
The Effectiveness of Brute Force Attacks on RC4

Nathaniel Couture Kenneth B. Kent
Faculty of Computer Science Faculty of Computer Science
University of New Brunswick University of New Brunswick

Fredericton, New Brunswick, Canada Fredericton, New Brunswick, Canada
1394e@unb.ca ken@unb.ca

Abstract

The security of encryption algorithms depends
heavily on the computational infeasibility of
exhaustive key-space searches. The RC4 cipher,
utilized primarily in the area of data
communications, is being used in this paper as a
test case for determining the effectiveness of
exhaustive key-searches implemented on FPGAs
using a Network on Chip (NoC) design
architecture. Preliminary results show that a
network of key-checker units implemented on a
Xilinx XC2V1000 FPGA using the Celoxica DK2
design tools can exploit the speed and parallelism
of hardware such that the entire key-space of a 40-
bit RC4 encryption can be searched in minutes.
Furthermore, it has been found that the clock rate
of the circuit diminishes as the number of key-
checker units increases. Future work is proposed to
find a method for predicting an optimal balance
between the size of the network (# of key-checker
units) and the clock rate in order to maximize
performance.

1. Introduction

Advancements made in e-commerce, wireless

internet access, and various other communication
technologies have created a tremendous need for
secure encryption algorithms. The RC4 cipher,
predominantly used in the area of data
communications, was developed in 1987 at a time
when an Intel 80386 running at 16 MHz was
leading edge1.

The size and sophistication of Field
Programmable Gate Arrays (FPGA) and their
accompanying Computer Aided Design (CAD)
tools are evolving at incredible rates [5], and
because of this are more commonly being used to
solve computationally intensive problems [6,7,8].

1 RC4 will be used in this paper as a test case for experimenting
with exhaustive key-searching.

In this paper, a hardware implementation of an RC4
key-search machine, using a network of key-
checker units, is used to test the effectiveness of
brute force attacks on 40-bit RC4. The objective is
to present possibilities for future work on the
prediction of the optimal number of checker units
to be used in similar hardware designs considering
the fact that the clock rates of circuits decrease as
the number of checker units increase.

Necessary background information is reviewed in
Section 2. The RC4 encryption algorithm is
described in Section 3, and the implementation
details are presented in Section 4. Results,
conclusions and future work are discussed in
sections 5 and 6 respectively.

2. Background

This section provides background information for

this paper.

2.1. RC4

Ron Rivest of RSA Data Security, Inc developed
the RC4 cipher in 1987, the details of which were
published in 1996 [11]. RC4 is a public-key
encryption system and, as the name suggests,
requires the exchange of public keys. Through an
authentication handshake process the participants of
the communication session use the public keys to
generate master keys, which are used to encrypt and
decrypt messages transferred during a particular
communication session. All messages encrypted
with the master keys are considered secure.

2.2. Brute Force Attacks

A brute force attack on encrypted messages,

otherwise known as a “known plaintext attack”,
consists of decrypting an intercepted message with
every possible key and comparing the result to the
“known” plaintext. The “known” text is essentially
guessed, but is easily deduced from the fact that

communication sessions often begin with the same
sequence of bytes. For an attack of this kind to be
successful, only a small number of “known” bytes
are necessary, making the guessing process
significantly easier.

2.3. Field Programmable Gate Arrays

FPGAs are two dimensional arrays of

uncommitted logic gates grouped into Configurable
Logic Blocks (CLBs) with common interconnection
resources. Each CLB is capable of implementing a
simple logic circuit that consists of up to 4 inputs
and 2 outputs. Using a hardware description
language (HDL), a custom circuit can be described
in a high level language. Similar to the compilation
process of software, the HDL code is synthesized,
generating a bit file, which essentially maps the
described circuit to the CLBs on the FPGA. The bit
file is downloaded to the FPGA allowing a
developer to quickly program the hardware device
into a custom circuit. Taking this approach to
implement the RC4 algorithm implies the creation
of an instance-specific circuit that implements the
RC4 algorithm using a particular pair of
ciphertext/plaintext data. The instance-specific
approach requires that for each new pair of
ciphertext/plaintext data, a new instance of the
circuit must be generated. A large portion of the
circuit however remains the same between
instances and therefore does not need to be
modified.

2.4. Network on Chip Architecture

A hardware design solution for this particular

problem involves creating several individual
components, each designed to perform a specific
task. Several components connected together form
a network similar to a typical broadband network.
The components on a chip can be viewed as a
micro-network, communicating with each other
using the micro-network stack paradigm which is
based on the stack-protocol [1]. The individual
components of the RC4 key-search machine use
this network architecture as the basis for their
communications.

