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Abstract

The present paper discusses positive sensitivity analysis (PSA) in linear programming with bounded
variables. Positive sensitivity analysis is a sensitivity analysis method for linear programming that finds the
range of perturbations within which the components of a given optimal solution which are strictly between
their bounds remain strictly between bounds and which are at their lower and upper bounds remain at
lower and upper bounds respectively. Its main advantage is that it is applicable to both an optimal basic
and non-basic optimal solution. In this paper, we examine how the range of PSA varies according to the
optimal solution used for PSA and discuss the relationship between the ranges of PSA using different
optimal solutions. We also discuss the relationship between PSA and sensitivity analysis using optimal
basis and the relationship between PSA and sensitivity analysis using the optimal partition. We show that
the sensitivity analysis using optimal partition is a special case of PSA. In order to study these relationships
and the properties, some results on duality have been discussed and existence of strictly complementary
solution has been established for linear programming with bounded variables.

Keywords: Linear programming with bounded variables, sensitivity analysis, optimal partition
sensitivity analysis, strictly complementary solution.

1. Introduction

The merits of linear programming are nowadays well established and linear
programming is widely accepted as a useful tool in Operations Research and
Management Science. A large number of companies are using this way of modeling to
solve various kinds of practical problems. Applications include transportation problems,
production planning, investment decision problems, blending problems, location and
allocation problems, among many other.

A linear programming problem consists of linear relationships between decision
variables. The variables correspond to the decision to be made. A linear objective
function is specified which has to be maximized (e.g. profit) or minimized (e.g. cost). The
possible decision variables are restricted to a certain area by various constraints and the
bounds on the decision variables. In most of the cases, for solving the linear
programming problem, the so-called Simplex method is used. The method, due to
Dantzig (1951) has been implemented in a large variety of codes which are successfully
used in practice. Not long after the publication of Dantzig's primal simplex method its
dual version, developed by Lemke (1954). It has long been known that the dual simplex
algorithm is a better alternative to the primal simplex algorithm for solving certain types
of linear programming problems. The dual simplex method for linear programming with



bounded variables has been been developed by Wagner (1958) which is further studied
by Maros (2003a, 2003b). In 1984, Karmarker proposed his projective algorithm for
linear programming, which he showed to be a polynomial time algorithm. This gave the
impulse to an enormous amount of research on interior point methods. Another important
topic in the field of linear programming is duality theory. Associated with every linear
programming there always exists another linear programming problem which is based
upon the same data and having the same solution. The original problem is called the
primal problem while the associated one is called its dual problem. The dual problem was
formulated by Neumann (see Murty, 1976) for linear programming with non-negative
decision variables. Duality theorems were proved by D. Gale (1960), Kuhn and Tucker
(1956) and Goldman et.al. (1956). Most of the packages available for solving linear
programming do not only solve the linear programming problem but also provide the
option to ask for information on the sensitivity of the solution to certain changes in the
data. This is referred to as sensitivity analysis or postoptimal analysis. This information
can be of tremendous importance in practice, where parameter values may be estimates.
Questions of the type “What if ---” are frequently encountered and implementation of a
specific solution may be difficult. Sensitivity analysis serves as a tool for obtaining
information about the bottlenecks and degrees of freedom in the problem. For instance,
when the cost of an activity or the available amount of resources is changed, we often
need information about how the total cost of the current decision is altered, in order to
obtain a new optimal decision for the new situation. In this case, sensitivity analysis can
be applied.

The method of sensitivity analysis in simplex method is well developed on the
foundation of optimal basis, it requires little computational effort. This method has been
introduced in numerous papers and text books so far (see, for example: Dantzig, 1963;
Gal, 1979) and has been used in many linear programming codes. However in case of
degeneracy, it may yield incomplete information due to alternative optimal bases (Evans
and Baker, 1982; Knolmayer, 1984; Jansen et.al., 1997). On the other hand, most interior-
point methods produce a solution which converges to an optimal solution relatively
interior to the optimal face. Some additional computation enables us to get an exact
optimal basic or non-basic solution (Tapia and Zhang, 1991; Mehrotra and Ye, 1993;
Bixby and Salzman, 1994). Interior-point method for linear programming with bounded
variables has been developed by Castro (1995). Dahiya and Verma (2005) studied
sensitivity analysis using optimal bases for the linear programming problem with
bounded variables. However, since sensitivity analysis using an optimal basis cannot be
applied to an optimal non basic solution, other methods for sensitivity analysis have been
suggested: positive sensitivity analysis(PSA), sensitivity analysis using optimal partition
and ¢— sensitivity analysis(Yang, 1990; Adler and Monteiro, 1992; Kim et.al., 1999;
Yilidmir et.al. 2001). Yang(1990) introduced PSA for optimal solutions including
optimal non basic solutions based on Sung and Park's (1988) definition for the linear
programming problem with non-negative decision variables.Positive sensitivity analysis
is defined to find the characteristic region within which variables having a zero and
having a positive value in an optimal solution remain zero and positive in the perturbed
problem, respectively. Adler and Monteiro (1992) developed a method of parametric
analysis on the right-hand side by introducing the optimal partition. Monteiro and
Mehrotra (1996) presented a parametric analysis by generalizing Adler and Monteiro's
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method, and Greenberg(2000) developed a method of sensitivity analysis using the
optimal partition when cost coefficients and right-hand sides change simultaneously. To
use Yang's and Adler and Monteiro's method, we need an optimal solution or the optimal
partition, which requires additional computation for interior-point methods. Kim et.al.
(1999) developed a practical sensitivity analysis method, & — sensitivity analysis, which
can be directly applied to interior-point solutions produced by interior-point methods.
Park et.al. (2004) studied PSA in linear programming that was useful for establishing the
relationship between PSA and sensitivity analysis using optimal bases and using optimal
partition. This motivated us to carryon this study for the case when decision variables are
bounded. The purpose of this paper is to present some properties of PSA and examine
how the range of PSA varies according to the optimal solution used for PSA, and study
the relationship between the ranges of PSA using different optimal solutions for linear
programming with bounded variables and consequently making use of these properties of
PSA, we study the relationship PSA and other sensitivity analysis methods . Some duality
results relevant to this study are discussed in the present paper for linear programming
with bounded variables.

This paper is organized as follows: in Section 2, we discuss existence of strictly
complementary solution in linear programming problem with bounded variables. In
Section 3, we introduce three types of sensitivity analyses for linear programming with
bounded variables and some basic results about the relationship between PSA and other
sensitivity analysis methods are presented. In section 4, we discuss the relationship
between the ranges of PSA using different optimal solutions, and present a necessary and
sufficient condition for the range of PSA to include a positive and negative value. In
section 5, we study the relationship between PSA using an optimal basic solution and
sensitivity analysis using an optimal basis when a given optimal basic solution is
degenerate. In section 6, some concluding remarks are given.

