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Abstract 

In this study, we assess the interest of using a Soil – Vegetation – Atmosphere – Transfer model, the SiSPAT (Simple 

Soil Vegetation Atmosphere Transfer) model, which solves the surface energy balance, for the evaluation of 

theoretical crop water requirements in south-east France. First the relevance of the model results, when parameterized 

using information extracted from a soil data base and pedotransfer functions for the estimation of soil hydraulic 

properties, and when vegetation characteristics are prescribed using available data bases is assessed. We use long 

term time series of soil water content profiles for this purpose. The results show that evapotranspiration, as simulated 

by SiSPAT is sensitive to the soil parameter specification leading to large uncertainties in the model results. 

Then, we present two methods implemented in SiSPAT to compute irrigation requirements. The first option mimics 

the soil water balance model principles by estimating the irrigation from the available soil water capacity filling. The 

second option relies on the model physics and estimates the difference between actual transpiration and the value 

corresponding to a minimal stomatal resistance, i.e. without water stress. Aspersion and drip irrigation can be 

simulated. Nine crop are chosen for the model evaluation. A comparison with two other water balance models is 

performed. The three models are consistent with determination coefficient between the simulated annual irrigation 

generally larger than 0.4. However, differences of the interannual irrigation needs, larger than several 100 mm, are 

sometimes found, especially for drip irrigation. This work provides a quantification of expected uncertainties when 

using water balance models or physically-based models for irrigation needs estimation. 

 

 

© 2013 The Authors. Published by Elsevier B.V.  

Selection and/or peer-review under responsibility of the Scientific Committee of the conference. 

 
Keywords: Irrigation; SVAT model; soil properties; 

 

* Corresponding author. Tel.:+33 4 72 20 87 78; fax: +33 4 78 47 78 75. 

E-mail address: isabelle.braud@irstea.fr . 

ha
l-0

08
78

09
7,

 v
er

si
on

 1
 - 

29
 O

ct
 2

01
3

Author manuscript, published in "Procedia Environmental Sciences 19 (2013) p. 747 - p. 756"
 DOI : 10.1016/j.proenv.2013.06.083

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357240025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:isabelle.braud@irstea.fr
http://dx.doi.org/10.1016/j.proenv.2013.06.083
http://hal.archives-ouvertes.fr/hal-00878097
http://hal.archives-ouvertes.fr


  

1. Introduction 

Crop irrigation represents the major fresh water use in the world. In the context of global change, 

models able to simulate the water demand evolution are valuable. Plant water requirements are generally 

estimated using water balance models or crop growth models. Those models use daily rainfall, 

temperature, reference evapotranspiration ET0. Water balance models require the specification of crop 

coefficients whereas crop growth models have the advantage of simulating directly the crop development 

and yield. They are therefore able to take into account the impact of temperature and/or rainfall 

restrictions on the crop development. However, some studies are also conducted using only water balance 

models (e.g Nkomozepi and Chung [1]; Savé et al. [2]) and our focus will be restricted to this type of 

models in the following.  

Many uncertainties exist in terms of ET0 projection under climate change, depending on the climatic 

variables considered in its evaluation (temperature, radiation, humidity and/or wind speed) (e.g. 

Haddeland et al. [3]; Irmak et al., [4]). Soil- Plant- Atmosphere- Transfer models do not rely on the use of 

ET0 but solve the surface energy balance. They can be an alternative to simple water balance models for 

plant water requirements estimation in a climate change context. However, they require much more 

parameters than water balance models, especially in terms of soil and vegetation description. 

In this study, we assess the value of using the SiSPAT (Simple Soil Vegetation Atmosphere Transfer) 

model (Braud et al. [5]) for the evaluation of theoretical crop water requirements in south-east France. 

First we assess the relevance of the model results, when parameterized using information extracted from a 

soil data base and pedotransfer functions for the estimation of soil hydraulic properties, and when 

vegetation characteristics are prescribed using available data bases. Then, we present the adaptation of the 

model to compute irrigation needs, its set up and the results for nine crops typical of south-east France in 

terms of theoretical irrigation and drainage below the root zone. The SiSPAT results are also compared 

with two other water balance models. 