3. RC4 Encryption Algorithm

The RC4 encryption algorithm completes its
encryption in 3 steps. The first step involves
initializing S and K, both of which are byte arrays
containing 256 elements. The initialization of S and
K is quite simple: K is repeatedly assigned the

values of the key until it is full and S is filled
linearly with the sequence of numbers beginning
with 0 and ending with 255, which will later be
permuted. Pseudo code for this step is shown
below (where i and j are integers):

S[0..255]= 0 to 255
K[0..255]= key(i mod key_length)
for i = 0 to 255

j = (j + S[i] + K[i])
swap S[i] and S[j]

The second step in the encryption process is the

pseudo-random byte generation. This requires a
small number of simple operations performed on
arrays S and K, and is best described by the pseudo
code below (where i, j, and t are integers):

i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap S[i] and S[j]
t = (S[i] + S[j]) mod 256
random byte = S[t]

The third and final step is the creation of the
ciphertext, obtained by XORing the pseudo-random
byte with the plaintext. For the purpose of this
paper we are interested in the decryption process,
which similar to encryption, is done by simply
XORing the ciphertext with the pseudo-random
byte, producing the original plaintext. This
decryption process will be the basis for the brute
force RC4 cracker.

4. Implementation Details

There are several methods of attempting a brute

force attack on RC4; two will be discussed in this
paper. The first is a software implementation
running on a PC. This approach is scalable and can
be extended to a cluster of PCs. The second is a
hardware implementation realized on an FPGA
using a Network on Chip architecture.

Despite the differences in implementation, their
functionality is identical: they apply the decryption
algorithm, described above, to decrypt an encrypted
message (ciphertext) using every possible key. This
means that for a message encrypted with a 40-bit
key, this process requires us to check 1.1 x 1012
keys in the worst case, therefore it is essential that
the program or device performing the key-search be
very efficient and capable of searching a large
number of keys per second.

4.1. Software implementation

The RC4 cipher was originally designed for

software, therefore this implementation is very

straightforward. The program implements the RC4
algorithm, taking as parameters the ciphertext and
plaintext. Starting with the smallest possible key
(0x00000) and incrementing by one each iteration,
the program eventually reaches the key which
properly decrypts the message. This
implementation is very scaleable and easily
extended to a cluster of PCs by dividing up the key-
space among participating computers.

4.2. Hardware Implementation

The implementation was realized on a Xilinx

Virtex II XC2V1000 FPGA using tools from
Celoxica [3]. It consisted of two distinct
components: the Key-Checker Unit and the
Controller (Figure 1).

The checker-units can be viewed as dedicated
integrated circuits, each consisting of a few
memory elements, a couple of adders, an XOR gate
and a couple of counters. Each checker unit is
designed to check a single key independently.
Using multiple checkers in a network therefore
results in an adjustable level of parallelism easily
modified by adding or removing key-checker units
from the design. The controller is used to distribute
the key space and is also responsible for receiving
messages passed to it from the key-checker units
indicating the end of the search.

Control Unit

Checker
Unit

Checker
Unit

Checker
Unit

Figure 1: Block Diagram of the Hardware RC4 Key-

Search Machine

A key-checker unit contains an implementation
of the RC4 decryption algorithm. Each unit has an
interface comprised of 2 ports, an input and an
output. A single key is sent to the input port and
upon completing the decryption process returns the
result on the output port. As described in a
previous section, the algorithm begins with the
initialization of arrays S and K. In terms of
hardware, S and K are small memory units.
Initialization of S involves assigning the values of S
to 0 through 255 sequentially and takes 256 clock
cycles due to the restrictions on memory access.
Similarly, K is filled with the bytes of the key. As

an optimization over the proposed algorithm, the
length of K was reduced to the size of the key (40
bytes in this case) and read using modulo
addressing rather than repeatedly filling it with
redundant data. This was done in order to reduce
the number of clock cycles required to check a
single key. With S and K initialized, the next step
is to permute S based on the values contained in K.
Considering that the swap alone takes 4 clock
cycles, one to read S[i], one to read S[j] and a clock
cycle each to rewrite each of them to the opposite
locations, many clock cycles are used simply to
perform the initializations. Overall, the whole
process of checking a single key takes
approximately 1300 clock cycles; 516 clock cycles
for initialization of S and K, 770 cycles for the
pseudo-random permutation of S and 7 cycles for
the generation of the pseudo-random bytes.

Key

Permutation
Component

Random
Byte

Generator

XOR

Comparator Counter

CipherText

Correct key

K S

Plaintext

Figure 2: Abstract View of the Key-Checker's

Internal Structure

During the design, the number of clock cycles in
each step of the decryption must be considered, as
it directly affects the performance of the key-search
machine. A larger circuit, although it may contain
more key-checker-units, will likely affect the clock
rate negatively and should be monitored such that
an optimal solution can be implemented. Memory
dependencies in the hardware also cause certain
restrictions that were not issues in the software
implementation; this includes limited access to the
arrays S and K to one address per clock cycle [3].