2. Basic results in linear programming with bounded variables

Consider the linear programming problem,

(P) minc'x
subject to
Ax=b (2.2)
0<x<u, (2.2)

where ¢, x,ueR"beR™ A=[a a,--a],., =[], is @ matrix and p(A)=m, u is

the vector of upper bounds on the decision variable vector x.
Notations:
C; = j™ component of vector c,

A, =a; = Activity vector of x;,

J={1.2,...,n}.

Given an index set o of the variables, let A denote the submatrix of A with columns
that correspond to indices in o . Similarly, we use z_ to denote the subvector of z with
components that correspond to indices in o . For any vector x, let x; denote the "
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component of x.
Since rank of A is m, there exists an (mxm) non-singular submatrix

A :(aBl aBzmaBm) of A.Let B={B,,B,,---,B,}.

Let N, ={jeJ,j¢B st x; =0}= Index set of non basic variables which are at their
lower bounds,

Let N, ={jeJ, jgB s.t. x; =u;}= Index set of non basic variables which are at their
upper bounds,

Y; :AglajVjeJ,

So, the columns of A can be permuted so that A= (A Ay ANz) and we can write
Ax=b as Agxz+ Ay Xy, A Xy, = b, where x=(xg Xy, xNz) and Xy, =0 Then a

solutionto Ax =b is given by
X = Ag'lb— Zyjuj,xNl =0, Xy, =Uy,.

2
jeN2
Let ¢ =(cg Cy, Cy,) be the corresponding partition of ¢ s.t. €7X = CgXg +Cy Xy, +Cy, Xy,
and z; —c; =cgy,;—C;,V jel.
Definitions:
(@) The (mxm) non-singular matrix A, is called basis matrix.
- _ -1 _ _ - - .
(b) The solution x; = Ag b—zjeNzyjuj, Xy, =0, Xy, = Uy is called the basic solution of

Ax=b.
(c) xg is the vector of basic variables, Xy, is the vector of non basic variables which are

at their lower bounds and Xn, is the vector of non basic variables which are at their upper

bounds.
The problem (P) can be solved by treating upper bound restrictions as constraints but

this increases the size of the problem. On the other hand, this problem can be solved by
using the upper bound simplex technique without increasing the size of the problem (see:
Murty, 1976; Dantzig, 1963). A basic feasible solution x=(x; Xy, XNz) is an optimal

solution of (P) if
z;-¢;=0VjeB,z;-¢c; <0V jeN, and z;-¢; 20V jeN,.
Consider the dual of the problem (P) as follows:
(D) max (b'v-u'w)
subject to

Alv—w<c (2.3)
w>0 and v is unrestricted. (2.4)
The dual was formulated by Neuman (see Murty, 1976) for the linear programming
problem with non-negative variables. Duality theorems and complementary slackness

theorem were proved by Gale (1960), Kuhn and Tucker (1956) and Goldman and Tucker
(1956). All these important results can be easily extended to the problem (P).
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Theorem 1. ( Weak Duality) If x is a feasible solution of (P) and (v',w") is a
feasible solution of (D), then

¢'x =b'v —u'w',
Theorem 2. If x" and (v',w") are feasible solutions of (P) and (D) respectively, and
¢'x =b"v —u'w (ormerely ¢c"x <b"v' —u'w"), then x" and (v,w") are optimal
solutions to (P) and (D) respectively.
Theorem 3. ( Basic Duality Theorem) If x” is an optimal solution to the primal (P),
then there exists a feasible solution (v',w") to the dual (D) suchthat ¢'x =b'v —u'w’
and conversely, if (v,w") is an optimal solution to the dual (D), then there exists a
feasible solution x™ to the primal (P) suchthat ¢'x =b'v —u'w’
Theorem 4. ( Complementary Slackness Theorem) x  and (v',w’) are optimal

solution to (P) and (D) respectively iff x’;w:_ =0 and w;(u;-x;)=0V j=12,-,n.

According to Theorem 7 of Terlaky (2001), the optimal solutions are complementary in
the general sense i.e. they are not only complementary w.r.t. their own slack vector, but
complementary w.r.t. to slack vector for any other optimal solution as well. We have the
following result:

Corollary 1. Let (x,v’,w’,w,) be a pair of optimal solutions of (P) and (D) and
(x,v,w,w,) be another pair of optimal solutions of (P) and (D), then

XW=0,w (U=-x)=0,x"w,=0,w (u-x)=0

and X", =0,x" W =0,w (u=x)=0,w" (u-x")=0.

Consider the primal (P) and the dual (D) problems in the standard forms

(P) minc'x (D) maxb'v—u'w
Ax=b ATV—-w+w, =¢C
0<x<u w,w, >0

Let A, be the basis matrix associated with the optimal basic feasible solution
X = (Xg, Xy, =0, Xy, = uNZ)T. Let (v',w’,w,) be the corresponding optimal solution

of the dual problem. If we solve problem (P) by using simplex method by treating upper

bounds as constraints, the values of dual variables are given by net evaluations
corresponding to artificial variables and slack variables as discussed in Theorem 3. If we
solve primal problem by upper bound simplex technique (Murty, 1976), then we can
directly find the values of v.,w" and w, from the optimal table of (P) by using the

following relations which can be easily establised using the duality theory:

* * *
Vo= (clADT, wp =W, =0,

S

* _ * _ * _ * _
WNl —O|WN2 _[(Zj _Cj)]sz Wle __[(Zj _Cj)]Nl’WsNz =0.

Consider the linear programming problem with non-negative variables and its dual
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problem as follows

(Primal)  minc'x (Dual) max b'v
Ax=b Alv+w, =¢
X=0 w, >0

According to Goldman and Tucker (1956), there exists at least one optimal solution pair
(x",v',w,) to primal and dual which is strictly complementary, that is,

xj+W::_ >0V j=1,2,---,n
Similarly, for the case of bounded variables the strictly complementary solution in (P)
and (D) is defined as that optimal solution pair (x",v,w’,w) to (P) and (D) which
satisfy
* * * * -
xj+wsj >0 and Wj+(uj—Xj)>O‘v’ j=12,---,n.

The existence of such solution can be easily proved by using the application of following
theorem given by Tucker (1956) to a skew-symmetric matrix.

