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Abstract: This paper extends the results obtained for one-dimensional Markovian jump systems to 

investigate the problem of H∞ model reduction for a class of linear discrete time 2D Markovian 

jump systems with state delays in Roesser model which is time-varying and mode-independent. The 

reduced-order model with the same randomly jumping parameters is proposed which can make the 

error systems stochastically stable with a prescribed H∞ performance. A sufficient condition in 

terms of linear matrix inequalities (LMIs) plus matrix inverse constraints are derived for the 

existence of a solution to the reduced-order model problems. The cone complimentarity 

linearization (CCL) method is exploited to cast them into nonlinear minimization problems subject 

to LMI constraints. A numerical example is given to illustrate the design procedures. 

Introduction 

With the development of modern industry and economy, more and more multivariable systems and 

multidimensional signal need to be handled. Such as multi-dimensional digital image processing, 

multivariable network realization, meteorological satellite image analysis, which are mostly appear 

as 2D discrete system model. For these profound engineering backgrounds, in recent years, 2D 

discrete systems have received much attention, and many important results are available in the 

literatures [1, 2]. In many engineering applications, a lot of complex physical systems are frequently 

described by high or even infinite order mathematical models which usually bring troubles for our 

research and analysis of system performance. An effective method to solve the problems is to use a 

low order model to approximate the original system without significant error and is convenient to 

implement, thus model reduction plays an important role in the process of control system design. 

Furthermore, the problem of model reduction for 2D systems has received considerable attention 

due to their importance in practical applications where a lower-order system is usually desired to 

represent a high-order system. For example, Du researched the reduced-order approximation of 2D 

digital filters using the LMI approach in [3]. 

On a different direction, a considerable research effort has been recently devoted to the analysis 

of the Markovian jump system whose structures are subject to random abrupt changes may due to 

component or interconnections failures, sudden environment changes, change of the operating point 

of a linearized model of a nonlinear, and so on. The application of Markovian jump systems can be 

found in many physical systems, such as manufacturing systems, target tracking, and power system 

[4]. And some problems of stability, controller design and filtering related to these systems also 

have been extensively studied by numerous scholars, see for instance [5,6], and the references 

therein. Since delay usually occur in many physical and engineering systems and causes instability 

and poor performance of systems, time-delay systems have been studied extensively on the subject 

of control and model reduction over the years. For example, in [7] Qing Wang and James Lam 

addressed the model approximation for discrete-time Markovian jump systems with 

mode-dependent time delays. However, the aforementioned results are only concerned with 

one-dimensional systems, and to the best of the authors’ knowledge, few effort has been made 

toward investigating the problems arising in 2D jump systems. 

In this paper, we extends the results obtained for one-dimensional Markovian jump systems to 

investigate the problem of H∞ model reduction for a class for linear discrete time 2D Markovian 

jump systems with state delays in Roesser model which are time-varying and mode-independent. 
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The jump parameters are modeled by a finite-state Markov process. A reduced-order model with the 

same randomly jumping parameters is proposed which can make the error systems stochastically 

stable with a prescribed H∞ performance. Then sufficient conditions in terms of LMIs plus matrix 

inverse constraints are derived for the existence of a solution to the reduced-order model problems. 

Since these obtained conditions are not expressed as strict LM Is, the CCL method is exploited to 

cast them into nonlinear minimization problems subject to LMI constraints, which can be readily 

solved by standard numerical soft ware. A numerical example is given to illustrate the design 

procedures. 

Problem formulation 

Consider the following 2D discrete time-delays system in the Roesser with Markovian jump 

parameters: 
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where n=n1+n2, 1( , )
nh i j R∈x , 2( , )

nv i j R∈x represent the horizontal and vertical states respectively; 

( , ) mi j R∈w  is the disturbance input which is a square-integrable and norm bounded stochastic vector 

function over L2{[0,∞),[0,∞)}; z(i,j)∈R
m
 is the controlled output; d1 and d2 are constant positive 

integers representing delays along horizontal direction and vertical direction, respectively. 
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 are matrix functions of the time-varying parameter ri,j.  

The parameter ri,j takes values in a finite set S={1, 2, …, s}, with transition probabilities 
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For each possible value m S∈ , to simplify the notation, when the system operates at the mth 

mode, that is ri,j=m, the matrix A(ri,j) will be denoted by Am, Ad1(ri,j) will be denoted by Ad1m, and so 

on. 

