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System matrix modelling of externally tracked motion
Arman Rahmima, Ju-Chieh Chengb, Katie Dinelleb, Mikhail Shilova,
W. Paul Segarsc, Olivier G. Rousseta, Benjamin M.W. Tsuia,
Dean F. Wonga and Vesna Sossib

Background and aim In high-resolution emission

tomography imaging, even small patient movements

can considerably degrade image quality. The aim

of this work was to develop a general approach to

motion-corrected reconstruction of motion-contaminated

data in the case of rigid motion (particularly brain

imaging) which would be applicable to any PET scanner in

the field, without specialized data-acquisition

requirements.

Methods Assuming the ability to externally track subject

motion during scanning (e.g., using the Polaris camera), we

proposed to incorporate the measured rigid motion

information into the system matrix of the expectation

maximization reconstruction algorithm. Furthermore, we

noted and developed a framework to incorporate the

additional effect of motion on modifying the attenuation

factors. A new mathematical brain phantom was developed

and used along with elaborate combined Simset/GATE

simulations to compare the proposed framework with the

cases of no motion correction.

Results and conclusion Clear qualitative and quantitative

improvements were observed when incorporating the

proposed framework. The method is very practical to

implement for any scanner in the field, not requiring any

hardware modifications or access to the list-mode

acquisition capability. Nucl Med Commun 29:574–581
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Introduction
As a typical PET brain imaging session can last hours, it is

not reasonable to expect a patient to remain motionless

during this time. A number of head restraints are

nowadays common, such as thermoplastic masks or

neoprene caps, which lower the amount of motion but

do not eliminate it. Even with head restraints, typical

translations in the range of 5–20 mm and rotations of 1–41

are observed depending on the type of mask and the

duration of scan (e.g., see Fulton et al. [1], Bloomfield

et al. [2], and also Lopresti et al. [3] in which a study of

various types of head movements, such as those caused by

coughing and leg crossing, has been presented). Recall

that the largest translation typically occurs along the

transaxial axis (the x-axis), and largest rotation around the

axial axis (the z-axis).

With continuous improvements in spatial resolution of

emission tomography scanners, small patient movements

have become a significant source of resolution degrada-

tion. Methods to correct for patient movements have

been recently reviewed by Rahmim et al. [4]. In the past

these were largely based on correction of inter-scan

movements. These (software-based) methods involved

the division of a scan into a number of frames, followed by

spatial registration of the reconstructed images using

mathematical algorithms (e.g., see Woods et al. [5] and

Friston et al. [6]).

There has been an increased tendency not to exclusively

rely on the emission data itself for the estimation of

patient movements. More successful approaches [4]

instead make use of information provided by an external

motion-tracking device. These include the following.

Use of multiple acquisition frames

Multiple acquisition frames (MAFs) [1] which are

individually reconstructed, motion-compensated and

summed can be used. The major limitation of the MAF

approach is that lowering the motion threshold can result

in the acquisition of an increasing number of low-statistic
frames to be reconstructed. Lack of an adequate number

of acquired events in the individual frames can, in turn,

adversely affect the quality of the final reconstructed

images, and an increased number of frames will also lead

to increased reconstruction times.
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Post-processing of the motion-blurred reconstructed

images

Post-processing of the motion-blurred reconstructed

images using deconvolution operators (whose shape is

determined by the measured motion) [7] can be useful.

This method, however, has not attracted much attention

primarily because the deconvolution process amplifies

the noise in the PET data, and furthermore, when the

movements include significant rotation, spatially variant

deconvolution filters need to be employed, potentially

introducing other artifacts [7].

Lines of response

Individual lines of response (LORs) for motion [8] can be

corrected. This is an event-driven approach; i.e., motion

correction is performed by transforming the LORs along

which the events are measured to where they would have

been measured if the object had not. It has been argued

(e.g., see Rahmim et al. [9,10]) that this approach (in its

purely event-driven form) may result in reconstructed

image artifacts. This is because an LOR that is normally

in the field of view (FoV) can fall outside the FoV due to

motion, and therefore the reconstruction algorithm

should be modified in order to yield accurately recon-

structed images. However, this approach requires either

(1) specialized hardware to achieve accurate on-the-fly

motion correction or (2) list-mode acquisition capability.