Theorem 5. The self-dual system KW >0, W >0 has a solution W™ such that

KW™+W" >0 where K is a skew-symmetric matrix.
The application of Theorem 5 to the following skew-symmetric matrix
0 -AT AT 1 ]
A 0 0 0 -b
K=l-A 0 0 0 b
-1 0 0 0 u
|-c" b" -b" -u" 0

yields a column vector (v,,v.,W,,X,,t,) >0 such that

(i.a) A'v, —A'v. —w, <ct_,i.e. A'v,—w, <ct where v, =v, —V. is unrestricted.
(iLa) Ax, =bt,, x, <ut,.
(iii.a) b'v, —u"w, >c'x,.
(iv.a) c'x, <b"v, —u'w, +t,.
(v.a) Alv, —w, <ct, +x].
(vi.a) —x, +W >-ut,.
Now we investigate the cases when t, >0 and t, = 0 separately.
Lemma 1. Suppose t, >0. Then there are optimal vectors x, and (v,,w,) for the dual
problems (P) and (D) respectively such that
c'x, =b"v, —u"w,, (A", +W, +C)+Xx] >0, (u-x,)+w, >0.
Proof. Since t, >0, the non-negative vector (x,,v,,v,,W,,t,) can be “normalized” so
that t, =1 and hence the vector (x,,v,,w,,t,) without affecting the validity of the
homogeneous inequalities (i.a) to (vi.a). Then (i.a) and (ii.a) (with t, =1) show that x,

ASOR Bulletin, Volume 26, Number 4, December 2007 7



and (v,,w,) are feasible solution to (P) and (D) respectively; (iii.a) and Theorem 2
show that x, and (v,,w,) are optimal also and Theorem 1 shows that
c'x, =b"v, —u"w,. The relations x; +(c—A'v,+w,)>0 and (u-x,)+w, >0 follows
from (iv.a) and (vi.a) (with t, =1). Thus we can choose the normalized x, and (v,,w,)
to be the desired x, and (v,,w,).

Using the definition of w, and the above lemma, we have
X, +w, >0 and W, +(u-x,)>0,

which proves the existence of a strictly complementary optimal solution.

Lemma 2. Suppose t, = 0. Then one of the following possibilities hold:

(a) At least one of the dual problem has no feasible solution.

(b) If the maximization problem has a feasible vector, then the set of its feasible vectors is

unbounded and b'v—u'w is unbounded on this set. Dually for the minimization

problem.

(c) Neither problem has a feasible vector.

Proof. (a) Suppose (v,w) a feasible vector for the maximization problem, then
A'lv-w<c, w>0. (2.5)

Using (ii.a), with t, =0 and non-negativity of w, we have

VI AX, =0,w'x, <0 ie. vI Ax,—w'x, > 0.

From (iv.a),
c'x, <b'v, —u"w, (2.6)
As x, >0, from (2.6), we have
vIAX, —W'x, <c'x, (2.7
0<V'AXx, —-W'x, <c'x, <b"v,—u'w, (2.8)

If possible, let the minimization problem has a feasible solution x,so Ax=b,0<x<u.
= v, Ax=b'v, and —w;x>-u"w,,

= v, AX—-W, Xx>b'v, —u'w, (2.9)
From (i.a) with t, =0, we have A'v, —w, <0.

= v, AX-W, Xx<0 (2.10)
Relations (2.9) and (2.10), together imply that

0>v] Ax—w, x>b'v, —u"w, (2.11)

this clearly contradicts (2.8), and so (a) is proved.
(b) Let (v,w) be a feasible solution to the maximization problem, then

A'lv-—w<c, w>0 (2.12)
Also form (i.a), with t, =0,
A'v, —w, <0. (2.13)
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Consider (v+ Av,,w+Aw,) forall 1>0. Clearly w+ Aw, >0. From (2.12) and (2.13),
AT(V+Av,)—(w+Aw,) <cC.
Thus the entire infinite ray consists of feasible vector , which proves the first assertion of
(b). Furthermore, from (2.8), b'v, —u"w, >0, we see that
b" (v+Av,)—u" (w+Aw,) = (b'v-u'w)+ A(b"v, —u"w,)
can be made arbitrary large by choosing A large enough. So the second assertion of (b) is

proved.
Finally, (c) is an immediate consequence of (b). This completes the proof of Lemma.

Throughout this paper, we assume that (P) and (D) are feasible.
3. Definition of three sensitivity analysis methods

For sensitivity analysis on the cost coefficient c, that is perturbed by the amount 6, we
consider another linear programming problem (P,) and the corresponding dual (D,):

(P,): min(c+é&,)" x (D,): maxb'v—u'w
Ax=b ATV—W+w, =C+ 6k,
0<x<u w,w, >0

where e, € R" is a vector such that the k™ element is one and the others are zero. Also,
for the right-hand side vector b, its h" element i.e. b, is perturbed by the amount y, we
consider the linear programming (P,) and its corresponding dual (D, ) :

(P,): minc'x (D,): max(b+ye,) v—-u'w
Ax = (b+e,) ATV—w+w, =C
0<x<u w,w, >0

where e, € R™ is the vector such that the h™ element is one and the others are zero.

Let B,N,, N, be the index set of the basic, non-basic variables at their lower bounds and
non-basic variables at their upper bounds respectively.

.
If (xB,le,xNZ)T = ((Aglb_ZjeNzyjuj) ,ONl,uNz) is an optimal solution to (P),
(A, Ay Ay,) is called a primal-optimal basis. Also, if v = (A7) ¢ = (cLAH)T and
(WsB’Wle’WsNZ )" =(0g,~(z, _Cj)Nl’ONZ)T =(0g.cy, - ALV’ONZ ),
(WB'WNl'WNZ) = (OB’ON17(Zj _Cj)Nz)T: (OB'ONI’ ALV—CNZ)T,
is an optimal solution to (D), then (AB,ANl,ANZ) is called a dual-optimal basis. If
(AB,ANl,ANZ) is both a primal-optimal and dual-optimal basis, it is called an optimal

basis. For a primal-optimal basis (AB,ANl,ANZ), let Tck(AB,ANl,ANZ) denote the
following range of &:
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.
A_fIB_ Weg W, Cg + (685
Ay V| Wy [+ W (=] Cy (R, |,

1
AI W, w Cn, +(&':‘k)N2
2 2

SN

T, (A ALA) =10 (3.1)

S

= = = = >
W, =Wg =Wy =W, O,WSNI,WNZ_O

2
That is, Tck (A, ANl’ ANz) represents the range of & within which a primal-optimal basis

(AB,ANl, ANz) is an optimal basis of (P,). Note that T (A, Ay, ANz) may be the empty
set. Similarly, for a dual-optimal basis (AB,ANl,ANZ) , let Tbh(AB,ANl,ANZ) denote the
following range of y:

0<%y = Ag'(b+78,)— D Vju; <Ug, %y =0,% =uy ¢ (32)

jeN2

T, (A Ay A) ={y

That is, Tbh(AB,ANl,ANZ) represents the range of y within which a dual-optimal basis
(AB,ANl, ANz) is an optimal basis of (D,). Note that Tbh (Ag, ANl' ANz) may also be the

empty set.