In this note, we denote the system state as x(i,j)=[x
ht

(i,j) x
vt
(i,j)]

T
. The boundary conditions (X0, 

R0) are defined as follows: 
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In this paper, our purpose is to find a mean-square asymptotically stable n� th-order 2D jump 

system： 
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the error system: 
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is mean-square asymptotically stable and has H∞ performance. 

Before presenting the main objective of this paper, we first introduce the following definitions 

for the error systems (3), which will be essential for our derivation.  

Definition 1: The error 2D jump system (3) with 
, 0i j =w  is said to be mean-square 

asymptotically stable if { }2

,lim E || || 0i j
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=x for every boundary condition (X0, R0) satisfying 

Assumption 1. 

Definition 2: For a given scalar γ>0, the error 2D jump system (3) is said to be mean-square 
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Lemma 1: Given a symmetric matrix Ω and two matrices Ψ and Υ, consider the problem of 

finding some matrix G such that 
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Then (4) is solvable for G  if and only if 
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Main results: 

In this section, we give a solution to the H∞ model reduction problem formulated previously, by 

using matrix inequality approach. To this end, we first present the following result for the error 

system (3) to be asymptotically stable with H∞ performance constraints which will play a key role 

in solving the aforementioned problem.  
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h v h v

k j j k j j k j j k j j

j

dk
j h v h v h h

k j k j k j k j k j k j

j

v

k j k j

θ θ
θ

θ

β α

+

+ − + − + − + −
=

+

+ − + − + − + − − + − − + −
= =

+ − − + −

 
 + + +  

 

  ≤ + + + + +  

+ +

∑

∑ ∑

x x x x

x x x x x x

x x

� �

� � �

�

2

2

,

1

|
d

v

θ
θ

−
=


  


∑

          (6) 

Command 2 2 2 2

, , , ,

0

| | | | | | | |
k

h v h v

k k j j k j j k j j k j j

j

χ − − − −
=

 = + + + ∑ � �x x x x , based on the inequality (6), sums up 
kχ  

from 0k =  to k S=  and perform some simple arithmetic yields: 
1 2

2 2 2 2 2 2 2 2

0, ,0 0, ,0 , , , ,

0 0 1 1

1
E{ } E | | | | | | | | | | | | | | | |

1

d dSS S
h v h v h h v v

k k k k k k k k k

j k

θ θ θ θ
θ θ

α
χ β

α − − − −
= = = =

 −     ≤ + + + + + + +     −  
∑ ∑ ∑ ∑� � � �x x x x x x x x . 

Then, under Assumption 1, the right side of the above inequality is bounded, which means 

lim E{ } 0k
k

χ
→∞

= , that is { }2

,
lim E | | 0

i j
i j+ →∞

=x , then by Definition 1, the error system (3) is mean-square 

asymptotically stable. 

Assume zero boundary condition and consider the following index: 
2E{ ( , ) ( , ) ( , ) ( , ) ( ( , ), )}T TJ i j i j i j i j i j mγ= − + ∆z z w w V x  

Define T T

1 2

T( , ) ( , ) ( , ) ( , ) ( , )
T

h v T

d di j i j i j i j i j =  Γ x x x w , puts the expression of ( , )i jz  in J  Then: 

2 '
E{ ( , ) ( , ) ( , ) ( , ) ( ( , ), )- ( ( , ), )} ( , ) ( , )

T T T

mJ i j i j i j i j i j n i j m i j i jγ= − + =z z w w V x V x Γ Π Γ  

where 
1 2

1 1 1 2 1 1 1

2 2 2 2 2

2

0

T
T T T T T T

m m m m m m d m m m d m m m m m m

h T T T T T

d m m d m d m m d m d m m m d m d m

m v T T T T

d m m d m d m m m d m d m

T T T

m m m m mγ

     − + +
     

∗ − +     = + <
     ∗ ∗ − +
     

∗ ∗ ∗ − +          

P Q A P A A P A A P A A P B C C

Q A P A A P A A P B C C
Π

Q A P A A P B C C

I B P B D D

. 

Using Schur complement, the inequality (5) guarantees 0m <Π . Then we have 0J < , which 

means for every ( , )i j m S= ∈r  we have： 
' 2E{ ( ( , ), )- ( ( , ), )} E{ ( ( , ), ) ( , ) ( , ) ( , ) ( , )}T Ti j n i j m i j m i j i j i j i jγ< − +V x V x V x z z w w . 

