]
i

denotes the ith element of θ̂GLS, σ̂2
e is given by Eq. (7), and Ŵii

denotes the ith diagonal element of the m × m matrix Ŵ . The one-sided t-test
decides H1 if Tt > γ, whereas the two-sided t-test decides H1 if Tt < −γ or Tt >
γ, with γ a user specified, positive threshold. In practice, this threshold is chosen
in function of a false positive rate that the user allows in case the null hypothesis
H0 is true. Approximately, the test statistic Tt has a t distribution with n − m
degrees of freedom (exact if V would be known) under H0. Alternatively, one
may use the test statistic

TF =
([

θ̂GLS

]
i

)2
/
(
Ŵiiσ̂2

e

)
, (9)

which has an approximate F distribution with 1 and n − m degrees of freedom
(exact if V is known) under H0. The F -test, which is a two-sided test, decides
H1 if TF > γ, with γ some user specified threshold.

4 Likelihood Based Tests

In this section, two new tests (a one-sided as well as a two-sided likelihood ratio
test) for brain activation detection is presented with incorporation of colored
noise. Thereby, the significance of the task-related parameter θi of the linear
model is tested.

4.1 The Joint Probability Density Function of the Data

In order to use likelihood based tests, the joint probability density function
(PDF) of the fMRI data p(y|θ,α) is required. From Bayes’ theorem, we have:

p(y|θ,α, σ2
e) = p(yp|θ,α, σ2

e) p(yn−p|θ,α, σ2
e ,yp) (10)
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with yp = (y1, . . . , yp)T and yn−p = (yp+1, . . . , yn)T . The second part of the
right hand side is the conditional PDF of the observations yn−p given that the
initial observations yp remain fixed at their observed values. Under the assumed
AR model (2), where e is Gaussian distributed, it may be written as [10]

p(yn−p|θ,α, σ2
e ,yp) =

(
1

2πσ2
e

)(n−p)/2

×

exp

(
− 1

2σ2
e

n∑
t=p+1

{yt − xtθ + α1(yt−1 − xt−1θ) + . . . + αp(yt−p − xt−pθ)}2

)

(11)

where xt denotes the t-th row of the design matrix X. The joint PDF of the
data yp may be written as [10]

p(yp|θ,α, σ2
e) =

(
1

2πσ2
e

)p/2

×

|Vp|−1/2 exp
(

− 1
2σ2

e

(yp − X1:pθ)T
V −1

p (yp − X1:pθ)
)

(12)

where X1:p denotes the p × m matrix consisting of the first p rows of the design
matrix X. Vp denotes the p×p covariance matrix of vp = (v1, . . . , vp)T and |Vp|
denotes the determinant of Vp.

4.2 Statistical Inference

If we substitute the acquired data y in the expression for the joint PDF of
the data (10), the resulting function is a function of the unknown parameters
(α,θ, σ2

e) only. By regarding these parameters as variables, the LF p(θ,α, σ2
e ;y)

is obtained. Then, the generalized likelihood ratio (GLR) is given by [11]:

λ =

sup
θ1,...,θi−1,θi+1,...,θm,α,σ2

e

p
(
θ1, . . . , θi−1, 0, θi+1, . . . , θm,α, σ2

e ;y
)

sup
θ,α,σ2

e

p(θ,α, σ2
e ;y)

. (13)

The denominator of λ is the LF evaluated at the maximum likelihood (ML)
estimator under H0, whereas the numerator of λ is the LF evaluated at the ML
estimator under H1. From the GLR statistic, a one-sided as well as a two-sided
likelihood ratio test can be constructed.

Two-sided likelihood ratio test. The generalized likelihood ratio test (GLRT)
principle states that H0 is to be rejected if and only if λ ≥ λ0, where λ0 is some
user specified threshold. It can be shown that, asymptotically (i.e., for N → ∞),
the modified GLR statistic

TLR = 2 log λ (14)

possesses a χ2
1 distribution, that is, a chi-square distribution with 1 degree of

freedom, when H0 is true [11].
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One-sided likelihood ratio test. The signed likelihood ratio test statistic is
given by [12]

TLR1 = Sign
(
θ̂i

) √
2 log λ. (15)

The test decides H1 if TLR1 > γ, with γ some user specified threshold. Asymp-
totically, the test statistic TLR1 has a standard normal distribution under H0.