The traditional sensitivity analysis using an optimal basis, called basic sensitivity
analysis, is defined as follows:

Definition 3.1. (Basic Sensitivity Analysis, BSA) Let B be the index set of basic
variables and N,, N, be the index set of non-basic variables which are at their lower and

upper bounds respectively of an optimal basis. BSA using (AB,ANl,ANZ) on a cost
coefficient ¢, is to find the range of & within which (Ag, Ay , A, ) remains an optimal
basis to (P,) and (D,). Similarly, BSA using (AB,ANl,ANZ) on a right-hand side b, is to
find the range of » within which (AB,ANl,ANZ) remains an optimal basis to (P,) and
(D,) . By the definition of TCk (Ag, ANl' ANz) and Tbh (A, ANl' ANz)’ the ranges found by
BSA using (AB,ANl,ANZ) on ¢, and b, are represented as Tck(AB,ANl,ANZ) and
Tbh(AB,ANl,ANZ), respectively. To perform BSA, we need an optimal basis associated

with an optimal basic solution. In fact, BSA can be applied only to an optimal basic
solution.

Before defining positive sensitivity analysis (PSA), some notation is introduced. For an
arbitrary vector x whose components are non-negative and have some upper bound

restrictions on them, let 7(x),7(x) and ﬁ(x) denote the set of indices of variables as
follows: 7(x) ={j[0<x; <u}, n(x) ={jlx; =0} n()={ilx; =u;}.
In addition, 7z(x) = (n(x),g(x),ﬁ(x) is called the induced partition of x.

Definition 3.2. (Positive Sensitivity Analysis, PSA) Let x* be an optimal solution to
(P). The PSA using X" on ¢, is to find the range of & within which there exists an
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optimal solution to (P,) whose induced partition is equal to z(x"). Similarly, the PSA
using X" on b, is to find the range of » within which there exists an optimal solution to
(P,) whose induced partition is equal to z(x).

Given an optimal solution x* to (P), the range of (PSA) using X" is calculated
using the following (Yang, 1990):

AT wo | | w, c, +(6k,),
Y 6c)=lo Al v—lw_ [+|w, [=]c, +(&,), |, (33)
X)) = z e C ‘ e :
i {A?I Wo | we | [C+ (),
w, =w, =w, =w,_ =0,w, ,w->0
th(x*):{;/‘Agxd+Agx;=b+yeh,O§xc,Sug,xg:O,XE:UE} (3.4)

where o =7n(x"),c = n(x"),o =n(X).
As proved in Section 2, there exists at least one pair of optimal solution (x",v",w",w.)
to the (P) and (D) which is strictly complementary, i.e.,

x’;+w:_ >0 and w;+(u;—x;)>0V j=1,2,---,n
Let B"=n(x"),N =n(w,),M” =n(w’). The partition =~ =(B",N",M") of the indices
of variables is called the optimal partition of (P) and (D). (Throughout this paper
7 =(B",N",M") denotes the optimal partition of (P) and (D)). The definition of
sensitivity analysis using the optimal partition is as follows:
Definition 3.3. (Optimal Partition Sensitivity Analysis, OSA) Let 7" = (B",N",M")
be the optimal partition of (P) and (D). The sensitivity analysis using the optimal
partition on c, is to find the range of & within which optimal partition of (P,) and (D,)
is equal to 7. Similarly, the sensitivity analysis using the optimal partition on b, is to
find the range of y within which the optimal partition of (P,) and (D,) is equal to .
The range of OSA is calculated using the following (Roos et al., 1997):

A. W, W C.+(6k,) .
B B B B B
0 (BN M=o A V=W [+ W =] c L+ (6 -, (3.5)
C ’ ) = N .
k AM* WM* WS . CM* +(&k)M*
W, =w,=w.=w, =0w, ,w,>0
Sg B N M N M
. AB*XB*+AM*XM*:b+7eh,0£x8*£u8*,
Obh(B,N,M): v Z0x - =u (3.6)
N* ) M* M*

Note that Ock(B*, N",M") and Obh(B*, N",M7) include the boundary values where the
optimal partition of the perturbed problem differs from 7" = (B",N",M").
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So far, we have defined three kinds of sensitivity analysis for linear programming.
It is trivial that if X™ is a non-degenerate optimal basic solution to (P), then the range of

PSA using X is equal to that of BSA. However, if x™ is a degenerate optimal basic
solution, the range of PSA may differ from that of BSA. The case will be discussed in
Section 4. In addition, we know easily by definition that the range of PSA using a strictly
complementary optimal solution is equal to that of OSA. Since the range of PSA using an

optimal solution x" is equal to the range of perturbations within which the partition
(n(x*),g(x*),ﬁ(x*)) of the indices of variables remains invariant, OSA can be regarded

as a special case of PSA.
4. The range of PSA using different optimal solutions

Let z(@) denote the optimal value of the objective function of (P,) and (D,). Also, for
any optimal solution x* to (P), let L (x") denote the range of & such that
2(0) = 2(0) + &, , i.e., L, (X)) ={0|2(0) = z(0) + &k, }.

Jansen et al. (1992) proved that Yck(x*) =L (x) for an optimal basic feasible

solution x~ to linear programming problem with non-negative variables. The result can
be easily proved for problem (P).

Theorem 6. Let X~ be an optimal basic solution to (P). Then Yo, (xX) =L (x).

Proof. Let @<L (x"). Then x" is an optimal solution of (P,) , hence & €Y, (x).
Conversely, let eeYck(x*). So, there exists an optimal solution x of (P,) such that
7(x)=7z(x"). We prove that ¢"x + &k, =c' X +6k, .

