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Abstract 

The present paper discusses positive sensitivity analysis (PSA) in linear programming with bounded 
variables. Positive sensitivity analysis is a sensitivity analysis method for linear programming that finds the 
range of perturbations within which the components of a given optimal solution which are strictly between 
their bounds remain strictly between bounds and which are at their lower and upper bounds remain at 
lower and upper bounds respectively. Its main advantage is that it is applicable to both an optimal basic 
and non-basic optimal solution. In this paper, we examine how the range of PSA varies according to the 
optimal solution used for PSA and discuss the relationship between the ranges of PSA using different 
optimal solutions. We also discuss the relationship between PSA and sensitivity analysis using optimal 
basis and the relationship between PSA and sensitivity analysis using the optimal partition. We show that 
the sensitivity analysis using optimal partition is a special case of PSA. In order to study these relationships 
and the properties, some results on duality have been discussed and existence of strictly complementary 
solution has been established for linear programming with bounded variables. 
 
Keywords: Linear programming with bounded variables, sensitivity analysis, optimal partition 
sensitivity analysis, strictly complementary solution.  

  
1. Introduction  
 
 The merits of linear programming are nowadays well established and linear 
programming is widely accepted as a useful tool in Operations Research and 
Management Science. A large number of companies are using this way of modeling to 
solve various kinds of practical problems. Applications include transportation problems, 
production planning, investment decision problems, blending problems, location and 
allocation problems, among many other.  

 A linear programming problem consists of linear relationships between decision 
variables. The variables correspond to the decision to be made. A linear objective 
function is specified which has to be maximized (e.g. profit) or minimized (e.g. cost). The 
possible decision variables are restricted to a certain area by various constraints and the 
bounds on the decision variables. In most of the cases, for solving the linear 
programming problem, the so-called Simplex method is used. The method, due to 
Dantzig (1951) has been implemented in a large variety of codes which are successfully 
used in practice. Not long after the publication of Dantzig's primal simplex method its 
dual version, developed by Lemke (1954). It has long been known that the dual simplex 
algorithm is a better alternative to the primal simplex algorithm for solving certain types 
of linear programming problems. The dual simplex method for linear programming with 
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bounded variables has been been developed by Wagner (1958) which is further studied 
by Maros (2003a, 2003b). In 1984, Karmarker proposed his projective algorithm for 
linear programming, which he showed to be a polynomial time algorithm. This gave the 
impulse to an enormous amount of research on interior point methods. Another important 
topic in the field of linear programming is duality theory. Associated with every linear 
programming there always exists another linear programming problem which is based 
upon the same data and having the same solution. The original problem is called the 
primal problem while the associated one is called its dual problem. The dual problem was 
formulated by Neumann (see Murty, 1976) for linear programming with non-negative 
decision variables. Duality theorems were proved by D. Gale (1960), Kuhn and Tucker 
(1956) and Goldman et.al. (1956). Most of the packages available for solving linear 
programming do not only solve the linear programming problem but also provide the 
option to ask for information on the sensitivity of the solution to certain changes in the 
data. This is referred to as sensitivity analysis or postoptimal analysis. This information 
can be of tremendous importance in practice, where parameter values may be estimates. 
Questions of the type “What if L” are frequently encountered and implementation of a 
specific solution may be difficult. Sensitivity analysis serves as a tool for obtaining 
information about the bottlenecks and degrees of freedom in the problem. For instance, 
when the cost of an activity or the available amount of resources is changed, we often 
need information about how the total cost of the current decision is altered, in order to 
obtain a new optimal decision for the new situation. In this case, sensitivity analysis can 
be applied.  

 The method of sensitivity analysis in simplex method is well developed on the 
foundation of optimal basis, it requires little computational effort. This method has been 
introduced in numerous papers and text books so far (see, for example: Dantzig, 1963; 
Gal, 1979) and has been used in many linear programming codes. However in case of 
degeneracy, it may yield incomplete information due to alternative optimal bases (Evans 
and Baker, 1982; Knolmayer, 1984; Jansen et.al., 1997). On the other hand, most interior-
point methods produce a solution which converges to an optimal solution relatively 
interior to the optimal face. Some additional computation enables us to get an exact 
optimal basic or non-basic solution (Tapia and Zhang, 1991; Mehrotra and Ye, 1993; 
Bixby and Salzman, 1994). Interior-point method for linear programming with bounded 
variables has been developed by Castro (1995). Dahiya and Verma (2005) studied 
sensitivity analysis using optimal bases for the linear programming problem with 
bounded variables. However, since sensitivity analysis using an optimal basis cannot be 
applied to an optimal non basic solution, other methods for sensitivity analysis have been 
suggested: positive sensitivity analysis(PSA), sensitivity analysis using optimal partition 
and −ε  sensitivity analysis(Yang, 1990; Adler and Monteiro, 1992; Kim et.al., 1999; 
Yilidmir et.al. 2001). Yang(1990) introduced PSA for optimal solutions including 
optimal non basic solutions based on Sung and Park's (1988) definition for the linear 
programming problem with non-negative decision variables.Positive sensitivity analysis 
is defined to find the characteristic region within which variables having a zero and 
having a positive value in an optimal solution remain zero and positive in the perturbed 
problem, respectively. Adler and Monteiro (1992) developed a method of parametric 
analysis on the right-hand side by introducing the optimal partition. Monteiro and 
Mehrotra (1996) presented a parametric analysis by generalizing Adler and Monteiro's 
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method, and Greenberg(2000) developed a method of sensitivity analysis using the 
optimal partition when cost coefficients and right-hand sides change simultaneously. To 
use Yang's and Adler and Monteiro's method, we need an optimal solution or the optimal 
partition, which requires additional computation for interior-point methods. Kim et.al. 
(1999) developed a practical sensitivity analysis method, −ε  sensitivity analysis, which 
can be directly applied to interior-point solutions produced by interior-point methods. 
Park et.al. (2004) studied PSA in linear programming that was useful for establishing the 
relationship between PSA and sensitivity analysis using optimal bases and using optimal 
partition. This motivated us to carryon this study for the case when decision variables are 
bounded. The purpose of this paper is to present some properties of PSA and examine 
how the range of PSA varies according to the optimal solution used for PSA, and study 
the relationship between the ranges of PSA using different optimal solutions for linear 
programming with bounded variables and consequently making use of these properties of 
PSA, we study the relationship PSA and other sensitivity analysis methods . Some duality 
results relevant to this study are discussed in the present paper for linear programming 
with bounded variables.  

 This paper is organized as follows: in Section 2, we discuss existence of strictly 
complementary solution in linear programming problem with bounded variables. In 
Section 3, we introduce three types of sensitivity analyses for linear programming with 
bounded variables and some basic results about the relationship between PSA and other 
sensitivity analysis methods are presented. In section 4, we discuss the relationship 
between the ranges of PSA using different optimal solutions, and present a necessary and 
sufficient condition for the range of PSA to include a positive and negative value. In 
section 5, we study the relationship between PSA using an optimal basic solution and 
sensitivity analysis using an optimal basis when a given optimal basic solution is 
degenerate. In section 6, some concluding remarks are given.   
 
2. Basic results in linear programming with bounded variables 
 
 Consider the linear programming problem,   

 xcP T min   )(  
subject to   
                                                         bAx =                                                     (2.1)  

                                                        ,0 ux ≤≤                                                  (2.2) 
where nmijnmn

mn aaaaARbRuxc ××∈∈ ][=] [= ;;,, 21 L  is a matrix and mA =)(ρ , u  is 
the vector of upper bounds on the decision variable vector x . 
 Notations: 

th
j jc =  component of vector c , 

==. jj aA  Activity vector of jx , 
},{1,2,= nJ K . 

