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Abstract 
 

The security of encryption algorithms depends 
heavily on the computational infeasibility of 
exhaustive key-space searches.  The RC4 cipher, 
utilized primarily in the area of data 
communications, is being used in this paper as a 
test case for determining the effectiveness of 
exhaustive key-searches implemented on FPGAs 
using a Network on Chip (NoC) design 
architecture.  Preliminary results show that a 
network of key-checker units implemented on a 
Xilinx XC2V1000 FPGA using the Celoxica DK2 
design tools can exploit the speed and parallelism 
of hardware such that the entire key-space of a 40-
bit RC4 encryption can be searched in minutes.    
Furthermore, it has been found that the clock rate 
of the circuit diminishes as the number of key-
checker units increases. Future work is proposed to 
find a method for predicting an optimal balance 
between the size of the network (# of key-checker 
units) and the clock rate in order to maximize 
performance.   
   
1. Introduction 

 
Advancements made in e-commerce, wireless 

internet access, and various other communication 
technologies have created a tremendous need for 
secure encryption algorithms.  The RC4 cipher, 
predominantly used in the area of data 
communications, was developed in 1987 at a time 
when an Intel 80386 running at 16 MHz was 
leading edge1.  

The size and sophistication of Field 
Programmable Gate Arrays (FPGA) and their 
accompanying Computer Aided Design (CAD) 
tools are evolving at incredible rates [5], and 
because of this are more commonly being used to 
solve computationally intensive problems [6,7,8].  

                                                 
1 RC4 will be used in this paper as a test case for experimenting 
with exhaustive key-searching. 

In this paper, a hardware implementation of an RC4 
key-search machine, using a network of key-
checker units, is used to test the effectiveness of 
brute force attacks on 40-bit RC4.  The objective is 
to present possibilities for future work on the 
prediction of the optimal number of checker units 
to be used in similar hardware designs considering 
the fact that the clock rates of circuits decrease as 
the number of checker units increase.      

Necessary background information is reviewed in 
Section 2.  The RC4 encryption algorithm is 
described in Section 3, and the implementation 
details are presented in Section 4.  Results, 
conclusions and future work are discussed in 
sections 5 and 6 respectively.   
 
2. Background 

 
This section provides background information for 

this paper.   
 

2.1. RC4 
 

Ron Rivest of RSA Data Security, Inc developed 
the RC4 cipher in 1987, the details of which were 
published in 1996 [11].  RC4 is a public-key 
encryption system and, as the name suggests, 
requires the exchange of public keys.  Through an 
authentication handshake process the participants of 
the communication session use the public keys to 
generate master keys, which are used to encrypt and 
decrypt messages transferred during a particular 
communication session.  All messages encrypted 
with the master keys are considered secure. 

 
2.2. Brute Force Attacks 

 
A brute force attack on encrypted messages, 

otherwise known as a “known plaintext attack”, 
consists of decrypting an intercepted message with 
every possible key and comparing the result to the 
“known” plaintext.  The “known” text is essentially 
guessed, but is easily deduced from the fact that 



communication sessions often begin with the same 
sequence of bytes.  For an attack of this kind to be 
successful, only a small number of “known” bytes 
are necessary, making the guessing process 
significantly easier.   

 
2.3. Field Programmable Gate Arrays 

 
FPGAs are two dimensional arrays of 

uncommitted logic gates grouped into Configurable 
Logic Blocks (CLBs) with common interconnection 
resources.  Each CLB is capable of implementing a 
simple logic circuit that consists of up to 4 inputs 
and 2 outputs.  Using a hardware description 
language (HDL), a custom circuit can be described 
in a high level language.  Similar to the compilation 
process of software, the HDL code is synthesized, 
generating a bit file, which essentially maps the 
described circuit to the CLBs on the FPGA. The bit 
file is downloaded to the FPGA allowing a 
developer to quickly program the hardware device 
into a custom circuit. Taking this approach to 
implement the RC4 algorithm implies the creation 
of an instance-specific circuit that implements the 
RC4 algorithm using a particular pair of 
ciphertext/plaintext data. The instance-specific 
approach requires that for each new pair of 
ciphertext/plaintext data, a new instance of the 
circuit must be generated. A large portion of the 
circuit however remains the same between 
instances and therefore does not need to be 
modified.  