Let B,N;,N, be the index set of basic variables and non-basic variables at their lower
and upper bounds respectively associated with x. As z(X)=7m(x), so

;1 X;<U; VjeB.

x'j :xj:OVjeNl, x'j :x’;:ujVjeNz,and 0<x
Also, X; = Ag'(b— A Uy ). Let oc=n(x),c=n(x),c =n(x).Clearly, N,co,N,co

and o c B. By the suitable permutation of the components of x , we can write X as a
basic feasible solution. Define x'j as basic variable if x’; is basic and non-basic at lower

and upper bounds if corresponding x’; IS non-basic at lower and upper bounds
respectively. So we have

Ay + Ay Xy, =b,
AXg + ANzx:2 =b,
ABXB =b- ANZXN27

AXs = AgXg = Xg = Xg,
€'+ )X =(c" +6)X.
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Hence the result.

Any optimal feasible solution of (P) satisfies the following results which All can be
easily proved on the same lines as discussed in Park et.al. (2004):

Lemma 3. For an arbitrary optimal solution x” to (P), Y, (X)) =L.(X).

Theorem 7. Let X and X be two different optimal solutions to (P). If
Ye, (X) Y, (X) = {0}, then Ye, x)= Ye, (X).

Theorem 8. Let x',x' and x* be distinct optimal solutions to (P) such that
X = Ax' +(1-A)x* for some A with 0< A <1. Then Y, (x) = 5 (x") NY,, (x?).
Corollary 2. Let x',x%x%---,x" be optimal solutions to (P) such that for some
A (=12,---,1)

X = AX 4 X+ X, D 4 =1, 4 >0V

i=1

Then, Y, (x) = Picier Vo, (x"). Moreover, if Y, (x") #{0}, then Y, (x')=-- =Y, (x).

If x* in Corollary 2 is a strictly complementary solution, then we find that
0, (B",N",M") = Oicicr Ve, (x') because Y, (x) = 0, (B",N",M7). That is, the range of

OSA is the intersection of the ranges of PSA using optimal solutions whose convex
combination leads to a strictly complementary solution.
Next , consider the case when b, is perturbed. For an arbitrary matrix E € R™" with r

being a positive integer, let Pos(E) denote a set of vectors as follows:

POS(E):{XER”X: D AE A, zo},

I<j<r

where E; is the j™ column vector of E. In the next theorem, the relationship between
ranges of PSA using different optimal solutions is presented when b, is changed.
Theorem 9. Let X, x",x* be optimal solutions to (P) such that x™ = Ax'+ (1—A)x* for
some A with 0< A <1.Then

Y, (x") <Y, (x")fori=1,2.
Proof. Let o =7(x"),a=7(x") and o' =5(x),o =n(x') for i=1,2. By assumption,
o' o col o, so Pos(A; UA,)c Pos(A U A ). This together with equation (3.4),
implies that th(x‘)cYbh (x") foreach i=1,2.

From the above theorem, we may conjecture that th (x) = ulgngh (x') where x" and x'

are defined in the same way as in Corollary 2. However. from the following example we
find that, in general, th (x") is not equal to U,__, th (x'):
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(P): min —x, —2x,
subject to
=X X, + X3 =2, X, +2X, +X, =13, 4X +X, + X, = 25,
0<x <50<x,<50<x,<10,0<x, <15,0< X, <25.
(D,): max 2v, +13v, + 25v, — 5w, — 5w, —10w, —15w, — 25w,
-V, +V, +4v, W W = -1.
V, + 2V, +V, — W, W = -2,
Vi =Wy W = 0,
Vo =W, + W, = 0,
Vs —Ws + W, =0,
Wy, Wy, >0V j=12,..5.
The problem (P,) has two optimal basic solutions, x* and x*:
x' =(3,5,0,0,8), x* = (5,4,3,0,1).
When b, is changed, the ranges of PSA using x* and x* are Y, (x')={0} and

Ybl(xz):[—3,7]. However, the range of PSA using an optimal non-basic solution

X = %(x1 +x%) =(4,9/2,3/2,0,9/2) is [-3,10].
In addition, if x” is a strictly complementary solution in Theorem 9, then we find that
0, (B",N",M) > Usciar Yo, (x") because Yo, (x) = Oy, (B",N",M").
In the rest of this section, we present a necessary and sufficient condition that ¢, can be
perturbed while an optimal solution to (P) remains optimal to the perturbed problem. Let
P” denote the set of all optimal solutions to (P).
Lemma 4. let x* be an optimal solution to (P) and o =n(x"),c=7(x") and
o =n(x"). Then
(i) c =B,
(i) cc(B"=o)UN",
(i) N"coand M co,
(iv) c=[B = (cua)]luM”.
Proof. (i) Let jeo, this implies that 0 < x’; <u;. Let X be the strictly complementary
solution to (P) and w, be the dual slack vector corresponding to x . Then, by Corollary
1, we have

x'jw;j =0,w;(u;—x;) =0, X, +w;j >0,w, +(u;—x;)>0, (4.1)

* * * *
xjwsj =0, w;(u; —x;) =0, (4.2)
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x'jwjj =0,w,(u; —x;) =0, (4.3)
x]fwsj =0,w;(u;—x;)=0. (4.4)
As 0<Xx; <uj, this implies that w;_ =0 and w; =0. Then from (4.1), it follows that
J
0<x;<u;.Thus, jeB".
(i) Let je o, this implies that x; = 0. From (4.3), we have w; = 0. Using relation (4.1),
OSX'J- <uj,ie, je(B"—o)UN".So, cc (B —c)UN".
(iii) Let jeN”, this implies that x'j =0. Then, W;,- >0, using (4.1), which along with
relation (4.4) implies that x’; =0ie jeo.So, N co.
Let jeM’, ie. x'j =U;. Then W'J. >0, using relation (4.1), which along with relation
(4.3) implies that x; =u;,i.e. jec.So, M" co.
(iv) Let jeg, this implies that x]f =u;. So, using relation (4.4), W;J_ = 0. This together
with (4.1) implies that x; > 0.
Also, w; >0, 50 X; <u; (using (4.4)). This implies that 0 < x; <u,, i.e.
je[(B"=c)UN"—g]UM’, because jegocuo.

Conversely, let je[(B'—o)UN " —g]UM". Let jeM’, then x| =u;. This implies
that w; > 0. But w;(u; —x;) = 0, which implies that X} =u;. So, jeo.
Let je[(B"~o)UN']-c,ie, jec but je(B"—o)UN".