Given an index set σ  of the variables, let σA  denote the submatrix of A  with columns 
that correspond to indices in σ . Similarly, we use σz  to denote the subvector of z  with 
components that correspond to indices in σ . For any vector x , let jx  denote the thj  



________________________________________________________________________________________________ 
ASOR Bulletin, Volume 26, Number 4, December 2007                                                                                                 5 
 

 

component of x . 
Since rank of A  is m , there exists an )( mm×  non-singular submatrix 

)  (=
21 mBBBB aaaA L  of A . Let },, ,{= 21 mBBBB L . 

Let BjJjN ∉∈ ,{=1  s.t. =0}=jx  Index set of non basic variables which are at their 
lower bounds, 
Let BjJjN ∉∈  ,{=2  s.t. =}= jj ux  Index set of non basic variables which are at their 
upper bounds, 

,  = 1 JjaAy jBj ∈∀−  
So, the columns of A  can be permuted so that )  (=

21 NNB AAAA  and we can write 

bAx =  as bxAxAxA NNNNBB =
2211

++ , where )  (=
21 NNB xxxx  and 0=

1Nx . Then a 

solution to bAx =  is given by   
 .= 0,= ,=

221
2

1
NNNjj

Nj
BB uxxuybAx ∑

∈

− −  

Let )  (=
21 NNB cccc  be the corresponding partition of c  s.t. 

21 21
= N

T
NN

T
NB

T
B

T xcxcxcxc ++  

and .  ,= Jjcyccz jj
T
Bjj ∈∀−−  

Definitions: 
(a) The )( mm×  non-singular matrix BA  is called basis matrix. 
(b) The solution 

2212

1 = 0,= ,= NNNjjNjBB uxxuybAx ∑ ∈
− −  is called the basic solution of 

bAx = . 
(c) Bx  is the vector of basic variables, 

1Nx  is the vector of non basic variables which are 

at their lower bounds and 
2Nx  is the vector of non basic variables which are at their upper 

bounds. 
      The problem )(P  can be solved by treating upper bound restrictions as constraints but 
this increases the size of the problem. On the other hand, this problem can be solved by 
using the upper bound simplex technique without increasing the size of the problem (see: 
Murty, 1976; Dantzig, 1963). A basic feasible solution )  (=

21 NNB xxxx  is an optimal 

solution of )(P  if  
     0 , 0= 1NjczBjcz jjjj ∈∀≤−∈∀− and .  0 2Njcz jj ∈∀≥−  

Consider the dual of the problem )(P  as follows:  
                                          )(  max     )( wuvbD TT −  
           subject to   
                                                  cwvAT ≤−                                                         (2.3) 
    0≥w  and v  is unrestricted.    (2.4) 

      The dual was formulated by Neuman (see Murty, 1976) for the linear programming 
problem with non-negative variables. Duality theorems and complementary slackness 
theorem were proved by Gale (1960), Kuhn and Tucker (1956) and Goldman and Tucker 
(1956). All these important results can be easily extended to the problem )(P . 
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 Theorem 1. (  Weak Duality)  If *x  is a feasible solution of )(P  and ),( ** wv  is a 
feasible solution of )(D , then  

 .*** wuvbxc TTT −≥  
Theorem 2.  If *x  and ),( ** wv  are feasible solutions of )(P  and )(D  respectively, and 

*** = wuvbxc TTT −  ( or merely *** wuvbxc TTT −≤ ), then *x  and ),( ** wv  are optimal 
solutions to )(P  and )(D  respectively. 
Theorem 3. (  Basic Duality Theorem)  If *x  is an optimal solution to the primal )(P , 
then there exists a feasible solution ),( ** wv  to the dual )(D  such that *** = wuvbxc TTT −  
and conversely, if ),( ** wv  is an optimal solution to the dual )(D , then there exists a 
feasible solution *x  to the primal )(P  such that *** = wuvbxc TTT −   
Theorem 4. ( Complementary Slackness Theorem)  *x  and ),( ** wv  are optimal 

solution to )(P  and )(D  respectively iff 0=**

jsjwx  and .,1,2,=  0=)( ** njxuw jjj L∀−  

According to Theorem 7 of Terlaky (2001), the optimal solutions are complementary in 
the general sense i.e. they are not only complementary w.r.t. their own slack vector, but 
complementary w.r.t. to slack vector for any other optimal solution as well. We have the 
following result: 
 Corollary 1. Let ),,,( ****

swwvx  be a pair of optimal solutions of )(P  and )(D  and 
),,,( ''''

swwvx  be another pair of optimal solutions of )(P  and )(D , then  

 0=)( 0,= 0,=)(, 0= ''''**** xuwwxxuwwx T
s

TT
s

T
−−  

and             0.=)( 0,=)( 0,= 0,= *''**''* xuwxuwwxwx TT
s

T
s

T
−−  

 
Consider the primal )(P  and the dual )(D  problems in the standard forms  

 
0,                    0          

=                    =         
 max      )(           min      )(

≥≤≤
+−
−

s

s
T

TTT

wwux
cwwvAbAx

wuvbDxcP
 

Let 
mmBA

×
 be the basis matrix associated with the optimal basic feasible solution 

T
NNNB uxxxx )=0,=,(=

221

* . Let ),,( ***
swwv  be the corresponding optimal solution 

of the dual problem. If we solve problem )(P  by using simplex method by treating upper 
bounds as constraints, the values of dual variables are given by net evaluations 
corresponding to artificial variables and slack variables as discussed in Theorem 3. If we 
solve primal problem by upper bound simplex technique (Murty, 1976), then we can 
directly find the values of **, wv  and *

sw  from the optimal table of )(P  by using the 
following relations which can be easily establised using the duality theory: 

T
B

T
B Acv )(= 1* − , 0,=*=*

BsB ww  

,)][(=* 0,=*
221 NjjNN czww −  0=*,)][(=*

211 NsNjjNs wczw −− . 

Consider the linear programming problem with non-negative variables and its dual 



________________________________________________________________________________________________ 
ASOR Bulletin, Volume 26, Number 4, December 2007                                                                                                 7 
 

 

problem as follows  

 
0                    0         
=                    =         

 max         )(        min      )(

≥≥
+

s

s
T

TT

wx
cwvAbAx
vbDualxcPrimal

 

According to Goldman and Tucker (1956), there exists at least one optimal solution pair 
),,( ***

swvx  to primal and dual which is strictly complementary, that is,  

 .,1,2,=  0>** njwx
jsj L∀+  

Similarly, for the case of bounded variables the strictly complementary solution in )(P  
and )(D  is defined as that optimal solution pair ),,,( ****

swwvx  to )(P  and )(D  which 
satisfy  

 .,1,2,=  0>)(  a  0>* *** njxuwndwx jjjjsj L∀−++  

The existence of such solution can be easily proved by using the application of following 
theorem given by Tucker (1956) to a skew-symmetric matrix. 
Theorem 5. The self-dual system 0  0, ≥≥ WKW  has a solution *W  such that 

0>** WKW +  where K  is a skew-symmetric matrix. 
The application of Theorem 5 to the following skew-symmetric matrix  

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−
−

−
−

0
000
000
000

0

=

TTTT

TT

ubbc
uI
bA
bA

cIAA

K  

yields a column vector 0),,,,( ''' ≥ooooo txwvv  such that 
(i.a) ooo

T
o

T ctwvAvA ≤−− ''' , i.e. ooo
T ctwvA ≤−  where '''= ooo vvv −  is unrestricted. 