2.  Methods 

2.1. Presentation of the SiSPAT SVAT model and its adaptation for computing theoretical irrigation 

requirements 

The SiSPAT model is a soil – vegetation – atmosphere transfer model which solves the coupled heat 

and water transfer equations in the soil. Water vapour transfer and the vertical soil heterogeneity are taken 

into account. A root extraction sink term is also included, where root extraction depends on the difference 

between the soil and the leaf water potential. Two distinct energy budgets for the bare soil and the 

vegetation (big leaf hypothesis) are solved to compute the components of the surface fluxes, and in 

particular soil evaporation and plant transpiration. Interception of rainfall by the vegetation is also taken 

into account. The model is forced by climatic variables: incoming solar and long wave radiation, air 

temperature and humidity, wind speed and rainfall at a time step of at least one hour and interpolated at 

the model variable time step. The vegetation growth (leaf area index – LAI-, root density profile and 

vegetation height) are prescribed and interpolated at a daily time step. In the Mediterranean area, a high 

fraction of coarse fragments is very common. The model has been improved to take into account its 

impact of soil retention curves (see Fies et al.[6]) and soil thermal conductivity (Verhoef [7]). 

Two options for irrigation estimation are implemented in the model. In both cases, soil evaporation, Es 

(mm) is added to the irrigation estimation. Aspersion and drip irrigation can be simulated. The first option 

mimics the soil water balance model principles by estimating the irrigation as the difference between a 

fraction of the available soil water capacity (ASWC, mm) - defined as the available soil water storage 
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between field capacity and wilting point- and the actual soil water storage, S (mm), which can be 

summarized as follows: 

 

  sESASWCIrrASWCSIf           (1) 

 

For aspersion, we used =0.2 and =0.8 and for drip irrigation ==0.8.  

The second options relies on the model physics and estimates the difference between actual 

transpiration, Tr, and a crop with a value of the stomatal resistance set to its minimum, Tr_MinStomatal. In this 

case, irrigation requirements are summed up, until a value of a prescribed threshold (corresponding to the 

irrigation dosis) is reached. When this is the case, irrigation starts.  

 

  srlMinStomatar ETTIrr  _          (2) 

 

In the case of aspersion, irrigation is added to the rainfall and can be partly intercepted. In the case of 

drip irrigation, irrigation is added to the throughfall and cannot be intercepted. For aspersion, the dosis is 

applied during a duration, d, chosen by the user. We used 6h in the following. In case of drip irrigation, 

irrigation is directly applied at the next time step. 

2.2. Model set up 

The hourly climate forcing is derived from the SAFRAN reanalysis (Vidal et al. [8]) which provides 

the climatic forcing on 8x8 km
2
 grid. One full year is used as a warming up period. The model lower 

boundary condition is set to gravitational drainage and constant soil temperature. Soil parameters are 

derived from the IGCS/PACA soil data base where information about the soil vertical structure (soil 

horizons) and soil texture are available. We use the Rawls and Brakensieck [9] pefotransfer functions for 

computing the parameters of the Van Genuchten [10] retention curves and Brooks and Corey [11] 

hydraulic conductivity curves (see Manus et al. [12] for details). For plant development (vegetation height, 

leaf area index, root profile) description, we use an interannual cycle derived from existing data bases 

(ECOCLIMAP, Masson et al.[13]; FAO[14]). For annual crops, bare soil is assumed in the inter-crop 

period. The major uncertainty when using the IGCS/PACA soil data base is that each soil cartographic 

unit (SCU) is composed of several soil typological units (STU). Information on soil texture and soil 

horizons is only available for STU but their precise location within a SCU is not known. Several STU can 

therefore be assigned to a given location, leading to uncertainty in the soil hydraulic properties knowledge.  