= jeo but je(B -o) using N" co,

= jego and j¢o,

= jeo and x| =u,.
Hence the result.
Theorem 10. Let x” be an optimal solution to (P). Then, eeYCk (x") for some >0 iff

x, <x, forall xeP".
Proof. First we will show that the “only if” part holds. Suppose that 6 Y, (x") for some
@ > 0. In addition, suppose that x, < x, for some xe P". Then,

[c+6, I x=c'x+& <c'x +6& =[c+ee] X.
This contradicts the assertion that x* is an optimal solution to (P,). Therefore,
X, <X VXxeP.
Next, we will show that ““if" part holds. Let o =7(x") and o =7(X"),o = 7(x’) . Also,
let z-=(B",N",M") be an optimal partition of (P) and (D). By Lemma 4, we have
ccB,cc(B'-c)UN"and 6 =[B = (cug)]uM™.
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(i)Incase ke N": As N" c o, this implies that ke o i.e. x, =0. If (v,,w,w) is an
optimal solution to (D), then (v',w’,w, +&&,) with @>0 is a feasible solution to the
following linear equation system:

Alv=Co_+(Hek)g, W, =W, =O’
(e
AT v—-w . +w, =c .+(6,) ., w, >0,w ., =0,
M M M* M M N* N
AlV—-W ,+w, =c .+(6k) ., w, =0,w .>0
M M M* M M M* M
:
L V—W =C, . . L2
Ag oV —We *0>+WS(B*7U) Cigoy T () 5oy WS(B,LU)W(B 0 20,

(4.5)
As (x',v',w’,w,) is an optimal solution pair to (P) and (D). All the equation except the
second one of the system (4.5) are automatically satisfied. Also,
ANV-W . +W, =c., W  20w,=0,
N N* N * N

because N"c o and w, >0 and w,_ =0.
- o

Adding both sides (@k);* of the above relation, we have
T -
AN*V—WN* +WSN* +(6bk)N* =C - +(6ék)N*.

Since (x',v,w,w,+6e,) is an optimal solution pair to (P,) and (D,). We get
[0.0]1<Y, (x"), where 6>0.

(ii) In the case k € B". Consider the following linear programming:

' i T ' T T
(P) min(e,) X (D) max (b—AM*uM*) VU W

—h_ Ty — =

AX~=b=A .U . AV =W, + W, &), “6)
<X, < = T - = :
0<X.<U.,X.=0 Ag V=W oy + WS(B*—o') ©)e .,
W, , W, W, >0
o (B"-0) B

The optimal solutions of (P) are going to be the feasible solutions of (P) (proved in

Lemma 5). By assumption , X" is an optimal solution to (P'), and hence the dual (D)

also has at least one optimal solution. Let (AV,AWB*,AWS _) be an optimal solution to
B

(D) which satisfies the following:
ATAV— AW, +Aw, =(g,),

T —
A(B*—G)AV_ AW(B*—O') + AWS(B*_J) - (ek)(Bga) “7)
Aw, =Aw_=0,Aw, AW . >0
(ed o (B"-0) (B o)
In addition, let
—_ T _ T _ _
AWSN* = (8, — AV, AW L = (8) . —ALAY, AWSM* =0=Aw .,
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and (v',w’,w.) be a strictly complementary solution to (D) i.e.
. * * .
Xj+ W, >0, w;+(u;-%;)>0.

We set 6 as the following:

A —W: (=W .
6 =min —J|AWS_<0,jeN), JlAWj<0,jEM
AW, j AW.

s J

J
Note that & is positive. Let & be a real number such that 0<0<@. Then we get a
solution (v,w,w,) that satisfies the linear system (4.5) where
V =V +6AY,

w=w +5(AW;* 0, AWLI*)T,

W, =W, + é(AWSTB* : AWSTN* 0)".
Since (x,v,w,w,) is an optimal solution pair to (P,) and (D,), we find that
éevck (x).
(iii) In the case ke M™: Let ke M" < o, this implies that x; =u, . Let (v',w",w.) be a
strictly complementary solution to (D). Then (w, +(u,—x.)>0. But x, =u, and
x; <x, implies that x =u, and hence w,>0. Then, (v/,w' —6@e,w) with
0< o<W, = @ is a feasible solution to the linear system (4.5). Since (X ,v",w" — e, , W)
is an optimal solution pair to (P,) and (D;), we get [0,6] cYck (") where 6 > 0.

In the next lemma we prove that the set of feasible solutions of problem (P) contains
only optimal solutions of (P).
Lemma 5. The set of feasible solutions of problem (P') is (P").
Proof. Consider the problem (P)
: T
min (ek)B* X

subject to constraints

A.X.+A .X .=b,

B B M M
0<X.<U.,X.=0,X . =U ..

B B N M M
We will show that for a feasible solution, x but not an optimal solution of (P) either
x; #u; forsome jeM™ or x; =0 forsome jeN".
Let (x,x,) and (v,w,w,) be feasible solutions to (P) and (D) where X, =u—x, vector
of primal slack variables associated with bound constraints. Then, we have

X'W, +W'x, =¢"x—(b'v-u"w). (4.8)

Using, weak duality theorem,
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X'W, +W'x, = x"w, +W' (u-x)>0. (4.9)
Let (v',w’,w,) be an optimal solution of dual and x' is a feasible solution of (P) but not
an optimal solution. Then from (4.9),

X"W,+w (U—x)>0. (4.10)
Above relation implies that either there exists some j such that x'jw:_ >0 or
W/ (u; —x;) >0 or both.
Let there exists some j such that x'jW:_ >0, which implies that 0 < x'j <u;,and W:: #0.
Let X be a strictly complementary solution to (P). Then, using complementary slackness
theorem, ijW: =0. This implies that X, =0 and hence jeN". But x; =0, s0 x'N* =0,
which shows that x is not a feasible solution to (P).
Let there exists some j such that w;(u;—x;)>0, which implies that w;>0 and
0<x; <u;. But wj(u;—X;) =0, which implies that X, =u,, i.e, jeM". So, we have
x'M* #U_.. This shows that X is not a feasible solution to (P').
Thus for any feasible solution to (P) but not optimal either X« #U . OF X =0 or

both. So any non-optimal solution to (P) cannot be a feasible solution to (P).

In other words, every feasible solution of (P) is an element of (P"). Conversely by
Lemma 5, every optimal solution of (P) is a feasible solution of (P).

Theorem 11. Let X~ be an optimal solution to (P). Then OeY, (x") for some <0 iff
x, > x, forall xeP".

Proof. First, we will show that the “Only if” part holds. Suppose that HeYCk (x") for

some @< 0. In addition suppose that x, > x, for some xe P". Then,

(c+é ) x=c'x+6k <c'X +& =(c+6,) X.
This contradicts the assertion that x™ is an optimal solution to (P,). Therefore x; > x, for
all xeP”.
Next we will show that “if” part holds. Let o = 7(x"), =(x") and o =7(x"). Also, let
7~ =(B",N",M") be the optimal partition to (P) and (D).
(i) In the case keN": As keN" and since N"co=keo. So, x =0.. let

(v',w,w,) be a strictly complementary solution to (D). Then ij >0 and

(v, w,w, +8e,) satisfies the linear system (4.5) where —W:; <0<0.