(ii.a) . ,= oooo utxbtAx ≤  
(iii.a) .o

T
o

T
o

T xcwuvb ≥−  
(iv.a) .< oo

T
o

T
o

T twuvbxc +−  
(v.a) .< T

oooo
T xctwvA +−  

(vi.a) .> o
T
oo utwx −+−  

Now we investigate the cases when 0>ot  and 0=ot  separately. 
Lemma 1.  Suppose 0>ot . Then there are optimal vectors ox  and ),( oo wv  for the dual 
problems )(P  and )(D  respectively such that  

 0.>)( 0,>)( ,= T
oo

T
ooo

T
o

T
o

T
o

T wxuxcwvAwuvbxc +−+++−−  
Proof. Since 0>ot , the non-negative vector ),,,,( '''

ooooo twvvx  can be “normalized” so 
that 1=ot  and hence the vector ),,,( oooo twvx  without affecting the validity of the 
homogeneous inequalities (i.a) to (vi.a). Then (i.a) and (ii.a) (with 1=ot ) show that ox  
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and ),( oo wv  are feasible solution to )(P  and )(D  respectively; (iii.a) and Theorem 2 
show that ox  and ),( oo wv  are optimal also and Theorem 1 shows that 

o
T

o
T

o
T wuvbxc −= . The relations 0>)( oo

TT
o wvAcx +−+  and 0>)( T

oo wxu +−  follows 
from (iv.a) and (vi.a) (with 1=ot ). Thus we can choose the normalized ox  and ),( oo wv  
to be the desired ox  and ),( oo wv .             
 
Using the definition of sw  and the above lemma, we have  

 0,>)(  a  0> o
T
oos

T
o xuwndwx −++  

which proves the existence of a strictly complementary optimal solution. 
  

Lemma 2.  Suppose 0=ot . Then one of the following possibilities hold:  
(a) At least one of the dual problem has no feasible solution. 
(b) If the maximization problem has a feasible vector, then the set of its feasible vectors is 
unbounded and wuvb TT −  is unbounded on this set. Dually for the minimization 
problem. 
(c) Neither problem has a feasible vector. 
Proof. (a) Suppose ),( wv  a feasible vector for the maximization problem, then   

                                   0  , ≥≤− wcwvAT .                                                 (2.5)  
 Using (ii.a), with 0=ot  and non-negativity of w , we have  

 0.  ..i  0 0,= ≥−≤ o
T

o
T

o
T

o
T xwAxvexwAxv  

From (iv.a),   
                                  o

T
o

T
o

T wuvbxc −<                                                  (2.6)   
 As 0≥ox , from (2.6), we have   

                                      o
T

o
T

o
T xcxwAxv ≤−                                                    (2.7) 

                         o
T

o
T

o
T

o
T

o
T wuvbxcxwAxv −≤−≤ <0                                (2.8)  

If possible, let the minimization problem has a feasible solution x , so uxbAx ≤≤0 ,= .   
 o

tT
o vbAxv =  ⇒  and o

TT
o wuxw −≥− , 

                                    o
T

o
tT

o
T
o wuvbxwAxv −≥−⇒                                         (2.9) 

From (i.a) with 0=ot , we have 0≤− oo
T wvA .   

                                     0  ≤−⇒ xwAxv T
o

T
o                                                      (2.10) 

Relations (2.9) and (2.10), together imply that   
                                   o

T
o

tT
o

T
o wuvbxwAxv −≥−≥0                                        (2.11) 

this clearly contradicts (2.8), and so (a) is proved.  
(b) Let ),( wv  be a feasible solution to the maximization problem, then   

                                 0  , ≥≤− wcwvAT                                                    (2.12) 
Also form (i.a), with 0=ot ,   

                                        0.≤− oo
T wvA                                                         (2.13) 
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Consider ),( oo wwvv λλ ++  for all 0≥λ . Clearly 0≥+ oww λ . From (2.12) and (2.13),  
 cwwvvA oo

T ≤+−+ )()( λλ . 
Thus the entire infinite ray consists of feasible vector , which proves the first assertion of 
(b). Furthermore, from (2.8), 0>o

T
o

T wuvb − , we see that  
 )()(=)()( o

T
o

TTT
o

T
o

T wuvbwuvbwwuvvb −+−+−+ λλλ  
can be made arbitrary large by choosing λ  large enough. So the second assertion of (b) is 
proved. 
Finally, (c) is an immediate consequence of (b). This completes the proof of Lemma.             
 
Throughout this paper, we assume that )(P  and )(D  are feasible.    
 
3. Definition of three sensitivity analysis methods  
 
For sensitivity analysis on the cost coefficient kc  that is perturbed by the amount θ , we 
consider another linear programming problem )( θP  and the corresponding dual )( θD :  

 
0,                    0          

=                                =         
 max      :)(          )( min      :)(

≥≤≤
++−

−+

s

ks
T

TTT
k

wwux
ecwwvAbAx

wuvbDxecP
θ

θ θθ

 

where n
k Re ∈  is a vector such that the thk  element is one and the others are zero. Also, 

for the right-hand side vector b , its thh  element i.e. hb  is perturbed by the amount γ , we 
consider the linear programming )( γP  and its corresponding dual )( γD :  

 
0,                    0          

=                            )(=         
)( max    :)(                             min     :)(

≥≤≤
+−+

−+

s

s
T

h

TT
h

T

wwux
cwwvAebAx

wuvebDxcP
γ

γγγ

 

where m
h Re ∈  is the vector such that the thh  element is one and the others are zero. 

Let 21,, NNB  be the index set of the basic, non-basic variables at their lower bounds and 
non-basic variables at their upper bounds respectively. 

If 
T

NNjjNjB
T

NNB uuybAxxx ⎟
⎠
⎞

⎜
⎝
⎛ −∑ ∈

−

212

1

21
,,0)(=),,(  is an optimal solution to )(P , 

),,(
21 NNB AAA  is called a primal-optimal basis. Also, if T

B
T
BB

T
B AccAv )(=)(= 11 −−  and  

 ,)0,,0(),0)(,(0=),,(
22121 11

T
N

T
NB

T
NNjjB

T

NsNsBs vAcczwww
N

−=−−  

                 ,),,0(0))(,,0(0=),,(
221 1212

T
N

T
NB

T
NjjNBNNB cvAczwww

N
−=−  

is an optimal solution to )(D , then ),,(
21 NNB AAA  is called a dual-optimal basis. If 

),,(
21 NNB AAA  is both a primal-optimal and dual-optimal basis, it is called an optimal 

basis. For a primal-optimal basis ),,(
21 NNB AAA , let ),,(

21 NNBkc AAAT  denote the 

following range of θ :   
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⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0,0,====

,
)(
)(
)(

=
=),,(

2121

22

11

2

1

2

1

2

1
21

NNsNsNBBs

NkN

NkN

BkB

Ns

Ns

Bs

N

N

B

N

N

T
B

NNBkc

wwwwww

ec
ec
ec

w

w
w

w
w
w

v
TA

TA
A

AAAT θ
θ
θ

θ           (3.1) 

That is, ),,(
21 NNBkc AAAT  represents the range of θ  within which a primal-optimal basis 

),,(
21 NNB AAA  is an optimal basis of )( θP . Note that ),,(

21 NNBkc AAAT  may be the empty 

set. Similarly, for a dual-optimal basis ),,(
21 NNB AAA  , let ),,(

21 NNBhb AAAT  denote the 

following range of γ :   

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤−+≤ ∑
∈

−

221
2

1

21
=0,=,)(=0=),,( NNNBjj

Nj
hBBNNBhb uxxuuyebAxAAAT γγ    (3.2) 

That is, ),,(
21 NNBhb AAAT  represents the range of γ  within which a dual-optimal basis 

),,(
21 NNB AAA  is an optimal basis of )( θD . Note that ),,(

21 NNBhb AAAT  may also be the 

empty set. 
The traditional sensitivity analysis using an optimal basis, called basic sensitivity 
analysis, is defined as follows: 
Definition 3.1. (Basic Sensitivity Analysis, BSA) Let B  be the index set of basic 
variables and 21, NN  be the index set of non-basic variables which are at their lower and 
upper bounds respectively of an optimal basis. BSA using ),,(

21 NNB AAA  on a cost 

coefficient kc  is to find the range of θ  within which ),,(
21 NNB AAA  remains an optimal 

basis to )( θP  and )( θD . Similarly, BSA using ),,(
21 NNB AAA  on a right-hand side hb  is to 

find the range of γ  within which ),,(
21 NNB AAA  remains an optimal basis to )( γP  and 

)( γD . By the definition of ),,(
21 NNBkc AAAT  and ),,(

21 NNBhb AAAT , the ranges found by 

BSA using ),,(
21 NNB AAA  on kc  and hb  are represented as ),,(

21 NNBkc AAAT  and 

),,(
21 NNBhb AAAT , respectively. To perform BSA, we need an optimal basis associated 

with an optimal basic solution. In fact, BSA can be applied only to an optimal basic 
solution. 
    Before defining positive sensitivity analysis (PSA), some notation is introduced. For an 
arbitrary vector x  whose components are non-negative and have some upper bound 
restrictions on them, let )(),( xx ηη  and )(xη  denote the set of indices of variables as 

follows: },<<0 | {=)( jj uxjxη  0},= | {=)( jxjxη  }.= | {=)( jj uxjxη  

In addition, )(),(),((=)( xxxx ηηηπ  is called the induced partition of x . 