2.3. Model assessment using in situ soil moisture time series 

In order to assess the relevance of the model set up based on pedotransfer functions and average 

vegetation characteristics, the model results are compared with soil water content time series. The data are 

acquired in non-irrigated fields, which are used to provide advices in terms of irrigation for the farmers. 

The data are acquired by CIRAME and SCP, monthly or bi-monthly. A neutron probe was used until the 

20
th

 and a Diviner 2000 sensor since then. The sensors are not calibrated using in situ soil samples; so the 

data can only be used based on relative values. We define %ASWC as the filling rate of the available soil 

water capacity and we compute it from the observations and model respectively. 

 

 
 minmax

min%
SS

SS
ASWC




                                                              (3) 
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where Smin (resp. Smax) are the minimum (resp. maximum) value of the soil water storage S (mm). 

 

Monthly anomalies, calculated as defined below, are also computed for both the observations and 

model results, to assess the ability of the model to reproduce the interannual monthly variability. 

 

:))((

:))((),(
),(

mSstd

mSAveyearmS
yearmAnom


        (4) 

 

where Anom(m,year) is the anomaly of month m in year year, S(m,year), is the soil water storage of 

month m in year year. Ave(S(m :)) and std(S(m :)) are respectively the mean and standard deviation of the 

storage S for month m.  

For this intercomparison the STU soil units are chosen consistent with the observed soil depths and 

particle size data when available. For some locations, several STU are used in order to assess the model 

sensitivity to the soil characteristics specification. The model is run for the number of years 

corresponding to the observation period, with one year as warming up period. 

 
Table 1: Summary of the performed simulations. For the Aubignan, Bollène, Piolenc and Vaison sites, two STU are compared. For 
the Visan site, two root depths zrt are compared. 

 
Location Aubignan Bollene Piolenc Visan Vaison CabrièresA CabrièresG Lourmarin 

Vegetation Vineyard Vineyard Vineyard Vineyard Vineyard Cherry tree Vineyard Cherry tree 

Simulation 

duration 
(years) 

30 24 8 24 24 13 18 19 

Soil depth 

(m) 
1.6 1.5 1.3 1.2 1.5 1.2 1.2 1.2 

STU 

number 

and 

simulation 

name 

STU 23 

Aub-a 

STU 67 

Bol-a 

STU 67 

Pio-a 

STU 114 

zrt=0.7m 

Vis-a 

STU 181 

Vais-a 

STU 123 

CabA 

STU 123 

CabG 

STU 1T3 

Lour 

STU 25 

Aub-b 

STU 68 

Bol-b 

STU 68 

Pio-b 

STU 114 
zrt=1.2m 

Vis-b 

STU 185 

Vais-b 
   

2.4. Intercomparison of three models for the assessment of theoretical crop water requirements 

Nine crops, representative of the PACA (Provence Alpes Côte d’Azur) region in south-east France, are 

chosen for the model evaluation: hard wheat, corn, sunflower, grassland, vegetables, potatoes, vineyard, 

cherry tree and apple tree. Based on the agricultural sensing (RGA, 2000) at the “canton” level, we 

choose the location where each crop is the most cultivated and assign the climate forcing and soil 

characteristics, according to this location. For soil properties, STU leading to inconsistent results such as 

quasi-permanent soil saturation or unrealistic high drainage values are discarded. The simulations are 

performed for the 1979-2009 period, 1979 being used as a warming up period.  

A comparison with two water balance models: Five-Core (Chopart et al. [15]) and MODIC (Sauquet et 

al. [16]) is also performed. Both models compute the soil water balance at the daily time step using as 

input: rainfall, temperature, ET0 and crop coefficients. They can also take into account farmers practices, 

but this possibility is not used in the present study where only theoretical water requirements are 

ha
l-0

08
78

09
7,

 v
er

si
on

 1
 - 

29
 O

ct
 2

01
3



   

computed. Five-Core is used with a ASWC constant in time, whereas MODIC takes into account root 

growth in the definition of this variable. MODIC also takes into account the bare soil fraction in the 

computation of the crop coefficient. 