Considering the zero boundary condition, by using this relationship iteratively and performing 

superposition of the two sides of inequalities from 0j =  to 1j k= + , we can get： 

11
2 2 2 2 2 2 2 2 2 2

1 , 1 , 1 , 1 , 0, ,0 0, ,0 , ,

0 0 1

2 2

, ,

E | | | | | | | | E | | | | | | | | | | | |

| | | | ( ,

dk k
h v h v j h v h v h h

k j j k j j k j j k j j k j k j k j k j k j k j

j j

v v T

k j k j
k j

θ θ
θ

θ θ

β α
+

+ − + − + − + − − − − − − − − −
= = =

− − − −

 
    + + + ≤ + + + + +     

 

 + + − − 

∑ ∑ ∑� � � � �

�

x x x x x x x x x x

x x z
2

2

1

) ( , ) ( , ) ( , )
d

Tj k j j k j j k j j
θ

γ
=


− + − − 


∑ z w w

, 

Summing up the two sides of the above inequalities from 0k =  to k S= , we have： 
1

2

1 , 1 , 1 ,

0 0 0 0 0

E ( , ) ( , ) E ( , ) ( , ) E ( )
S k S k S

T T T

S j j S j j S j j

k j k j j

k j j k j j k j j k j j rγ
+

+ − + − + −
= = = = =

     
 − − < − − −      

     
∑∑ ∑∑ ∑z z w w x P x , 

Therefore, when k →∞  we have： 

2

0 0 0 0

E ( , ) ( , ) E ( , ) ( , )
k k

T T

k j k j

k j j k j j k j j k j jγ
∞ ∞

= = = =

   
− − < − −   

   
∑∑ ∑∑z z w w . 

That is, 2 2 2

2 2
|| || || ||γ<z w  for all non-zero 

2
{ } {[0, ),[0, )}

ij
w w L= ∈ ∞ ∞ , and the proof is concluded.   ◆ 

Theorem 2: Consider the mean-square asymptotically stable 2D jump system (1). Given a 

constant 0γ > , there exists a reduced n� th-order system (2) solves the H∞ model reduction problem 

if there exists a block-diagonal matrix 
1 2
, ,

s
=X X X X�（ , ） with 0

m
>X , 

1 2 , s=P P P P�（ , , ） with 0
m
>P

，  diag{ , , , }h v h v

m m m m m
=P P P P P� � , diag{ , , , }h v h v=Q Q Q Q Q� � ，  m S∈ , such that the following linear matrix 

inequality holds for 
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0 10 20 0

2

0 0 0

00 0

0

T

m m d m d m m

m

h

v

γ

 −
 

∗ − + 
  <∗ ∗ −
 

∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ − 

EX E EA EA EA EB

P Q

Q

Q

I

,

0 10 20

0

10

20

0

0 0

00

m m d m d m

T

m m

h T

d m

v T

d m

 −
 ∗ − + 
  <∗ ∗ −
 

∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ − 

X A A A

P Q C

Q C

Q C

I

 ,
1

s

m mn n

n

p
=

=∑X P I    

 Furthermore, if matrix 
mX , 

mP , Q  are the solutions of above inequalities, then a reduced order 

model can be written as： 

1 1 1 1 2 1 2( ) ( )T T T T

m m m m m m m m m m m m m m

− − − −=− ϒ ϒ ϒ + ϒ ϒG R Ψ Λ Λ R V L Λ , 1 1( )T

m m m m m

− −= −Λ Ψ R Ψ Ω , 1( ( ) )T T T

m m m m m m m m m m m m

−= − − ϒ ϒ ϒ ϒV R Ψ Λ Λ Λ Λ Ψ  (7) 

where 0m >R  such that 0m >Λ  and 
mL  is any matrix satisfying || || 1m <L , and 

0

0

0 0

m

m

 
=  
 

A
A , 1

10

0

0 0

d m

d m

 
=  
 

A
A , 2

20

0

0 0

d m

d m

 
=  
 

A
A , 

0
0

m

m

 
=  
 

B
B , 1 2

1 2

m m d m d m

m

m m d m d m

 
=  
  

D C C C
G

B A A A

� � ��

� � ��

, 

[ ]0 0m m=C C , [ ]10 1 0d m d m=C C , [ ]20 2 0d m d m=C C , 
0m m=D D , [ ]0 0mϒ = H M W N  