Definition 3.2. (Positive Sensitivity Analysis, PSA) Let *x  be an optimal solution to 
)(P . The PSA using *x  on kc  is to find the range of θ  within which there exists an 
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optimal solution to )( θP  whose induced partition is equal to )( *xπ . Similarly, the PSA 
using *x  on hb  is to find the range of γ  within which there exists an optimal solution to 

)( γP  whose induced partition is equal to )( *xπ . 

Given an optimal solution *x  to )(P , the range of (PSA) using *x  is calculated 
using the following (Yang, 1990):   

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0,0,====

,
)(
)(
)(

=
=)( *

σσσ
σσσ

σσ

σσ

σσ

σ

σ

σ

σ

σ

σ

σ

σ

σ

θ
θ
θ

θ

wwwwww

ec
ec
ec

w
w
w

w
w
w

v
A
A
A

xY

sss

k

k

k

s

s

s

T

T

T

kc                                        (3.3) 

{ }σσσσσσσσσ γγ uxxuxebxAxAxY hhb =0,=,0 ,=  =)( * ≤≤++                      (3.4) 

where ).(=),(=),(= *** xxx ησησησ  

 As proved in Section 2, there exists at least one pair of optimal solution ),,,( ****
swwvx  

to the )(P  and )(D  which is strictly complementary, i.e.,  

 njxuwndwx jjjjsj ,1,2,=  0>)(  a  0>* *** L∀−++  

Let )(=),(=),(= ****** wMwNxB s ηηη . The partition ),,(= **** MNBπ  of the indices 
of variables is called the optimal partition of )(P  and )(D . (Throughout this paper 

),,(= **** MNBπ  denotes the optimal partition of )(P  and )(D ). The definition of 
sensitivity analysis using the optimal partition is as follows: 
Definition 3.3. (Optimal Partition Sensitivity Analysis, OSA) Let ),,(= **** MNBπ  
be the optimal partition of )(P  and )(D . The sensitivity analysis using the optimal 
partition on kc  is to find the range of θ  within which optimal partition of )( θP  and )( θD  
is equal to *π . Similarly, the sensitivity analysis using the optimal partition on hb  is to 
find the range of γ  within which the optimal partition of )( γP  and )( γD  is equal to *π . 
The range of OSA is calculated using the following (Roos et al., 1997):   

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0,0,====

,
)(
)(
)(

=
=),,(

******

**

**

**

*

*

*

*

*

*

*

*

*

***

MN
s

M
sNBBs

MkM

NkN

BkB

M
s

N
s

Bs

M

N

B

M

N

B

kc

wwwwww

ec
ec
ec

w

w

w

w
w
w

v
A
A
A

MNBO θ
θ
θ

θ                      (3.5) 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ≤≤++

***

*********

=0,= 
,,0=

  =),,(
MMN

BBhMMBB
hb uxx

uxebxAxA
MNBO

γ
γ                            (3.6) 

Note that ),,( *** MNBO
kc  and ),,( *** MNBO

hb  include the boundary values where the 

optimal partition of the perturbed problem differs from ),,(= **** MNBπ .  
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So far, we have defined three kinds of sensitivity analysis for linear programming. 
It is trivial that if *x  is a non-degenerate optimal basic solution to )(P , then the range of 
PSA using *x  is equal to that of BSA. However, if *x  is a degenerate optimal basic 
solution, the range of PSA may differ from that of BSA. The case will be discussed in 
Section 4. In addition, we know easily by definition that the range of PSA using a strictly 
complementary optimal solution is equal to that of OSA. Since the range of PSA using an 
optimal solution *x  is equal to the range of perturbations within which the partition 

))(),(),(( *** xxx ηηη  of the indices of variables remains invariant, OSA can be regarded 
as a special case of PSA.     

 
4. The range of PSA using different optimal solutions  
 
Let )(θz  denote the optimal value of the objective function of )( θP  and )( θD . Also, for 
any optimal solution *x  to )(P , let )( *xLk  denote the range of θ  such that 

*(0)=)( kxzz θθ + , i.e., }.(0)=)( | {=)( **
kk xzzxL θθθ +  

Jansen et al. (1992) proved that )(=)( ** xLxY kkc  for an optimal basic feasible 

solution *x  to linear programming problem with non-negative variables. The result can 
be easily proved for problem )(P . 
Theorem 6. Let *x  be an optimal basic solution to )(P . Then )(=)( ** xLxY kkc . 

 Proof. Let )( *xLk∈θ . Then *x  is an optimal solution of )( θP  , hence )( *xY
kc∈θ . 

Conversely, let )( *xY
kc∈θ . So, there exists an optimal solution 'x  of )( θP  such that 

)(=)( *' xx ππ . We prove that **'' = k
T

k
T xxcxxc θθ ++ . 

Let 21,, NNB  be the index set of basic variables and non-basic variables at their lower 
and upper bounds respectively associated with *x . As )(=)( '* xx ππ , so 

1
*'  0== Njxx jj ∈∀ , 2

*'  == Njuxx jjj ∈∀ , and Bjuxx jjj ∈∀≤≤  ,0 '* . 

Also, )(=
22

1*
NNBB uAbAx −− . Let )(=),(=),(= ''' xxx ησησησ . Clearly, σσ ⊂⊂ 21 , NN  

and B⊂σ . By the suitable permutation of the components of 'x , we can write 'x  as a 
basic feasible solution. Define '

jx  as basic variable if *
jx  is basic and non-basic at lower 

and upper bounds if corresponding *
jx  is non-basic at lower and upper bounds 

respectively. So we have  

 ,='
22

' bxAxA NNBB +  

 ,=*
22

' bxAxA NNBB +  

 ,*=
22

'
NNBB xAbxA −  

 ,=    = *'*'
BBBBBB xxxAxA ⇒  

                                                         .)(=)( '* xecxec k
T

k
T θθ ++  
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Hence the result.             
 
Any optimal feasible solution of )(P  satisfies the following results which All can be 
easily proved on the same lines as discussed in Park et.al. (2004): 
Lemma 3.  For an arbitrary optimal solution *x  to )(P , )(=)( ** xLxY kkc .  

Theorem 7.  Let x  and x~  be two different optimal solutions to )(P . If 
{0})~()( ≠∩ xYxY

kckc , then )~(=)( xYxY
kckc . 

Theorem 8.  Let 1*, xx  and 2x  be distinct optimal solutions to )(P  such that 
21* )(1= xxx λλ −+  for some λ  with 1<<0 λ . Then )()(=)( 21* xYxYxY

kckckc ∩ . 

Corollary 2.  Let rxxxx ,,,, 21* L  be optimal solutions to )(P  such that for some 
),1,2,=( rii Lλ    

.  0> 1,= ,=
1=

2
2

1
1

* ixxxx ii

r

i

r
r ∀+++ ∑ λλλλλ L  

Then, ).(=)( 1
* i

kcrikc xYxY ≤≤∩  Moreover, if {0})( * ≠xY
kc , then )(==)( 1 r

kckc xYxY L . 