3. Results 

3.1. Simulation of observed soil water storage 

 
Figure 1: Left: %ASWC filling and, right Anom for the Aubignan (vineyard) and Cabrières-A (cherry tree) sites. Points are the 
observations and lines the modelled results. For Aubignan, the black and dashed lines correspond to simulation –a and –b 

respectively.  

 
Table 2: Slope and determination coefficients R2 of the regression between observed and modelled annual average %ASWC (left) 
and Anom (right) for the various simulations. NS= not significant 

 
 %ASWC Anom 

 Slope R2 Slope R2 

Aub-a 0.63 0.57 0.77 0.57 

Aub-b 0.58 0.45 0.68 0.45 

Bol-a 0.74 0.34 0.47 0.22 

Bol-b 0.51 0.37 0.46 0.22 

Pio-a 0.92 0.54 1.00 0.90 

Pio-b 0.69 0.59 0.97 0.83 

Vis-a 0.30 0.35 0.60 0.35 

Vis-b 0.23 0.41 0.64 0.41 

Vais-a 1.21 0.44 0.70 0.44 

Vais-b 0.51 0.70 0.87 0.70 

CabA 0.65 0.36 0.72 0.36 

CabG 0.4 0.49 0.85 0.49 

Lour NS NS NS NS 
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Table 1 provides a summary of the performed simulations (without any irrigation). Fig. 1 illustrates the 

model results in terms of %ASWC and Anom for two sites: one vineyard and one cherry tree orchard. 

Table 2 provides the slope and determination coefficients of the regression between observed and 

simulated values. The agreement is reasonable, except for the Lourmarin site. However, for some sites, 

the agreement is sensitive to the choice of the STU describing the soil profile (Vaison, Aubignan) and to 

the root depth (Visan). The impact in terms of components of the soil water balance is also sensitive. For 

these long term simulations, soil water storage variation is close to zero. Actual evapotranspiration, AET,  

represents between 64 and 90% of the rainfall; runoff is most of the time null, except for some STU 

where it can reach 12%. Drainage below the root zone represents 3 to 34% of the rainfall. According to 

the STU choice, variations of up to 10% in terms of AET can be obtained. Note also that interception 

represents generally 5% of the total AET; bare soil evaporation between 25 and 46% of AET; and 

transpiration 48 to 65% of AET.  

3.2. Simulations of irrigation water requirements 

Table 3 summarizes the characteristics of the performed simulations. The same root depth were chosen 

for the three models. However, according to the model configuration, this leads sometimes to differences 

in terms of max ASWC value (Table 3). For SiSPAT, this is related to the STU chosen as representative of 

the location. The period of irrigation is the period over which irrigation requirements are computed. For 

SiSPAT, the simulations are performed with the two options presented in section 2.1.  

 
Table 3: Summary of the performed simulations 

 
Vegetation Apple Vineyard Cherry Sunflower Wheat Vegetable Potatoes Corn Grassland 

Period of 

irrigation 

18/03-

30/09 

01/04-

30/09 

01/04-

30/09 

10/04-

20/08 

01/04-

30/06 

01/01-

31/12 

20/01-

31/07 

20/04-

20/09 

01/04-

30/09 
Irrigation 

type 

Aspersion Drip Drip Aspersion Aspersion Drip Aspersion Aspersion Aspersion 

Root depth 
(cm) 

82 59 90 87 60 97 70 70 46 

Max ASWC 

SiSPAT 
(mm) 

141 89 82 116 76 93 140 100 56 

Max ASWC 

Five-Core 
(mm) 

90 59 90 104 72 97 77 100 46 

Max ASWC 
MODIC(mm) 

74 48 61 88 56 44 64 62 43 

 

Table 4 provides the values of the interannual average and standard deviation calculated for the 9 crops 

and the four model configurations. Fig. 2 shows a comparison on the average values as barplots. Option 