Despite the slow clock rates attained by FPGAs
in general and the considerably large number of
clock cycles required to verify a single key, good
performance is still achievable by scaling the
implementation [8]. Implementing multiple key-
checker units and dividing the key-space equally
among them is trivial and makes this approach very
effective and at the same time very cost-effective
[8]. Increasing both the number of key-checker
units and the clock rate increases the performance

over a single key-checker unit dramatically.
Though it must be noted that increasing the number
of checker units typically results in an overall
decrease in clock rate. This is due to the fact that a
signal takes more time to propagate through a
longer wire.

5. Results

Both implementations were tested using 40 bit
keys. 40 bits were chosen due to the fact that it is
the maximum key size allowable for an application
exported from North America using RC4 [11]. The
software implementation was executed on different
PCs ranging from a Pentium II 266 MHz to a
Pentium IV 2.4 GHz.

The results of the hardware cracker are still
preliminary and were extrapolated from the results
obtained for an implementation using only a single
key-checker unit running at 10 MHz. The
implementation did however support multiple key
checker units, as well as slightly higher clock rates,
roughly 14MHz according to the synthesis tools. It
is expected that this can be improved through
design optimizations. A summary of the results can
be seen in Table 1. Using simple analysis, we
quickly discover that on average, only half of the
key-space must be searched in order to find the
correct key. The estimated times were therefore
based on how long it would take, on average, to
find the correct key.

Implem. # of
Unts

Keys /
second

of FFs

Estimated
time

1 8,000 2300 800 days
5 40,000 11000 165 days
10 80,000 ~22000 82 days
25 200,000 ~50000 33 days

100 800,000 ~220000 8 days

FPGA
Running

at 10MHz

500 4,000,000 ~1000000 40 hours
 Pentium

II
266MHz

1 PC 22,500
NA 310 days

Pentium
III

500MHz
1 PC 225,000 NA 28 days

Pentium
IV

2.4GHz
1 PC 1,000,000

NA 6.5 days

Table 1: Performance Results

6. Conclusions and Future Work

Examining the results, it becomes quite apparent
that even a moderate scaling of these
implementations make RC4 quite vulnerable to
brute-force attacks. A very large FPGA, with a

network of 500 checker-units could likely crack a
40-bit encryption of RC4 within minutes or perhaps
even seconds. Yet, the maximum allowable key
size for exported applications using RC4 is 40 bits.
Wire Equivalent Protection (WEP) uses an even
smaller key, at 24 bits. Therefore it isn’t difficult to
see that RC4 does not provide adequate protection.

Although FPGAs are currently large enough to
support big networks of checker-units, issues
concerning congestion around the controller arise,
and make it difficult for the synthesis tools to route
the connections to and from each checker-unit, thus
reducing the potential size of these networks to
much less than what is available on the chip. Also,
as the size of the circuit increases, the clock rate
slows down. It therefore becomes an issue to find
an optimal number of checker-units that will
produce the best solution in terms of performance.

References

[1] L. Benini and G. D. Micheli, Networks on Chip: A
New Paradigm for Systems on Chip Design, Design
Automation and Test in Europe 2002, March 2002.

[2] L. Benini and G.D. Micheli, Networks on Chip: A
New SoC Paradigm, IEEE Computer, Jan. 2002, p 70-78.

[3] Celoxica, HandelC Reference Manual.

[4] D.D. Gajski, Specification and Design of Embedded
Systems. Prentice Hall, 1994.

[5] D. Edenfeld, A.B. Kahng, M. Rodgers and Y. Zorian,
2003 Technology Roadmap for Semiconductors, IEEE
Computer, Jan. 2004, pp 47-56.

[6] K.B. Kent and J.C. Rice, Using Instance-Specific
Circuits to Compute Autocorrelation Coefficients, First
Northeast Workshop on Circuits and Systems 2003, June
2003, pp. 61-64.

[7] K.B. Kent and M. Serra, Using FPGAs to Solve the
Hamiltonian Cycle Problem, International Symposium on
Circuits and Systems 2003, 2003, pp. III-228 - III-231.

[8] P. Kundarewich, S. Wilton and A.J. Hu, A CPLD-
based RC-4 Cracking System. Canadian Conference on
Electrical and Computer Engineering 1999, 1999.

[9] W. Patterson, Mathematical Cryptology for Computer
Scientists and Mathematicians. Rowman & Littlefield,
1987, pp 6-15.

[10] RSA Labratories. RSA Security.
http://www.rsasecurity.com/ Last updated [2003],
Accessed [October 17, 2003].

[11] B.Schneier, Applied Cryptography. John Wiley &
Sons, Second Edition, 1996, pp 397-400.