 
2.4. Network on Chip Architecture 

 
A hardware design solution for this particular 

problem involves creating several individual 
components, each designed to perform a specific 
task.  Several components connected together form 
a network similar to a typical broadband network.  
The components on a chip can be viewed as a 
micro-network, communicating with each other 
using the micro-network stack paradigm which is 
based on the stack-protocol [1]. The individual 
components of the RC4 key-search machine use 
this network architecture as the basis for their 
communications.   

 
3. RC4 Encryption Algorithm 
 

The RC4 encryption algorithm completes its 
encryption in 3 steps. The first step involves 
initializing S and K, both of which are byte arrays 
containing 256 elements. The initialization of S and 
K is quite simple: K is repeatedly assigned the 

values of the key until it is full and S is filled 
linearly with the sequence of numbers beginning 
with 0 and ending with 255, which will later be 
permuted.  Pseudo code for this step is shown 
below (where i and j are integers):    

 
S[0..255]= 0 to 255  
K[0..255]= key( i mod key_length)   
for i = 0 to 255 

j = ( j + S[i] + K[i]) 
swap S[i] and S[j] 

 
The second step in the encryption process is the 

pseudo-random byte generation. This requires a 
small number of simple operations performed on 
arrays S and K, and is best described by the pseudo 
code below (where i, j, and t are integers): 

 
i = ( i + 1 ) mod 256 
j = ( j + S[i] ) mod 256 
swap S[i] and S[j] 
t = (S[i] + S[j] ) mod 256 
random byte = S[t] 
 

The third and final step is the creation of the 
ciphertext, obtained by XORing the pseudo-random 
byte with the plaintext. For the purpose of this 
paper we are interested in the decryption process, 
which similar to encryption, is done by simply 
XORing the ciphertext with the pseudo-random 
byte, producing the original plaintext. This 
decryption process will be the basis for the brute 
force RC4 cracker. 
 
4. Implementation Details 

 
There are several methods of attempting a brute 

force attack on RC4; two will be discussed in this 
paper. The first is a software implementation 
running on a PC. This approach is scalable and can 
be extended to a cluster of PCs. The second is a 
hardware implementation realized on an FPGA 
using a Network on Chip architecture.   

Despite the differences in implementation, their 
functionality is identical: they apply the decryption 
algorithm, described above, to decrypt an encrypted 
message (ciphertext) using every possible key. This 
means that for a message encrypted with a 40-bit 
key, this process requires us to check 1.1 x 1012 
keys in the worst case, therefore it is essential that 
the program or device performing the key-search be 
very efficient and capable of searching a large 
number of keys per second.   

 
4.1. Software implementation 

 
The RC4 cipher was originally designed for 

software, therefore this implementation is very 



straightforward.  The program implements the RC4 
algorithm, taking as parameters the ciphertext and 
plaintext.  Starting with the smallest possible key 
(0x00000) and incrementing by one each iteration, 
the program eventually reaches the key which 
properly decrypts the message.  This 
implementation is very scaleable and easily 
extended to a cluster of PCs by dividing up the key-
space among participating computers.   

 
4.2. Hardware Implementation 

 
The implementation was realized on a Xilinx 

Virtex II XC2V1000 FPGA using tools from 
Celoxica [3].  It consisted of two distinct 
components: the Key-Checker Unit and the 
Controller (Figure 1).  

The checker-units can be viewed as dedicated 
integrated circuits, each consisting of a few 
memory elements, a couple of adders, an XOR gate 
and a couple of counters.  Each checker unit is 
designed to check a single key independently.  
Using multiple checkers in a network therefore 
results in an adjustable level of parallelism easily 
modified by adding or removing key-checker units 
from the design.  The controller is used to distribute 
the key space and is also responsible for receiving 
messages passed to it from the key-checker units 
indicating the end of the search. 
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Figure 1: Block Diagram of the Hardware RC4 Key-

Search Machine 

A key-checker unit contains an implementation 
of the RC4 decryption algorithm.  Each unit has an 
interface comprised of 2 ports, an input and an 
output.  A single key is sent to the input port and 
upon completing the decryption process returns the 
result on the output port.  As described in a 
previous section, the algorithm begins with the 
initialization of arrays S and K.  In terms of 
hardware, S and K are small memory units.  
Initialization of S involves assigning the values of S 
to 0 through 255 sequentially and takes 256 clock 
cycles due to the restrictions on memory access.  
Similarly, K is filled with the bytes of the key. As 