 
If *x  in Corollary 2 is a strictly complementary solution, then we find that 

)(=),,( 1
*** i

kcrikc xYMNBO ≤≤∩  because ),,(=)( **** MNBOxY
kckc . That is, the range of 

OSA is the intersection of the ranges of PSA using optimal solutions whose convex 
combination leads to a strictly complementary solution. 
Next , consider the case when hb  is perturbed. For an arbitrary matrix rmRE ×∈  with r  
being a positive integer, let )(EPos  denote a set of vectors as follows:  

 ,0 ,= | =)( .
1 ⎭

⎬
⎫

⎩
⎨
⎧

≥∈ ∑
≤≤

jjj
rj

m ExRxEPos λλ  

where jE.  is the thj  column vector of E . In the next theorem, the relationship between 
ranges of PSA using different optimal solutions is presented when hb  is changed. 
Theorem 9.  Let 21* ,, xxx  be optimal solutions to )(P  such that 21* )(1= xxx λλ −+  for 
some λ  with 1<<0 λ . Then  

 1,2.= f )()( * iorxYxY
hb

i

hb ⊂  

Proof. Let )(=),(= ** xx ησησ  and )(=),(= iiii xx ησησ  for 1,2.=i  By assumption, 

σσσσ U⊂∪
ii , so )()( σσσσ

AAPosAAPos ii ∪⊂∪ . This together with equation (3.4), 

implies that )()( *xYxY
hb

i

hb ⊂  for each 1,2=i .             

 
From the above theorem, we may conjecture that )(=)( 1

* i

hbrihb xYxY ≤≤∪  where *x  and ix  

are defined in the same way as in Corollary 2. However. from the following example we 
find that, in general, )( *xY

hb  is not equal to )(1
i

hbri xY≤≤∪ :  
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 211 2  min   :)( xxP −−  
subject to  
 25,=4  13,=2  2,= 521421321 xxxxxxxxx ++++++−  
 25.15,010,05,05,00 54321 ≤≤≤≤≤≤≤≤≤≤ xxxxx  
 543213211 2515105525132  max   :)( wwwwwvvvD −−−−−++  
 1.=4

11321 −+−++− swwvvv  

 2,=2
22321 −+−++ swwvvv  

 0,=
331 swwv +−  

 0,=
442 swwv +−  

 0,=
553 swwv +−  

 1,2,...,5.=  0, jww
jsj ∀≥  

The problem )( 1P  has two optimal basic solutions, 1x  and 2x :  
 ).(5,4,3,0,1= ),(3,5,0,0,8= 21 xx  

When 1b  is changed, the ranges of PSA using 1x  and 2x  are {0}=)( 1

1
xYb  and 

3,7][=)( 2

1
−xYb . However, the range of PSA using an optimal non-basic solution 

,0,9/2)(4,9/2,3/2=)(
2
1= 21* xxx +  is 3,10][− . 

In addition, if *x  is a strictly complementary solution in Theorem 9, then we find that 
)(),,( 1

*** i

hbrihb xYMNBO ≤≤∪⊃  because ),,(=)( **** MNBOxY
hbhb . 

In the rest of this section, we present a necessary and sufficient condition that kc  can be 
perturbed while an optimal solution to )(P  remains optimal to the perturbed problem. Let 

*P  denote the set of all optimal solutions to )(P . 
Lemma 4.  let *x  be an optimal solution to )(P  and )(=),(= ** xx ησησ  and 

)(= *xησ . Then 
(i) *B⊂σ ,    
 (ii) ** )( NB ∪−⊂ σσ , 
(iii) σ⊂*N  and σ⊂*M ,    
(iv) .)]([= ** MB ∪∪− σσσ  
Proof.  (i) Let σ∈j , this implies that jj ux <<0 * . Let 'x  be the strictly complementary 

solution to )(P  and '
sw  be the dual slack vector corresponding to 'x . Then, by Corollary 

1, we have   

 0,>)(0,>' 0,=)( 0,=' ''''''
jjjjsjjjjjsj xuwwxxuwwx −++−      (4.1) 

                   0,=)( 0,=* ***
jjjjsj xuwwx −                                       (4.2) 
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                              0,=)(0,=* *''
jjjjsj xuwwx −                                       (4.3) 

                               0.=)(0,=' '**
jjjjsj xuwwx −                                      (4.4) 

As jj ux <<0 * , this implies that 0='
jsw  and 0='

jw . Then from (4.1), it follows that 

jj ux <<0 ' . Thus, *Bj∈ . 

(ii) Let σ∈j , this implies that 0=*
jx . From (4.3), we have 0='

jw . Using relation (4.1), 

jj ux <0 '≤ , i.e., ** )( NBj ∪−∈ σ . So, ** )( NB ∪−⊂ σσ . 

(iii) Let *Nj∈ , this implies that 0='
jx . Then, 0>'

jsw , using (4.1), which along with 

relation (4.4) implies that 0=*
jx  i.e. σ∈j . So, σ⊂*N . 

Let ,*Mj∈  i.e. jj ux =' . Then 0>'
jw , using relation (4.1), which along with relation 

(4.3) implies that jj ux =* , i.e. σ∈j . So, .* σ⊂M  

(iv) Let σ∈j , this implies that jj ux =* . So, using relation (4.4), 0='
jsw . This together 

with (4.1) implies that 0>'
jx .  

Also, 0* ≥jw , so jj ux ≤'  (using (4.4)). This implies that jj ux ≤'<0 , i.e.   

 ,])[(  *** MNBj ∪−∪−∈ σσ  because σσ ∪∉j . 
Conversely, let .])[( *** MNBj ∪−∪−∈ σσ  Let *Mj∈ , then jj ux =' . This implies 

that 0>'
jw . But 0,=)( *'

jjj xuw −  which implies that jj ux =* . So, σ∈j . 

Let σσ −∪−∈ ])[( ** NBj , i.e., σ∉j  but ** )( NBj ∪−∈ σ .  
 σ∉⇒ j   but   )( * σ−∈ Bj using σ⊂*N , 
                                 σ∉⇒ j   and ,σ∉j  
                                 σ∈⇒ j   and .=*

jj ux  
Hence the result.            
Theorem 10. Let *x  be an optimal solution to )(P . Then , )( *xY

kc∈θ  for some 0>θ  iff 

kk xx ≤*  for all *Px∈ . 
 Proof. First we will show that the “only if” part holds. Suppose that )( *xY

kc∈θ  for some 

0>θ . In addition, suppose that *< kk xx  for some *Px∈ . Then,  
 .][=<=][ *** xecxxcxxcxec T

kk
T

k
TT

k θθθθ ++++  
This contradicts the assertion that *x  is an optimal solution to )( θP . Therefore, 

**   Pxxx kk ∈∀≤ . 

Next, we will show that ``if" part holds. Let )(= *xησ  and )(=),(= ** xx ησησ . Also, 

let ),,(= **** MNBπ  be an optimal partition of )(P  and )(D . By Lemma 4, we have 
*** )( , NBB ∪−⊂⊂ σσσ  and ** )]([= MB ∪∪− σσσ .  



________________________________________________________________________________________________ 
 16                                                                                               ASOR Bulletin, Volume 26, Number 4, December 2007 
 

(i)In case *Nk∈ : As σ⊂*N , this implies that σ∈k  i.e. 0=*
kx . If ),,( ***

swwv  is an 
optimal solution to )(D , then ),,( ***

ks ewwv θ+  with 0>θ  is a feasible solution to the 
following linear equation system:   

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥+=+−

≥++−

≥++−

+

−−−−−−−
0,,)(

00,=,)(=

0,=0,,)(=
0,== ,)(=

)()()()()()()(

*******

*******

*
*

**
*

** σσσσσσσ

σσσσσ

θ

θ

θ
θ

BB
sBkBB

sB
T
B

MM
sMkMM

sM
T
M

NN
sMkMM

sM

T

M

sk
T

wwecwwvA

wwecwwvA

wwecwwvA
wwecvA

                      

(4.5)  
As ),,,( ****

swwvx  is an optimal solution pair to )(P  and )(D . All the equation except the 
second one of the system (4.5) are automatically satisfied. Also,  

 0,=0,  ,= ******
NN

sNN
sN

T
N wwcwwvA ≥+−  

because σ⊂*N  and 0≥
σs

w  and 0=σw . 