Furthermore, it is only accurately applicable to rigid
motion since a direct relation between motion in the

image and the subsequent effect in the LOR coordinates

is only possible in the case of rigid motion. In this work,

our primary interest has been on the investigation of an

approach to the reconstruction of motion-compensated

data, thus applicable to any scanner in the field

(e.g., without the list-mode acquisition capability).

A solution

As a solution to the above, a method has been put forward

[11] which models motion blurring in the forward-

projection step of the expectation maximization algo-

rithm, such that better matching of the estimated image

and the motion-contaminated data are obtained. This

method, however, does not represent accurate modelling

of the motion process, as shown in this work, can result in

artifacts and is not necessarily convergent. A more

comprehensive approach avoiding the aforementioned

difficulties is proposed and investigated.

Modelling of motion into the system matrix
We first denote lm

j as the image intensity in voxel j
(j = 1y J) estimated at the m-th iteration, ni as the

number of detected events along a line of response

(LOR) i (i = 1y I), and pij as the probability of an

emission from voxel j being detected along LOR i (often

referred to as the system matrix). The standard, widely

used, expectation maximization algorithm can then be

written as:

lmþ1
j ¼

lm
j

sj

XI

i¼1

pij
niP J

j¼1 Pijl
m
j

( )
ð1Þ

where:

sj ¼
XI

i¼1

pij ð2Þ

computes the elements of the so-called image sensitivity

(at each voxel j ). For compact representation [12],

we next use ~lm ¼ lm
1 . . . lm

J

� �tr
, ~n ¼ n1 . . . nJ½ �tr and

~s ¼ s1 . . . sJ½ �tr to denote one-dimensional vectors of image

intensity, projection data and image sensitivity, respec-

tively (tr denotes the transpose). As such, the algorithm

can be re-written as:

~l
mþ1
¼
~lm

~s
�Ptr ~n

P~l
m

� �
ð3Þ

where vectorial multiplication and division operations are

performed on an element-by-element basis.

Next, we first divide a given scan (of duration T) into Q
motion-related time intervals (t = 1yQ) each with a

duration DTt within which motion is limited below a

small, negligible threshold. We then define an overall

motion matrix �M to model motion of the object in the

image space, thus relating a voxel j to other positions j0 to

which it may contribute due to motion. The overall

motion matrix �M is thus:

�M ¼
XQ

t¼1

Mt
DTt

T
ð4Þ

where Mt represents the J� J motion matrix for a

particular motion interval t, mapping each voxel j to

its new position as measured using external tracking

(see Fig. 1).

Fig. 1

M

Mt

Motion
(image-space)

(a) (b)

(a) The operator tracks movements of the image elements at each time/
motion frame t. (b) The overall weighted motion matrix, �M , models the
overall motion-induced blurring (in image space), thus accurately
modelling how motion affects the acquired data.
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Next, we decompose the system matrix

P ¼ pij

� �
J�J

into four matrix components:

P ¼ WGB �M ð5Þ
Here, the matrix B ¼ ðbijÞJ�J accounts for image-based

blurring effects (other than motion); e.g., positron range

in PET. The matrix G ¼ ðgijÞI�J contains the geometric

probability terms relating each voxel j to an LOR i.
Sensitivity variations due to attenuation and normal-

ization can be taken into account using the diagonal

elements wii of the W operator (ideally, inter-crystal

scattering should be incorporated in W, rendering it non-

diagonal; however, Qi and Huesman [13] have argued

that, for a scanner capable of measuring DOI information

and achieving nearly isotropic resolution, this effect can

instead be taken into account in B, as is done in this

work).

Upon substitution of Equation 5 into the expectation

maximization algorithm (Equation 3), one arrives at:

~lmþ1 ¼
~lm

~s
� �MtrBtrGtrW tr ~n

WGB �M~lm

� �
ð6Þ

We next note that the matrix operators G and Gtr, which

denote geometric forward-projections and back-projec-

tions, are not, in practice, actually stored and are instead

implemented on-the-fly. To this end, we define fpi{} and

bpi{} as the geometric forward-projection and back-

projection operators along any given LOR i. Also, recalling

that W is diagonal (resulting in cancellations of this term

in the forward-projection and back-projection steps), the

above equation can be considerably simplified (similar to

Reader et al. [12]) and be written as:

~lmþ1 ¼
~lm

~s
� �MtrBtr

XI

i¼1

bpi
~n

fpi B �M~lm
n o

8<
:

9=
;

2
4

3
5 ð7Þ

where the sensitivity vector~s is now given by:

~s ¼ �MtrBtr
XI

i¼1

bpi ~wf g ð8Þ

where ~w denotes a list of diagonal elements of W.