an optimization over the proposed algorithm, the 
length of K was reduced to the size of the key (40 
bytes in this case) and read using modulo 
addressing rather than repeatedly filling it with 
redundant data.  This was done in order to reduce 
the number of clock cycles required to check a 
single key.  With S and K initialized, the next step 
is to permute S based on the values contained in K.  
Considering that the swap alone takes 4 clock 
cycles, one to read S[i], one to read S[j] and a clock 
cycle each to rewrite each of them to the opposite 
locations, many clock cycles are used simply to 
perform the initializations.  Overall, the whole 
process of checking a single key takes 
approximately 1300 clock cycles; 516 clock cycles 
for initialization of S and K, 770 cycles for the 
pseudo-random permutation of S and 7 cycles for 
the generation of the pseudo-random bytes.  
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Figure 2: Abstract View of the Key-Checker's 

Internal Structure 

During the design, the number of clock cycles in 
each step of the decryption must be considered, as 
it directly affects the performance of the key-search 
machine.  A larger circuit, although it may contain 
more key-checker-units, will likely affect the clock 
rate negatively and should be monitored such that 
an optimal solution can be implemented. Memory 
dependencies in the hardware also cause certain 
restrictions that were not issues in the software 
implementation; this includes limited access to the 
arrays S and K to one address per clock cycle [3]. 

Despite the slow clock rates attained by FPGAs 
in general and the considerably large number of 
clock cycles required to verify a single key, good 
performance is still achievable by scaling the 
implementation [8].  Implementing multiple key-
checker units and dividing the key-space equally 
among them is trivial and makes this approach very 
effective and at the same time very cost-effective 
[8]. Increasing both the number of key-checker 
units and the clock rate increases the performance 



over a single key-checker unit dramatically. 
Though it must be noted that increasing the number 
of checker units typically results in an overall 
decrease in clock rate.  This is due to the fact that a 
signal takes more time to propagate through a 
longer wire. 
 
5. Results 
 

Both implementations were tested using 40 bit 
keys. 40 bits were chosen due to the fact that it is 
the maximum key size allowable for an application 
exported from North America using RC4 [11].  The 
software implementation was executed on different 
PCs ranging from a Pentium II 266 MHz to a 
Pentium IV 2.4 GHz.   

The results of the hardware cracker are still 
preliminary and were extrapolated from the results 
obtained for an implementation using only a single 
key-checker unit running at 10 MHz. The 
implementation did however support multiple key 
checker units, as well as slightly higher clock rates, 
roughly 14MHz according to the synthesis tools.  It 
is expected that this can be improved through 
design optimizations. A summary of the results can 
be seen in Table 1. Using simple analysis, we 
quickly discover that on average, only half of the 
key-space must be searched in order to find the 
correct key.  The estimated times were therefore 
based on how long it would take, on average, to 
find the correct key. 

 

Implem. # of 
Unts 

Keys / 
second 

 
#  of FFs 

Estimated 
time 

1 8,000 2300 800 days 
5 40,000 11000 165 days 
10 80,000 ~22000 82 days 
25 200,000 ~50000 33 days 

100 800,000 ~220000 8 days 

FPGA 
Running 

at 10MHz 

500 4,000,000 ~1000000 40 hours 
 Pentium 

II 
266MHz 

1 PC 22,500  
NA 310 days 

Pentium 
III 

500MHz 
1 PC 225,000 NA 28 days 

Pentium 
IV 

2.4GHz 
1 PC 1,000,000  

NA 6.5 days 

Table 1: Performance Results 

6. Conclusions and Future Work 
 

Examining the results, it becomes quite apparent 
that even a moderate scaling of these 
implementations make RC4 quite vulnerable to 
brute-force attacks.  A very large FPGA, with a 

network of 500 checker-units could likely crack a 
40-bit encryption of RC4 within minutes or perhaps 
even seconds. Yet, the maximum allowable key 
size for exported applications using RC4 is 40 bits. 
Wire Equivalent Protection (WEP) uses an even 
smaller key, at 24 bits. Therefore it isn’t difficult to 
see that RC4 does not provide adequate protection.  

Although FPGAs are currently large enough to 
support big networks of checker-units, issues 
concerning congestion around the controller arise, 
and make it difficult for the synthesis tools to route 
the connections to and from each checker-unit, thus 
reducing the potential size of these networks to 
much less than what is available on the chip.  Also, 
as the size of the circuit increases, the clock rate 
slows down. It therefore becomes an issue to find 
an optimal number of checker-units that will 
produce the best solution in terms of performance.     
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