Adding both sides *)(
Nkeθ  of the above relation, we have  

 .)(=)( ****** NkNNk
N

sNN
ecewwvTA θθ +++−  

Since ),,,( ****
ks ewwvx θ+  is an optimal solution pair to )( θP  and )( θD . We get 

)(][0, *xY
kc⊂θ , where 0>θ . 

(ii) In the case *Bk∈ . Consider the following linear programming: 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

≥

+−≤≤

+−−

−−

−

−−−−

0,,                    

)(=0= ,0         
)(=                    =         

)( max         )(       )( min      )(

*
)(

)()()()(***

****

***
'

*
'

*

****

*

BB
ss

Bk
B

sB
T
BNBB

ks
T

MMBB

B

T
B

T

MMB

T
k

www

ewwvAxux
ewwvAuAbxA

wuvuAbDxeP

σσ

σσσσ

σσσσ
    (4.6) 

The optimal solutions of )(P  are going to be the feasible solutions of )( 'P  (proved in 
Lemma 5). By assumption , *x  is an optimal solution to )( 'P , and hence the dual )( 'D  
also has at least one optimal solution. Let ),,(

**
B

sB
wwv ΔΔΔ  be an optimal solution to 

)( 'D  which satisfies the following:   

         
0,0,==

)(=
)(=

)()(

)()()()(

**

****

≥ΔΔΔΔ

Δ+Δ−Δ

Δ+Δ−Δ

−−

−−−−

σσ
σσ

σσσσ

σσσσ

BB
ss

Bk
B

sB
T
B

ks
T

wwww

ewwvA
ewwvA

                       (4.7) 

 In addition, let  
 ,=0=  ,)(=  ,)(= ******

**
NM

s
T
MMkM

T
NNk

N
s wwvAewvAew ΔΔΔ−ΔΔ−Δ  
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and ),,( ***
swwv  be a strictly complementary solution to )(D  i.e.  

 0.>)(   0,>* '*'
jjjjsj xuwwx −++  

We set θ̂  as the following:  

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∈Δ

Δ
−

∈Δ
Δ

−
*

*
*  0,< |  ), 0,< | 

*
min=ˆ Mjw

w
w

Njw
w

w
j

j

j

js

js

js
θ  

Note that θ̂  is positive. Let θ  be a real number such that θθ ˆ<0 ≤ . Then we get a 
solution ),,( '''

swwv  that satisfies the linear system (4.5) where  

 ,= *' vvv Δ+θ  
 ,),0,(= **

*' TT

M

T

B
wwww ΔΔ+θ  

 .,0),(=
**

*' TT

N
s

T

B
sss wwww ΔΔ+θ  

Since ),,,( ''''
swwvx  is an optimal solution pair to )( θP  and )( θD , we find that 

)( *xY
kc∈θ . 

(iii) In the case *Mk∈ : Let σ⊂∈ *Mk , this implies that kk ux =* . Let ),,( ***
swwv  be a 

strictly complementary solution to )(D . Then 0>)(( '*
kkk xuw −+ . But kk ux =*  and 

kk xx ≤*  implies that kk ux ='  and hence 0>*
kw . Then, ),,( ***

sk wewv θ−  with 

=<0 *
kw≤σ θ̂  is a feasible solution to the linear system (4.5). Since ),,,( ***'

sk wewvx θ−  

is an optimal solution pair to )( θP  and )( θD , we get )(][0, *xY
kc⊂θ  where 0.>θ              

 
In the next lemma we prove that the set of feasible solutions of problem )( 'P  contains 
only optimal solutions of )(P . 
Lemma 5.  The set of feasible solutions of problem )( 'P  is )( *P .   
Proof. Consider the problem )( 'P   

 **)( min
B

T
Bk xe  

subject to constraints  
 ,=**** bxAxA

MMBB
+  

 .=0,= ,0 ***** MMNBB
uxxux ≤≤  

We will show that for a feasible solution, 'x  but not an optimal solution of )(P  either 

jj ux ≠'  for some *Mj∈  or 0' ≠jx  for some *Nj∈ . 
Let ),( sxx  and ),,( swwv  be feasible solutions to )(P  and )(D  where xuxs −= , vector 
of primal slack variables associated with bound constraints. Then, we have   

 )(= wuvbxcxwwx TTT
s

T
s

T −−+ .                    (4.8) 
Using, weak duality theorem,   
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 0)(= ≥−++ xuwwxxwwx T
s

T
s

T
s

T .                 (4.9) 
Let ),,( ***

swwv  be an optimal solution of dual and 'x  is a feasible solution of )(P  but not 
an optimal solution. Then from (4.9),   

                         0>)( '**' xuwwx T
s

T
−+ .                                       (4.10) 

Above relation implies that either there exists some j  such that 0>*'

jsjwx  or 

0>)( '*
jjj xuw −  or both. 

Let there exists some j  such that 0>*'

jsj wx , which implies that jj ux ≤'<0 , and 0* ≠
jsw . 

Let x̂  be a strictly complementary solution to )(P . Then, using complementary slackness 

theorem, 0=*ˆ
jsjwx . This implies that 0=ˆ jx  and hence *Nj∈ . But 0' ≠jx , so 0'

* ≠N
x , 

which shows that 'x  is not a feasible solution to )( 'P . 
Let there exists some j  such that 0>)( '*

jjj xuw − , which implies that 0>*
jw  and 

jj ux <0 '≤ . But 0=)ˆ(*
jjj xuw − , which implies that jj ux =ˆ , i.e., *Mj∈ . So, we have 

**
'

MM
ux ≠ . This shows that 'x  is not a feasible solution to )( 'P .  

Thus for any feasible solution to )(P  but not optimal either ** MM
ux ≠  or 0* ≠N

x  or 

both. So any non-optimal solution to )(P  cannot be a feasible solution to )( 'P .           
 
In other words, every feasible solution of )( 'P  is an element of )( *P . Conversely by 
Lemma 5, every optimal solution of )(P  is a feasible solution of )( 'P . 
Theorem 11. Let *x  be an optimal solution to )(P . Then )( *xY

kc∈θ  for some 0<θ  iff 

kk xx ≥*  for all *Px∈ . 
Proof. First, we will show that the “Only if” part holds. Suppose that )( *xY

kc∈θ  for 

some 0<θ . In addition suppose that *> kk xx  for some *Px∈ . Then,  
 .)(=<=)( *** xecxxcxxcxec T

kk
T

k
TT

k θθθθ ++++  
This contradicts the assertion that *x  is an optimal solution to )( θP . Therefore kk xx ≥*  for 
all *Px∈ . 
Next we will show that “if” part holds. Let )(=),(= ** xx ησησ  and )(= *xησ . Also, let 

),,(= **** MNBπ  be the optimal partition to )(P  and )(D . 
(i) In the case *Nk∈ : As *Nk∈  and since σσ ∈⇒⊂ kN   * . So, 0.=*

kx . let 

),,( ***
swwv  be a strictly complementary solution to )(D . Then 0>*

ksw  and 

),,( ***
ks ewwv θ+  satisfies the linear system (4.5) where 0<* θ≤−

ksw . 