Here, we note that one needs to apply B �M and �MtrBtr

only once in each (subset of) iteration, and not for each

and every LOR. Additionally, unlike the ‘motion decon-

volution’ technique in Menke et al. [7], this method does

not amplify noise since it does not make use of �M�1

(which would be a deblurring operator), and instead only

makes use of �M and �Mtr, both of which are essentially

blurring operators. It must also be noted that the use of
�M in the denominator is to merely model the effect of

motion in the forward-projection step, as is done in the

approach of Fulton and Meikle [11]; and at the same

time, we have shown that the term �Mtr should also be

included in the back-projection step to yield a correct

expectation maximization algorithm, implying conver-

gence to the maximum-likelihood solution.

It must be noted that modelling the motion information

into the system matrix of the expectation maximization

algorithm, in the context of non-rigid motion, has also

been proposed for the reconstruction of respiratory non-
gated data by Reyes et al. [14] as well as in the case of

respiratory/cardiac gated data [15–17], although the latter

does not involve motion-contaminated data (the data are

gated, motion modelling applied to the series of gates).

One must also note that estimation of respiratory/cardiac

movements requires alternative approaches, including

the possibility of extracting the motion information from

(1) separately reconstructed PET gated data or (2) gated

CT images in PET/CT applications.

The aforementioned modelling of motion into the system

matrix of the expectation maximization algorithm,

investigated in this work, is expected to improve the

reconstructed image qualities. In fact, we have argued

[18] that such modelling of image blurring effects not

only improves image resolution, but can also improve

noise propagation properties in the reconstruction

process. This idea is somewhat paralleled in collimator–

detector response (CDR) modelling in SPECT, wherein a

similar incorporation in the reconstruction process has

been shown to result in improvements in resolution [19],

in task-based measures of image quality (see Frey and

Tsui [20] for a review), as well as improvements in noise

properties [21].

Modelling of motion for attenuation
correction
At this stage, one must note that, in addition to the data,

the attenuation coefficients for the LORs are also

contaminated by motion. In other words, the probability

of attenuation along an LOR is modified due to motion,

as shown in Fig. 2. We thus introduce an operator Lt()

which models the effect of motion in the LOR space by

transforming the LOR i along which an event would have

been detected to the LOR i0 along which the event is
detected during interval t. Next, we define N and At as

diagonal matrices incorporating the normalization and

(time/motion-dependent) attenuation factors. The latter

is dependent on motion, and the attenuation factor along

any LOR i (i.e., diagonal element a
tð Þ

ii of At) is given by the

value along the original attenuation factor (at time 0) for

the motion-corrected LOR l; i.e.,

a
tð Þ

ii ¼ a
0ð Þ

ll with l ¼ L�1
t ið Þ ð9Þ

where a
0ð Þ

ll represents the attenuation factors for the

object scanned at initial position. The time/motion-
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averaged, overall system matrix is then accurately given

by:

P ¼
XQ

t¼1

AtNGBMt

 !
�DTt

T
ð10Þ

For high-resolution scanners, the above summation over

all the motion frames will be computationally intense:

this is because while Mt and At are individually sparse, the

above collective term is very non-sparse. We therefore

introduce the following simplification: due to the

relatively broad distribution of attenuation factors, we

assume that the term At in Equation 10 can be replaced

by a motion averaged term, �A, resulting in:

P ¼
XQ

t¼1

AtNGBMt

 !
�DTt

T

¼ �ANGB �M

ð11Þ

In order to calculate �A, we then note that the measured

mu-map ~mð0Þ undergoes motion in the course of the scan

as given by:

~mðtÞ ¼ Mt~mð0Þ ð12Þ
Thus, the effective, overall mu-map �~m is given by:

�~m ¼
XQ

t¼1

~mðtÞ�DTt

T

¼
XQ

t¼1

Mt~mð0Þ�
DTt

T

ð13Þ

This term is easily computed, and can be forward

projected to yield the motion-weighted attenuation

factors (i.e., elements of �A).