4.3 Computational Considerations

To obtain the likelihood ratio λ, the ML estimates of the unknown parame-
ters under the null hypothesis H0 and the alternative hypothesis H1 have to be
found. For that purpose, the LF has to be maximized with respect to the un-
known parameters (α,θ, σ2

e). The noise variance σ2
e can be eliminated from this

optimization problem since it can be shown that the value of σ2
e that maximizes

the LF p(α,θ, σ2
e ;y) with respect to σ2

e is given by

σ2
e =

1
n

⎡
⎣

p∑
i=1

p∑
j=1

[V −1
p ]ij(yi − xiθ)(yj − xjθ)+

n∑
t=p+1

{yt − xtθ + α1(yt−1 − xt−1θ) + . . . + αp(yt−p − xt−pθ)}2

]
, (16)

[V −1
p ]ij being the (i, j)th element of V −1

p . Substituting (16) in (10) yields the
so-called concentrated LF. The ML estimates (α̂, θ̂) of the parameters (α,θ)
can now be found by maximizing the concentrated LF with respect to (α,θ),
which is a nonlinear optimization problem that can be solved numerically.

5 Experiments

Experimental fMRI data sets were obtained from small animal as well as from
human subjects. The experiments for the small animals (3 rats) were done on a
7T MRI system (SMIS, Guildford, UK) with an 80 mm aperture and self-shielded
gradients. Images were taken with size 256 × 128, maximum gradient strengths
Gr = 0.017 T/m, Gp = 0.027 T/m, Gsl = 0.07 T/m, and ramp time 100 µs. All
human experiments were performed on a 1,5 T scanner with high-performance
40 mT/m gradients (Siemens Sonata, Erlangen, Germany). Subjects were three
healthy volunteers (mean age 33 years). Gradient-recalled multi-shot EPI se-
quences (TE 50 ms, TR 3000 ms) were used with 30 slices covering the whole
brain. The voxels dimensions were 3 × 3 × 3 mm.

5.1 Order of the AR Model of fMRI Noise Structures

From the experimental fMRI null data, the order of the AR model was deter-
mined. Previous work by Woolrich et al. examined the necessary AR order from
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six null data sets. They concluded that AR(6) was sufficient for their data [4].
In our work, various null data sets were acquired from humans as well as from
small animals. The null data were modelled with a second order polynomial
model: b0 + b1t + b1t

2 along with an AR(p) model of which the order was esti-
mated using Akaike’s information criterion (AIC) [13], where a penalty factor of
3 instead of 2 was chosen [14]. Evaluation of AR order maps, constructed from
these data revealed that an AR(3) model is conservative with enough freedom
to accommodate even more complex AR processes than expected.

5.2 Simulation Experiments

For a fixed false alarm rate of 1%, the likelihood ratio tests proposed were com-
pared to the GLM tests with respect to detection rate. The false alarm rate is
the probability that the test will decide H1 when H0 is true. The detection rate
is the probability that the test will decide H1 when H1 is true.

Simulation experiments were set up to detect brain activation. Thereby, a
simple on-off activation scheme was used in which traces of 100 time-points
were generated with period equal to 20 (10 on, 10 off). Also, small linear and
quadratic trends were introduced that were modelled along with the baseline
and activation pattern. The amplitude of the activation pattern was gradually
increased from 0 till 0.6; the noise standard deviation was fixed to 1. For each
simulation experiment, 104 Monte Carlo simulations were run.

6 Results and Discussion

Typical results for the simulation experiments described in Subsection 5.2 are
shown in Fig. 1. Fig. 1(a) shows the detection rate as a function of the amplitude
of the activation pattern. Although results weakly depend on this amplitude, it
may be concluded from the numerical outcomes that, for a fixed false alarm rate

(a) GLM vs. GLRT (onesided) (b) Onesided vs. two-sided GLRT

Fig. 1. Detection rates with a fixed false alarm rate of 1%
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of 1%, the detection rate of the proposed one-sided GLRT is uniformly 2-3%
better compared to the detection rate of the GLM test incorporating colored
noise. Similar results were observed when comparing the two-sided tests.