 (ii) In the case *Bk∈ : It can be easily shown that )( *xY
kc∈θ  for some θ , by replacing 
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vector ke  in (4.6) and (4.7) with )( ke−  and applying the same technique as in Theorem 
10. 
(iii) In the case *Mk∈ : As σ⊂∈ *Mk , kk ux =* . Let ),,( ***

swwv  be a strictly 
complementary solution to )(D . ( Note that 0)>*

kw ). Then ),,( ***
swwv θ+  satisfies the 

linear system (4.5) where 0<* θ≤− kw . Since ),,,( ****
swwvx θ+  is an optimal solution 

pair to )( θP  and )θD , we get )(,0][ *xY
kc⊂θ .             

 
By Theorem 10 and 11, we know that the range of PSA using *x  on kc  includes both a 
positive and a negative value iff for any optimal solution x  the thk  element kx  has the 
same value. In addition, we arrive at another interesting result about the range of OSA as 
follows: 
Corollary 3.  Let ),,(= **** MNBπ  be the optimal partition of )(P  and )(D . Then, 

[0,0]),,( *** ≠MNBO
kc  iff α=*

kx  for all ** Px ∈ , where ][0, ku∈α . 

Proof. First, suppose that [0,0]),,( *** ≠MNBO
kc . Let 'x  be a strictly complementary 

optimal solution. Since [0,0])( ),,,(=)( '***' ≠xYMNBOxY
kckckc . If 'x  is a unique 

optimal solution to )(P , then corollary trivially holds. Otherwise, let 1x  be an optimal 
solution to )(P  such that '1 xx ≠ , then, there exists an optimal solution 2x  such that   

                        ,)(1= 21' xxx λλ −+  for some 0>λ .                               (4.11) 
By Theorem 10 and 11, [0,0])( ' ≠XY

kc  implies that i
kk xx ≤'  or i

kk xx ≥'  for 1,2=i . This, 

together with equation (4.11), implies that 21' == kkk xxx . Since 1x  is chosen arbitrary, 
α=*

kx  for all ** Px ∈  where α  is a non-negative real number and ][0, ku∈α . Next, we 
will show that the reverse holds. Suppose that α=*

kx  for all ** Px ∈ . hen by Theorem 10 

and 11, there exists θ  and θ  such that 0< ),,,(],[ *** θθθ MNBO
kc⊂  and 0>θ .            

 
5. The relationship between PSA and BSA under degeneracy 
 
 In this section, we discuss the relationship between PSA and BSA by comparing PSA 
with BSA under degeneracy. Let *x  be an optimal basic solution to )(P . If *x  is 
degenerate, there can be more than one optimal basis associated with BSA, using each 
optimal basis may produce a different range of perturbation θ . For example, consider the 
following linear programming problem )( 2LP :  

 212 2  min    :)( xxP −−  
 9,=  17,=3  6,=2 521421321 xxxxxxxxx ++++++−  
 6.17,06,05,05,00 54321 ≤≤≤≤≤≤≤≤≤≤ xxxxx  
 543213212 6176559176  max    :)( wwwwwvvvD −−−−−++  
 



________________________________________________________________________________________________ 
 20                                                                                               ASOR Bulletin, Volume 26, Number 4, December 2007 
 

 1,=3
11321 −+−++− swwvvv  

 2,=2
22321 −+−++ swwvvv  

 0,=
331 swwv +−  

 0,=
442 swwv +−  

 0.,   0,=
553 ≥+−

jsjs wwwwv  

The unique optimal solution *x  to )( 2P  is T)(4,5,0,0,0 , that is a degenerate basic 
solution. There are three primal-optimal bases, ),,( ),,,( 2

2
2
1

21
2

1
1

1 NNBNNB
AAAAAA  and  

),,( 3
2

3
1

3 NNB
AAA  where 

{1,4,5},=1B  {3},=1
1N {2};=1

2N   {1,3,5},=2B {4},=2
1N {2};=2

2N  {1,3,4},=3B
{2}= {5},= 3

2
3
1 NN . Both ),,(

21
iNiNiB

AAA , for 2,3=i  are optimal bases and 

),,( 1
2

1
1

1 NNB
AAA  is a primal optimal basis, but not an optimal basis. When 1c  is changed, 

the range of BSA using ),,( 2
2

2
1

2 NNB
AAA  and ),,( 3

2
3
1

3 NNB
AAA  are 5,1][−  and 1,1][−  

respectively and using ),,( 1
2

1
1

1 NNB
AAA  is [1,2]. On the other hand, the range of PSA 

using *x  is 5,2][− . 
Ward et al. (1990) showed that when a cost vector is changed, the range of θ  

within which an optimal basic solution *x  remains an optimal solution to )( θP  is the 
union of the ranges of sensitivity analysis using all primal-optimal bases associated with 

*x . Park et al.(2004) proved the similar result for )( *xY
kc . Since )( *xY

kc  is the range of 

θ  within which *x  remains optimal to )( θP , we obtain the following theorem: 
Theorem 12.  Let *x  be an optimal degenerate basic solution. Let ,),,,( 1

2
1
1

1 LNNB  
),,( 21

rrr NNB  be the index set of basic variables, non-basic variables at lower and upper 
bounds respectively of all the primal-optimal bases associated with *x . Then  

 ).,,(=)(
211

*
iNiNiBkc

ri
kc AAATxY U

≤≤

 

Proof. Let ),,(
21
iNiNiBkc AAAT∈θ , where  

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

0,0,====

,

)(

)(
)(

=
=),,(

2121

22

11

2

1

2

1

2

1

21

iNiN
siN

siNiBi
Bs

iNkiN

iNkiN

iBkiB

iN
s

iN
s

i
Bs

iN

iN

iB

iN

iN

iB

iNiNiBkc

wwwwww

ec

ec
ec

w

w

w

w

w
w

v

TA

TA

TA

AAAT
θ

θ
θ

θ  

We will show that )( *xY
kc∈θ  i.e.  



________________________________________________________________________________________________ 
ASOR Bulletin, Volume 26, Number 4, December 2007                                                                                                 21 
 

 

 

0,0,====

,
)(
)(
)(

=

≥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

σσσ
σσσ

σσ

σσ

σσ

σ

σ

σ

σ

σ

σ

σ

σ

σ

θ
θ
θ

wwwwww

ec
ec
ec

w
w
w

w
w
w

v
A
A
A

sss

k

k

k

s

s

s

T

T

T

 

 We know that 
(i) iB⊂σ   
(ii) σσσ ⊂∪−⊂ ii NNB 1

'
1  ,)( , and ,)(= 1

ii NB ∪∪− σσσ  
(iii) ,)(= 2

ii NB ∪∪− σσσ  . 2 σ⊂iN  
As 0== iBiB

s ww  and iB⊂σ , this implies that 0==
σσ sww . Also, ii BB ⊂− )( σ , so 

0==
)()( σσ −− i

i
B

sB ww . 

As 00,=
11
≥

iN
siN

ww  and 0;=0,
22 iN

siN
ww ≥  this implies that 0=σw  and 0≥

σs
w . Also, 

for 0=),( j
i wBj σσ ∪−∈ , 0=

jsw  and 0.=0,
22 iN

siN
ww ≥   

  0  ≥⇒ σw  and 0=
σ

sw , 

 ).(  *xY
kc∈⇒ θ  

Conversely, let )( *xY
kc∈θ  and *x  is an optimal degenerate basic solution and out of 

),,( 21
iii NNB  there exists at least one basis s.t.  

 ),,,(=)( 21
* iii

kckc NNBTxY  

 ),,(  ..i 21
1

iii

kc
ri

NNBTe U
≤≤

∈θ  

Hence the result.             
Theorem 13.  Let *x  be an optimal degenerate basic solution to )(P . Let 

,),,,( 1
2

1
1

1 LNNB  ),,( 21
rrr NNB  be all the optimal bases associated with *x . Then  

 ).,,()(
211

*
iNiNiBhb

ri
hb AAATxY I

≤≤

⊂  

Moreover, if 0)( * ≠xY
hb , then ),,(=)(

21

*
iNiNiBhbhb AAATxY  for ri ≤≤1 . 