0 10 20 0

0

10

20

2

0

0

0 0 0

0 0

0

m m m m d m m d m m m

T

m m

h T

d m

m v T

d m

T

mγ

 −
 ∗ − + 
 ∗ ∗ −

=  
∗ ∗ ∗ − 

 ∗ ∗ ∗ ∗ −
 
∗ ∗ ∗ ∗ ∗ −  

P P A P A P A P B

P Q C

Q C
Ω

Q C

I D

I

,
0

0

0

0

m

m

 
 
 
 

=  
 
 
 
  

P F

Ψ

S

, 

1 1

2 2

, ,

,

, ,

, ,

0 0

0

0 0

0 0

m n m n

n n n

n n n n

n n n n

 
 
 =  
 
  

I
H

�

� �

� � �

� � �

, 
1 1

1 1

1 1 1

2 1 2 1

, ,

, ,

,

, ,

0 0

0 0

0

0 0

m n m n

n n n n

n n n

n n n n

 
 
 

=  
 
 
 

M
I

�

� � �

� �

� � �

, 

2 2

2 2

1 2 1 2

2 2 2

, ,

, ,

, ,

,

0 0

0 0

0 0

0

m n m n

n n n n

n n n n

n n n

 
 
 

=  
 
 
 

W

I

�

� � �

� � �

� �

, 

1

2

,

,

,

0

0

0

m

n m

n m

n m

 
 
 =  
 
  

I

N
�

�

�

, , ,

,

0 0

0

n l n n

n l n

 
=  
 

F
I

�

� �

, 
,0l l n

 = − S I
�

                 (8) 

Proof: The proof is omitted because of the limited space.                              ◆ 

It should be noted that the obtained conditions in Theorem 2 are not LMI conditions due to the 

equations. However, with the result of a cone complementarily linearization algorithm, we can 

solve this feasibility problem by formulating it into a linear optimization problem subject to LMI 

constraints.  

Model reduction algorithm 

For 
1 2
, ,

s
=X X X X�（ , ） with 0

m
>X  and 

1 2 , s=P P P P�（ , , ） with 0
m
>P , m S∈ , define a convex set 

by a set of LMIs as: 
{( ) 0, 0, for all }d

m m
m Sξ = > > ∈

（ ）
:   

X,P
X, P X P  

It can be seen from Theorem 2, the H∞ reduced order models for 2D jump linear systems (1) can 

be obtained if there exist 
1 2
, ,

s
=X X X X�（ , ） and 

1 2 , s=P P P P�（ , , ） such that: 

1

( ) , , for all }
m

s
d

m mn n

n

p m Sξ
=

∈ = ∈∑X ,P
X, P X P I

（ ）
                             (9) 

is feasible. 

The CCL algorithm is based on the fact that for any matrices 0>X and 0>P ; if the LMI 

0
 

≥ 
 

P I

I X
is feasible, then ( )Trace n≥XP , and ( )Trace n=XP  if and only if =XP I . Hence, a feasible 

solution of (9) can be obtained from the solution of the following nonconvex optimization problem.  

We may see that if the optimal solution satisfying 
1

( )
s

mn m n

n

p Trace n n
=

= +∑ X P �  then (9) is solved; 

Hence, the H∞ model reduction problem is now changed to a problem of finding a global solution of 

the minimization problem. Although it is still not possible to always find the global optimal 
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solution, the proposed nonlinear minimization problem is easier to solve by CCL algorithm than the 

original nonconvex feasibility problem. 

With the above expressions, the following algorithm is proposed to solve the 2D jump system H∞ 

model reduction problem: 

Step1: Choose the initial values for the matrix pair 
0 0( , )P X , the order of the reduced-order n�  

and the H∞ norm bound γ ; 

Step2: Define the linear function 

1 1

( , ) ( )
s s

k mn mk n nk m

m n

f p Trace
= =

= +∑∑X P X P P X ; 

Step3:Find 
1 1( , )k k+ +X P  solving the following convex programming: 

,( , )
min { ( , )}

d kf
ξ∈ X Pn

X P
X P

（ ）

; 

Step4: If kf  converges, then exit; otherwise, set 1k k= + ; and go to step 2. 

Step5: Construct a reduced-order model based on (7). 

It can be seen that step 1 is a simple LMI problem, and step 3 is a convex programming with 

LMI constraints. From the explanation in [7], kf  is decreasing and bounded below by 2 ( )s n n+ � , 

which implies that the H∞ model reduction problem is solvable for a given γ> 0. 