Finally, Fig. 1(b) shows the results when comparing the one-sided test against
the two-sided test in case the amplitude of the activation pattern was known to
be positive. As expected, the one-sided test performs in that case over 10% better
than the two-sided test.

7 Conclusions

In this paper, likelihood ratio tests for the detection of functional brain activity,
one-sided as well as two-sided, have been presented. In contrast to the general
linear model (GLM) tests, the proposed likelihood ratio tests allow direct in-
corporation of colored noise and do not require a prewhitening step. Simulation
results showed that likelihood based detection results in systematic slightly im-
proved detection probabilities compared to the currently popular GLM based
tests.

Acknowledgements

This work has been financially supported by the FWO (Fund for Scientific Re-
search - Belgium). The authors like to thank A. Smolders and N. Van Camp for
providing them with experimental fMRI null data.

References

1. Cohen, M.S.: Real-time functional magnetic resonance imaging. Methods 25 (2001)
201–220

2. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak,
R.S.J.: Statistical parametric maps in functional imaging: a general linear ap-
proach. Hum. Brain Mapp. 2 (1995) 189–210

3. Worsley, K.J., Liao, C.H., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans,
A.C.: A general statistical analysis for fMRI data. NeuroImage 15 (2002) 1–15

4. Woolrich, M.W., Ripley, B.D., Brady, J.M., Smith, S.M.: Temporal autocorrelation
in univariate linear modelling of fMRI data. NeuroImage 14 (2001) 1370–1386

5. Worsley, K.J., Friston, K.J.: Analysis of fMRI time-series revisited – again. Neu-
roImage 2 (1995) 173–181

6. Kay, S.M., Marple, S.L.: Spectrum analysis – a modern perspective. In: Proceedings
of the IEEE. Volume 69. (1981) 1380–1419

7. Carew, J.D., Wahba, G., Xie, X., Nordheim, E.V., Meyerand, M.E.: Optimal
spline smoothing of fMRI time series by generalized cross-validation. NeuroImage
18 (2003) 950–961

8. den Dekker, A.J., Sijbers, J.: Estimation of signal and noise from MR data. In:
Advanced Image Processing in Magnetic Resonance Imaging. Volume 26 of Signal
Processing and Communications. Marcel Dekker (2005) ISBN: 0824725425.



546 J. Sijbers, A.J. den Dekker, and R. Bos

9. van den Bos, A.: 8: Parameter Estimation. In: Handbook of Measurement Science.
Volume 1. Edited by P. H. Sydenham, Wiley, Chichester, England (1982) 331–377

10. Priestley, M.B.: Spectral analysis and time series. Academic Press, London (1981)
11. Kay, S.M.: Fundamentals of statistical signal processing: estimation theory.

Prentice-Hall, Inc. (1993)
12. Rowe, D.B., Logan, B.R.: A complex way to compute fMRI activation. Neuroimage

23 (2004) 1078–1092
13. Ardekani, B.A., Kershaw, J., Kashikura, K., Kanno, I.: Activation detection in

functional MRI using subspace modeling and maximum likelihood estimation.
IEEE Trans Med Imaging 18 (1999) 246–254

14. Broersen, P.M.T.: Finite sample criteria for autoregressive order selection. IEEE
Trans Sig Proc 48 (2000) 3550–3558


	Introduction
	Statistical Inference Incorporating Colored Noise
	The Statistical Model of the fMRI Time Series
	Statistical Inference

	The Common GLM Approach
	Statistical Inference

	Likelihood Based Tests
	The Joint Probability Density Function of the Data
	Statistical Inference
	Computational Considerations

	Experiments
	Order of the AR Model of fMRI Noise Structures
	Simulation Experiments

	Results and Discussion
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