Proof. By definition,   
{ }BBNNNhNNBBiNiNiBhb uxuxxebxAxAAAAT ≤≤++ ,0=0,=,= | =),,(

2212221
γγ    (5.12) 

  { }σσσσσσσσσ γγ uxxuxebxAxAxY hhb =0,=,,0= | =)( * ≤≤++               (5.13) 

where )(=),(= ** xx ησησ  and )(= *xησ . For each iB  and iN2 , iB⊂σ . First we will 

prove that )( 2
ii NB ∪⊂σ . Let σ∈j . Then jj ux =* , so there are two possibilities, either 

*
jx  is basic and at its upper bound such that solution is degenerate or *

jx  is non-basic and 

at its upper bound i.e. either iBj∈  or iNj 2∈ .  
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 ).()( ..i ),(  22
iiii NBeNBj ∪⊂∪∪∈⇒ σσ  

Then )()( 2
ii NBPosPos ∪⊂∪σσ . This together with equation (5.12) and (5.13) implies 

that ),,()(
21

*
iNiNiBhbhb AAATxY ⊂  for each i . Therefore,  

 ),,()(
211

*
iNiNiBhb

ri
hb AAATxY I

≤≤

⊂ . 

Suppose that )( *xY
hb  includes any non-zero value. For any arbitrary optimal basis iB , 

iB⊂σ  for each i  and each column in σA  is linearly independent with all the remaining 
columns in iB

A . Let ),,(
21
iNiNiBhb AAAT∈γ . Then   

 iNiNiNiBiBhiNiNiBiB
uxxuxebxAxA

22122
=0,=,,0= ≤≤++ γ       (5.14) 

Note that iB⊂σ . If relation (5.14) holds, then   
                           hebxAxA γσσσσ ++ =                                    (5.15) 

holds trivially.  
In order to prove that )( *xY

hb∈γ , it is sufficient to show that σσσσσ uxuxx ≤≤,0=0,= . 

Since σσσσ ∪∪∪−∪ ))((=2
iii BNB  (5.14) can be written as   

                hBB
ebxAxAxA ii γ

σσσσσσσσ +=++
∪−∪− ))(())((

             (5.16) 

Equation (5.15) and (5.16) imply that  
 .0

))(())((
=

∪−∪− σσσσ ii BB
xA  

This implies that 0
))((
=

∪− σσiB
x , since columns of 

))(( σσ∪−iB
A  are linearly independent. 

σσσ ⊂∪∪−⇒ ii NB 1))((   as σ⊂iN1 . We will show that ii NB 1))((= ∪∪− σσσ . It 

can be shown that if ))(( σσ ∪−∉ iBj , then σ∉j .  

Let )()(=))(( σσσσ −∩−∪−∉ iii BBBj . There are following possibilities: 
(i) )( σ−∉ iBj  and )( σ−∉ iBj . If jx  is basic, then jj ux <<0  and jj ux = , which is 
not feasible. 
(ii) )( σ−∉ iBj  and )( σ−∈ iBj . It implies that jx  is basic and strictly between its 
bounds. So, σ∉j . 
(iii) )( σ−∈ iBj  and )( σ−∉ iBj . It implies that jx  is basic and is at its upper bound, so 

σ∉j . 

Thus ii NB 1))((= ∪∪− σσσ . This proves that 0=σx . 

Similarly, )((= σσσ ∪−iB  which implies that .= σσ ux   
 .,0=0,= σσσσσ uxuxx ≤≤  

)(  *xY
hb∈⇒ γ  and hence ).(=),,( *

21
xYAAAT

hbiNiNiBhb              

 
That is, if )( *xY

hb  includes any non-zero value, we know that 
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)(=),,( *

211
xYAAAT

hbiNiNiBhbriI ≤≤
, which is similar to Theorem 12. However, when 

{0}=)( *xY
hb , )( *xY

hb  may not be equal to ),,(
211 iNiNiBhbri

AAATI ≤≤
, which is illustrated 

by the following linear programming )( 3LP :  
 13  min   :)( xP  
 5,=22  5,= 321321 xxxxxx ++++  
  5.4,05,00 321 ≤≤≤≤≤≤ xxx  
 321213 54555 max   :)( wwwvvD −−−+  
 1,=

1121 swwvv +−+  

 0,=2
2221 swwvv +−+  

 0,=2
3321 swwvv +−+  

 1,2,3.=  0, jww
jsj ∀≥  

The unique optimal solution to )( 3P  is (5,0,0)=*x , and there are two optimal bases 
associated with *x :  

 ,= ,2
1

=,
21
11

= 1
2

1
1

1 φ
NNB

AAA
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡  

 ,= ,
2
1

=
21
11

= 2
2

2
1

2 φ
NNB

AAA ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
 

 {1},={2,3},=,= σσφσ  
where .={2},={1,3},=;={3},={1,2},= 2

2
2

1
21

2
1
1

1 φφ NNBNNB  When 1b  is perturbed, 
the ranges of BSA using ),,( 1

2
1
1

1 NNB
AAA  and ),,( 2

2
2
1

2 NNB
AAA  are 

5,0][=),,(5,0],[=),,( 2
2

2
1

211
2

1
1

11
−−

NNBbNNBb AAATAAAT . However, the range of PSA using 

*x  is [0,0]=)( *

1
xYb , by using the following equation:  

 .5==0,==],
5

5
=

5
5

 | =)( 1132
*

1 ⎭
⎬
⎫

⎩
⎨
⎧

⎢
⎣

⎡ +
⎥
⎦

⎤
⎢
⎣

⎡
uxxxxYb

γ
γ  

Consequently, we find that ).,,(),,()( 2
2

2
1

211
2

1
1

11

*

1 NNBbNNBbb AAATAAATxY ∩≠                  

6. Concluding Remarks  
 
In this paper, we have established the existence of strictly complementary solution for 
linear programming problem with bounds on the variables, leading to the study of 
optimal partition sensitivity analysis for such problems. The properties of PSA and its 
relationship with other sensitivity analysis methods, BSA and OSA have been discussed. 
The main advantage of PSA is that it can be performed with any optimal solution which 
is a non-basic or basic solution. PSA finds the range within which there exists an optimal 
solution to the perturbed problem whose induced partition is equal to the induced 
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partition of a given optimal solution. PSA focuses only on the induced partition of 
primal-optimal solutions. Hence the properties of PSA on a cost coefficient differ from 
those of PSA on a right-hand side. 

We presented some properties of PSA that are useful for comparing PSA with the 
other two sensitivity analysis methods. When a cost coefficient is perturbed, the range of 
PSA is equal to the interval where a given optimal solution remains optimal to the 
perturbed problem. On the other hand, when right-hand side is changed, the range of PSA 
finds the interval where the induced partition of a given optimal solution remains the 
induced partition of some optimal solution to the perturbed problem. Another important 
property of PSA on a cost coefficient is the ranges of PSA using an optimal non-basic 
solution is the intersection of the ranges of PSA using optimal basic solutions, whose 
convex combination leads to the optimal non-basic solution. 

 Finally, further studies will be needed, which will deal with the computational 
performance and numerical experience of sensitivity analysis methods. Given an optimal 
basis, BSA is obviously the most efficient where the computational time is concerned. 
However, most codes using interior-point methods often produce an optimal non-basic 
solution and in this case PSA is expected to be a good alternate because PSA can be 
applied without obtaining an optimal basis or optimal partition which may require more 
computational time if a problem is ill-conditioned. 

Park et.al. (2004) discussed the properties and relationships of PSA, OSA and 
BSA by partitioning the decision variables into two categories and this motivated us to 
extend this study to the case where decision variables are bounded and hence they have to 
be partitioned into three categories depending upon BSA, OSA and BSA. Although the 
bounds on the decision variables can be treated as additional constraints but this leads to 
considerably increase in the size of the problem under consideration, thus it is not 
preferable to consider the bounds on decision variables as additional constraints.    
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