Numerical example 

For mode 1, the system matrices are given by:  

1

0.5 0.01 0.01 0

0 0.6 0 0.01

0 0 0.2 0

0 0 0 0.4

 
 
 =
 
 
 

A
,

11

0.01 0

0 0.02

0 0

0 0

d

 
 
 =
 
 
 

A
,

21

0.01 0

0 0.01

0.02 0

0 0.03

d

 
 
 =
 
 
 

A
,

1

0.1

0.7

1.3

0.5

 
 
 =
 
 
 

B
, 

1

1.2 0.4 0.6 0.9

0.4 0.5 0.6 0.1

 
=  
 

C ,
11

0.12 0.04
 

0.04 0.05
d

 
=  
 

C ,
21

0.06 0.09
  

0.06 0.01
d

 
=  
 

C , 
1

0.01

0.02

 
=  
 

D . 

For mode 2, the system matrices are given by:  

2

-0.3 0.01 0 0

0 -0.7 0 0.02

0.03 0 0.4 0

0 0 0 -0.4 

 
 
 =
 
 
 

A
,

12

0.01 0.01

0 -0.02

0 0

0 0

d

 
 
 =
 
 
 

A
,

22

0 0

0 0

-0.02 0

0 -0.01

d

 
 
 =
 
 
 

A
,

2

0.3

0.7

1.2

0.1

 
 
 =
 
 
 

B
, 

2

1.1 0.5 0.7 1.9
  

0.1 0.3 0.4 0.4

 
=  
 

C ,
12

0.012 0.004

0.004 0.005
d

 
=  
 

C ,
22

0.006 0.009

0.006 0.001
d

 
=  
 

C , 
2

0.2

0.5

 
=  
 

D . 

Applying the model reduction algorithm mentioned above, making γ=5.8943, [ ]1 2 11 12
==L L L L , 

where: 
11 5=L I , [ ]12 2 2 0 1

T
T =  L I I , we can figure out the following results: 

1

0.1057 0.1216 0.0002 0.0000 0.0009

0.1216 0.2952 0.0001 0.0003 0.0026

0.0002 0.0001 0.4247 0.0000 0.0023

0.0000  0.0003 0.0000 0.4247 0.0000

0.0009 0.0026 0.0023 0.0000 0.4250

− 
 − − 
 = − −
 

− − − 
 − − 

R
, 

2

7.7719 0.0625 0.0001 0.0010 0.0000

0.0625 7.5170 0.0008 0.0001 0.0013

0.0001 0.0008 5.5630 0.0002 0.1084

0.0010 0.0001 0.0002 5.5634 0.0014

0.0000 0.0013 0.1084 0.0014 5.5616

− − 
 − 
 = − −
 

− 
 − − 

R
 

Using the algorithms to solve the non-convex feasibility problem in theorem 2, reduced-order 

system model parameters can be calculated: 

1

0.5186 0.0285 0.0031

0.0046 0.1051 0.0041

0.0016 0.0001 0.1351

− − 
 =  
 − 

A�
, 

2

0.2509 0.0249 0.0003

0.7945 0.1477 0.0045   

0.0487 0.0005 0.1659

− − 
 =  
 − 

A�
, 

11

0.0060 0.0002

0.0128 0.0005

0.0002 0.0003

d

 
 = − 
 − 

A�
, 
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21

0.0626

0.0299

0.1335

d

 
 = − 
  

A�
, 

21

0.0013 0.0005

0.0045 0.0028

0.0001 0.0016

d

− 
 = − − 
 − 

A�
, 

22

0.0688

0.0302

0.2063

d

 
 = − 
  

A�
, 

1

0.0288

0.1075

0.004

− 
 =  
 − 

B�
, 

2

0.0306

0.1820

0.0010

− 
 =  
 − 

B�
, 

11

0.1342 0.0000

0.0004 0.1336
d

− 
=  
 

C� , 
1

0.0079 0.0031 0.0004

0.0035 0.0004 0.0005

 
=  − − 

C� , 
12

0.0000
 

0.0002
d

 
=  − 

C� , 
22

0.0001

0.0012
d

− 
=  − 

C� , 

2

0.2064

0.2038

 
=  
 

D� , 
2

0.0391 0.0009 0.0001

0.0810 0.0016 0.0012

− 
=  − − − 

C� , 
12

0.1662 0.0001

0.0008 0.2061
d

 
=  − 

C� , 
1

0.1333

0.1338

 
=  
 

D� . 

The simulation results imply that the desired goal is well achieved. 
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