(i) In the case k € B”: It can be easily shown that & eYck (x") for some &, by replacing
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vector e, in (4.6) and (4.7) with (—e,) and applying the same technique as in Theorem
10.

(iii) In the case keM™: As keM co, x =u,. Let (vV,w’,w) be a strictly
complementary solution to (D). ( Note that w, >0)). Then (v',w" +8,w;) satisfies the
linear system (4.5) where —w, <8 <0. Since (x',v,w +8,w,) is an optimal solution
pair to (P,) and D,), we get [0,0] Y, (x).

By Theorem 10 and 11, we know that the range of PSA using x™ on c, includes both a

positive and a negative value iff for any optimal solution x the k" element x, has the

same value. In addition, we arrive at another interesting result about the range of OSA as
follows:

Corollary 3. Let ' =(B",N",M") be the optimal partition of (P) and (D). Then,
Ock(B*, N™,M") #[0,0] iff x, =« forall X" eP", where « €[0,u,].
Proof. First, suppose that Ock(B*, N",M")#[0,0]. Let x be a strictly complementary
optimal solution. Since Y, (x)=0, (B",N",M"),Y, (x)=[0,0]. If X is a unique
optimal solution to (P), then corollary trivially holds. Otherwise, let x' be an optimal
solution to (P) such that x* # x , then, there exists an optimal solution x* such that

X = Ax"+(1-A)x?, forsome 1>0. (4.11)
By Theorem 10 and 11, Y, (X') #[0,0] implies that x, <x, or x, >, for i=1,2. This,
together with equation (4.11), implies that x, = x, = x2. Since x' is chosen arbitrary,
x, =a forall X" e P" where « is a non-negative real number and « €[0,u,]. Next, we
will show that the reverse holds. Suppose that x, =« forall X e P". hen by Theorem 10
and 11, there exists & and & such that [0, 6] = O, (B",N",M"),8<0 and 0>0.

5. The relationship between PSA and BSA under degeneracy

In this section, we discuss the relationship between PSA and BSA by comparing PSA
with BSA under degeneracy. Let x  be an optimal basic solution to (P). If x  is

degenerate, there can be more than one optimal basis associated with BSA, using each
optimal basis may produce a different range of perturbation &. For example, consider the
following linear programming problem (LP,):

(R,): min —x, —2x,
=X 2%, + %X, =6, 3X, +X, +X, =17, X, + X, + X =9,
0<x <50<x,<50<x,<6,0<x,<17,0<x, <6.
(D,): max 6v, +17v, +9v, — 5w, —5w, —6w, —17w, — 6w,
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=V, +3V, +V, =W, W = -1,
2V, +V, +V, — W, W, = -2,
Vi =Wy + W = 0,
Vo =W, + W, = 0,
Vg —Ws + W, = 0, Wi, W, >0.
The unique optimal solution x™ to (P,) is (4,5,0,0,0)", that is a degenerate basic
solution. There are three primal-optimal bases, (A ,,A ,A,),(A,,A, A ,) and
B Nj N5 B Ny N5

(A, A AN3) where
2

B3 N3
B'={1,4,5}, N; ={3}, N;={2}; B> ={1,3,5}, N/ ={4}, N2 ={2}; B®={1,3,4},
N} ={5}, NJ ={2}. Both (A A A ), for i=23 are optimal bases and
1 2
(A Ay A1) isaprimal optimal basis, but not an optimal basis. When ¢, is changed,
1 2
the range of BSA using (A ,,A ,,A ,) and (A, A ;,A ;) are [-5,1] and [-1,1]
B N1 N2 B N1 N2
respectively and using (Asl’ ANl' ANl) is [1,2]. On the other hand, the range of PSA
1 2

using X" is [-5,2].

Ward et al. (1990) showed that when a cost vector is changed, the range of 4
within which an optimal basic solution x™ remains an optimal solution to (P,) is the
union of the ranges of sensitivity analysis using all primal-optimal bases associated with

x". Park et al.(2004) proved the similar result for Y, (x"). Since Y, (x") is the range of
@ within which x" remains optimal to (P,), we obtain the following theorem:

Theorem 12. Let X" be an optimal degenerate basic solution. Let (B',N;,N}),--,
(B",N;,N;) be the index set of basic variables, non-basic variables at lower and upper
bounds respectively of all the primal-optimal bases associated with x”. Then

Yck (x)= Lér-rck (ABi ) ANli’ANiZ)'
Proof. Let 0T, (A;,A ;,A ), where
kBN TN
_ T_ _ -
ABi Wi Wi c;+(6k,)
T B B B B
AL v=lw, [+|w, |=]cC,+(&) ;|
T. (AL A LA )=10 " M M M M
k" B N N AT WNi W CNi +(6Ek)Ni
N 2 S\ 2 2
L L 2 |
W, =w;=w,;=w, =0w, ,w;=>0
Sg B 1 NG N 2

We will show that 0 €Y, (x") ie.
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We know that

(i) o< B

(i) cc(B'=0)UN,,N! co,and o = (B' —cuc)UN!,
(iii) 0= (B'—ocuUo)UN), N!co.

As w, =w;=0and oc B', this implies that w_ =w, =0. Also, (B'—~c)c B', so
B! o
(Bi—O') = WS(Blia) :0'
As WNi ZO,Ws : >0 and WNi ZO,Ws i =0; this |mp||es that W, =0 and W, >0. Also,
1 Nl 2 N2 - o
for je(B'-ouo),w,; =0, W, =0and w,; >20,w, =0.
2 NS

= w->0 and w, =0,
= HeYCk (x).
Conversely, let 9€Yck (x’) and X" is an optimal degenerate basic solution and out of

(B',N,,N;) there exists at least one basis s.t.
Y, (X) =T, (B'N},Ny),
ie. 0 (T, (B',N;,N;)

I<i<r

Hence the result.
Theorem 13. Let x  be an optimal degenerate basic solution to (P). Let

(B*,N;,N3),---, (B",N/,N;) be all the optimal bases associated with x". Then
Y, (<)< (T, (A AurAy)

I<i<r

Moreover, if Y, (x)#0,thenY, (X)=T, (A,,A,,A,) forl<i<r.
h h h B Nl N2

Bl

Proof. By definition,
T (A A A )= V1 AsXs + Ay Xy, =b+8,%, =0, =Uy 0<X; <ugj (5.12)