%ASWC in SiSPAT leads to higher values than option Trmax for all the crops with drip irrigation. The 

contrary is observed for grassland and to a lesser extend corn and potatoes (Fig. 2). SiSPAT values are 

particularly high for row crops and/or trees, where the “big-leaf” model hypothesis may not be well suited 

for those crops where the bare soil fraction is large. Five-Core leads to the smaller irrigation except for 

vineyard and wheat. Brisson and Levrault [17] reports, for a climate forcing typical of south-east France, 

and the 1970-2000 period, average irrigation estimations of about 300 mm for corn; 80-250 mm for wheat 

according to the soil type; 140 mm for vineyard and 400 mm for grassland. Our results are consistent with 

those results for corn and wheat. For vineyard, our estimate is much larger, but the  factor (see section 

2.1) is different as Brisson and Levrault [17] used only 0.3 for vineyard and grassland. The results, show, 
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that, even at the interannuel time scale, there is a large uncertainty on the irrigation estimations amongst 

the models. 

 
Table 4: Annual average and standard deviation (in parenthesis) values of irrigation for the three models and the two options in 

SiSPAT. All the quantities are in mm and are provided for the irrigation period defined in Table 3. 

 
Vegetation Apple Vineyard Cherry Sunflower Wheat Vegetable Potatoes Corn Grassland 

Rainfall 314  
(81) 

252 
(87) 

307 
(91) 

156 
(53) 

187 
(64) 

704 
(169) 

267 
(78) 

293 
(77) 

497 
(126) 

Irrigation 

SiSPAT 
%ASWC 

606  

(91) 

1004 

(91) 

673 

(79) 

147 

(53) 

147 

(53) 

781 

(85) 

379 

(69) 

293 

(78) 

245 

(67) 

Irrigation 

SiSPAT 
Trmax 

521 

(88) 

747 

(79) 

508 

(72) 

358 

(57) 

161 

(38) 

673 

(65) 

443 

(41) 

398 

(41) 

495 

(65) 

Irrigation 

Five-Core 

303 

(78) 

311 

(50) 

198 

(48) 

260 

(74) 

113 

(63) 

158 

(44) 

136 

(55) 

224 

(62) 

182 

(70) 
Irrigation 

MODIC 

398 

(75) 

129 

(23) 

213 

(63) 

359 

(70) 

78 

(35) 

278 

(55) 

262 

(39) 

401 

(85) 

204 

(66) 
Drainage 

SiSPAT 

%ASWC 

36 

(25) 

243 

(43) 

148 

(53) 

29 

(19) 

29 

(19) 

574 

(126) 

67 

(49) 

43 

(25) 

175 

(88) 

Drainage 

SiSPAT 

Tramax 

19 

(18) 

28 

(28) 

37 

(39) 

63 

(40) 

70 

(46) 

480 

(162) 

139 

(71) 

105 

(58) 

393 

(112) 

Drainage 

Five-Core 

73 

(60) 

105 

(61) 

149 

(77) 

26 

(30) 

26 

(30) 

501 

(128) 

84 

(62) 

78 

(50) 

203 

(105) 

Drainage 
MODIC 

29 
(43) 

49 
(51) 

52 
(59) 

36 
(35) 

59 
(45) 

332 
(151) 

101 
(59) 

73 
(47) 

183 
(90) 

 

 

 
Figure 2: Barplot of the internnual average irrigation estimations for the four model configurations and the nine crops. 
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Table 5 provides the slope, intercept and determination coefficients of the regressions between the 

various models. Fig. 3 illustrates the results for sunflower. Table 5 shows that the results obtained with 

the various models are consistent in terms of interannual variability: all the models simulates lower (resp. 

larger) irrigation values at the same time (R
2
 generally larger than 0.4). However, the slope are seldom 

close to 1 showing systematic under or over-estimation. The values of the intercept are also often very 

large, showing systematic bias between the models. The SiSPAT values provided by the two options are 

also generally consistent, although there is sometimes a  large value of the intercept, leading to large 

differences in absolute values. The correlation is lower for corn and potatoes where the Trmax option 

leads to a much narrower range of irrigation estimates (not shown). 

 

 
Figure 3: Correlations between the annual  irrigation estimations of the various models for sunflower. 
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Table 5: Slope, intercept and regression coefficient of the annual irrigation estimation for combinations of the three models and the 

two SiSPAT options.  

 
  Apple Vineyard Cherry Sunflower Wheat Vegetable Potatoes Corn Grassland 

MODIC = f(Five-
Core) 

Slope 0.93 1.77 0.63 0.85 1.36 0.71 1.00 0.61 0.95 

Intercep -65 83 64 -45 6 -41 -126 -21 -12 

R2 0.79 0.66 0.69 0.63 0.57 0.79 0.48 0.70 0.77 

SiSPAT_%ASWC 
= f(Five_Core) 

Slope 0.79 1.17 1.41 0.64 0.6 1.6 0.8 1.13 0.83 

Intercept 365 639 -395 245 79 528 270 40 95 

R2 0.45 0.4 0.71 0.64 0.49 0.68 0.38 0.78 0.75 

SiSPAT_%ASWC 
= f(MODIC) 

Slope 1.01 2.16 0.95 0.74 1.02 1.38 1.26 0.82 0.99 

Intercept 205 724 472 147 67 397 49 -35 44 

R2 0.69 0.28 0.56 0.77 0.45 0.8 0.48 0.78 0.93 

SiSPAT_Trmax = 
f(SiSPAT_%RU) 

Slope 0.72 0.83 0.87 0.73 0.49 0.64 0.26 0.23 0.68 

Intercept 83 -82 -75 57 89 172 345 329 328 

R2 0.54 0.91 0.89 0.55 0.44 0.68 0.15 0.17 0.48 

SiSPAT_Trmax= 

f(Five-Core) 

Slope 0.76 1.19 1.36 0.51 0.31 1.23 0.3 0.23 0.54 

Intercept 290 378 238 226 126 479 402 347 397 

R2 
0.44 0.57 0.8 0.42 0.23 0.68 0.13 0.09 0.32 

SiSPAT_Trmax= 

f(MODIC) 

Slope 0.97 2.13 1.00 0.73 06 0.95 0.54 0.32 0.7 

Intercept 136 474 296 95 114 409 301 268 352 

R2 
0.68 0.38 075 0.80 0.29 0.63 0.23 0.43 0.49 

 

4. Conclusions and perspectives 

In this study, we assess the interest of using a soil – vegetation – atmosphere transfer model for 

irrigation estimation. First, we show that, when used in a regional context where only soil data bases and 

pedotransfer functions are available for specifying the soil hydraulic properties, the result of such a model 

is very sensitive to the choice of the soil type chosen as representative. A sensitivity to this choice is 

therefore highly recommended. For long term simulations, a coupling with a crop growth model, able to 

simulate the LAI evolution, would also be very valuable.  

In terms of theoretical irrigation requirements computation, the results of the various tested models are 

consistent in terms of simulation of low/high irrigation. However, the differences in absolute values may 

be very large (more than several hundreds of mm). This irrigation estimation is therefore prone to large 

uncertainty, leading to large uncertainties in water balance/water management planning.  

We plan to test the results of the SiSPAT Trmax option by introducing a “stress” factor corresponding 

to the farmer practices (they do not systematically irrigate) in Eq. (2). Such an approach was performed in 

the study by Brisson et al. [17] where stress factors of 0.8, 0.7 and 0.3 were considered for corn, wheat 

and vineyard respectively. This is likely to provide more consistent results, especially in a context of 

climate change. We also plan to compare the results of the three models in a climate change context to see 

if they provide consistent increase/decrease of irrigation estimation, especially with the SiSPAT model, 

which do not rely on ET0 estimation. 
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