Yy, (x) = {;/| AX, +Ax_ =b+e 0<x, <u,, X, =0,x = u;} (5.13)
where o =7(x"),o =5(x") and o=n(x"). Foreach B" and N!, o < B'. First we will
prove that o = (B' U N)). Let je o . Then x’; =u;, so there are two possibilities, either
x]f is basic and at its upper bound such that solution is degenerate or x’; is non-basic and

at its upper bound i.e. either jeB' or jeN;.
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= je(B'UN)) ie.(cuo)c(B'UN)).
Then Pos(cU o)  Pos(B' U N!). This together with equation (5.12) and (5.13) implies
that Y, (X)) T, (A,,A, A ) foreach i. Therefore,
h h B Nl N2
Y, () (T, (A AL

1<i<r 1

A.).
N'Z)
Suppose that th (x") includes any non-zero value. For any arbitrary optimal basis B',

o < B' for each i and each column in A_ is linearly independent with all the remaining

columnsin A .. Let yeT, (A,,A;,A ). Then
B h B Ny N5
AiXi+ ANiszi2 =b+e,,0< Xoi SUp, lei =0, xNi2 = uNi2 (5.14)
Note that o — B'. If relation (5.14) holds, then
AX, +A X =b+e (5.15)

holds trivially.
In order to prove that y eth (x"), it is sufficient to show that X, =0,x: =u-,0<x, <u,.

Since B'UN} = (B' —(cUo))uocuUo (5.14) can be written as
AX, + AX + A(B'—(cruc?)) X i ooz = b+e, (5.16)
Equation (5.15) and (5.16) imply that
Agi ooy X6 ooy = O

)= 0, since columns of A(B,f(wg» are linearly independent.

This implies that x

(B'—(cua

= (B'=(cuo))UN! co as N! co. We will show that o =(B'—(cuo))UN!. It

can be shown that if j ¢ (B'—(cuUo)), then jeo.

Let j¢(B' —(cuo))=(B'—c)(B'— o). There are following possibilities:

(i) je(B' -0) and j& (B -0). If X; is basic, then 0<x; <u; and x; =u;, which is
not feasible.

(i) je(B'-0o) and je(B'-o). It implies that x; is basic and strictly between its
bounds. So, j¢o.

(i) je(B'-0o) and j&(B' —o). Itimplies that X; is basic and is at its upper bound, so
Jeo.

Thus o = (B' - (6w o)) UN, . This proves that x, =0.
Similarly, o = (B' — (¢ Ug) which implies that X- = U-..
X, =0,x: =u-,0<x, <u,.

= yeY, (x") and hence Ty, (A A ANiZ) =Y, (x").

i
Ny

That is, if th(x*) includes any non-zero value, we know that
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ﬂ T, (A A LA ) =Y, (X)), which is similar to Theorem 12. However, when
1<i<r ®h B Ny N, h

Y, (X)={0}, Y, (x) may not be equal to ﬂlggTbh(ABi , AN]i_’ANiz)’ which is illustrated
by the following linear programming (LP,):
(Py): minx,
X, + X, + X3 =5, X +2X, +2X; =5,
0<x<50<x,<40<x,<5.
(D;): max5v, +5v, —5w, —4w, —5w,

Vy V= Wy + W =1,

Vi 2V, =Wy + W, =0,

v, +2v, —W, W = 0,

Wy, Wy, >0V =123
The unique optimal solution to (P,) is x" =(5,0,0), and there are two optimal bases
associated with x”:

P L O P
S PP e "ol R Vit

O R e
Y AT Y " e

o=¢,0={23})o={1},
where B*={1,2},N; ={3},N; =¢;B* ={1,3}, N/ ={2},NZ = 4. When b, is perturbed,
the ranges of BSA using (Asl’Awl’Aml) and (ABZ,A A,) are
1 2 2

2
N1 N

Tbl(ABl’ Awll’ AN%) = [—5,0],Tbl(ABZ : Ale , AN§) =[-5,0]. However, the range of PSA using

X" is Ybl(x*) =1[0,0], by using the following equation:

Ybl(X*) :{7{2} :{5;—7]’)(2 =% =0, =U, :5}-

Consequently, we find that Ybl(x*) =T, (A, Amll’ AN%) NTy (A, Ale , ANZZ ).

6. Concluding Remarks

In this paper, we have established the existence of strictly complementary solution for
linear programming problem with bounds on the variables, leading to the study of
optimal partition sensitivity analysis for such problems. The properties of PSA and its
relationship with other sensitivity analysis methods, BSA and OSA have been discussed.
The main advantage of PSA is that it can be performed with any optimal solution which
IS a non-basic or basic solution. PSA finds the range within which there exists an optimal
solution to the perturbed problem whose induced partition is equal to the induced

ASOR Bulletin, Volume 26, Number 4, December 2007 23



partition of a given optimal solution. PSA focuses only on the induced partition of
primal-optimal solutions. Hence the properties of PSA on a cost coefficient differ from
those of PSA on a right-hand side.

We presented some properties of PSA that are useful for comparing PSA with the
other two sensitivity analysis methods. When a cost coefficient is perturbed, the range of
PSA is equal to the interval where a given optimal solution remains optimal to the
perturbed problem. On the other hand, when right-hand side is changed, the range of PSA
finds the interval where the induced partition of a given optimal solution remains the
induced partition of some optimal solution to the perturbed problem. Another important
property of PSA on a cost coefficient is the ranges of PSA using an optimal non-basic
solution is the intersection of the ranges of PSA using optimal basic solutions, whose
convex combination leads to the optimal non-basic solution.

Finally, further studies will be needed, which will deal with the computational
performance and numerical experience of sensitivity analysis methods. Given an optimal
basis, BSA is obviously the most efficient where the computational time is concerned.
However, most codes using interior-point methods often produce an optimal non-basic
solution and in this case PSA is expected to be a good alternate because PSA can be
applied without obtaining an optimal basis or optimal partition which may require more
computational time if a problem is ill-conditioned.

Park et.al. (2004) discussed the properties and relationships of PSA, OSA and
BSA by partitioning the decision variables into two categories and this motivated us to
extend this study to the case where decision variables are bounded and hence they have to
be partitioned into three categories depending upon BSA, OSA and BSA. Although the
bounds on the decision variables can be treated as additional constraints but this leads to
considerably increase in the size of the problem under consideration, thus it is not
preferable to consider the bounds on decision variables as additional constraints.
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