Application of Bayesian reconstruction
To obtain images of improved quality, we also considered

the Bayesian maximum a priori (MAP) method (first

utilized by Geman and McClure [22] in nuclear

medicine); the approach works by introducing a potential

function V ð~lÞ that decreases in value with fewer local

variations in the image, and its subtraction from the

standard log-likelihood function being maximized, so

as to counter the noise-generating nature of iterative

reconstruction algorithm. In particular, we considered the

one-step-late OSL-MAP reconstruction algorithm of

Green [23], which is obtained by modifying Equation 2 to:

sj ¼
XI

i¼1

pij þ b
qV ð~lÞ
qlj

�����
~l¼~lm

ð14Þ

and applied it directly to our proposed approach by

modifying Equation 8 via addition of the above last term.

The same potential function as proposed by Green [23]

was also considered in this work, and the derivative of the

potential function used was:

qV ð~lÞ
qlj

¼
X

k2NHj

wjk
er=d � e�r=d

er=d þ e�r=d
ð15Þ

and the summation is performed over all voxels k in the

neighbourhood of voxel j; ‘neighbourhood’ in this work

was defined as the six voxels sharing a side and the 12

voxels sharing an edge with the central voxel, and each

weighted by the inverse of distance between the voxels;

i.e., wkj = 1 and wkj ¼ 1=
ffiffiffi
2
p

respectively. The variables

b and d were set by the user, and adjusted to achieve

various degree/types of smoothing.

Simulations of a new mathematical brain
phantom
Our emphasis in this work has been to compare and

validate motion compensation methods under realistic

imaging scenarios. The tools developed in this regard

have been two-fold.

A new mathematical brain phantom

Voxelized phantoms are problematic in that they are fixed

to a particular spatial resolution, and also result in

interpolation errors when modelling motion (e.g., the

volume of a voxelized object may not be conserved after

rotation). Alternatively, a mathematical brain phantom

was developed as further elaborated by Rahmim et al.
[10], depicted in Fig. 3a. The brain phantom was

constructed using subdivision surfaces [24]. One hundred

structures in the brain were identified. A software

application was written using the Visualization Toolkit

[25] to create three-dimensional polygon surfaces, which

were then used to generate subdivision surfaces as

described by Hoppe et al. [24].

PET simulations

A new technique [26] was used involving combination of

two powerful and well-validated Monte Carlo codes:

SimSET and GATE. The method takes advantage of the

shorter simulation times for photon propagation inside a

digital phantom using SimSET as compared to GATE.

Fig. 2

Attenuation factors along a particular line of response (LOR) can be
modified due to motion.
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We used the design parameters and the geometry of the

second generation HRRT scanner. The detector heads in

the octagonal design consist of a double 10 mm layer of

LSO/LYSO for a total of 119 808 detector crystals (crystal

size 2.1�2.1�10 mm3), as depicted in Fig. 3b. The total

simulation times using the new technique are about 12

times faster with nearly similar accuracy.

Methods
Two-dimensional simulations and analysis

As a first step, two-dimensional simulations of digitized

brain images were considered. The two-dimensional

sinograms had 96 projections covering 1801, and 96 radial

bins. Five different positions were simulated, with

incremental motions of translating by 1 pixel (width

4.87 mm) along both directions and rotating by 11. The

simulated data were reconstructed using the OSEM

algorithm (24 subsets). Four approaches were compared:

1. No correction for motion;

2. Motion incorporated in the forward projection step only

[11]; FPMM (forward-projection motion modelling);

3. The proposed system matrix modelling of motion with

conventional attenuation correction (SMMM–CAC);

4. System matrix modelling of motion with proposed

attenuation correction (SMMM–PAC).

Quantitative metrics

Ten contour ROIs were defined (R = 10) each consisting

of voxels of similar (within 2%) activity. The recon-

structed image bias was then measured using an ROI-

based normalized mean squared error (NMSE) metric

given by:

NMSE ¼ 1

R

XR

r¼1

�mr � mr

mr

	 
2

ð16Þ

where mr and �mr denote the true and reconstructed

activities over each ROI, r, (note that this metric is

defined in terms of ROIs to minimize inclusion of noise

effects). Noise was monitored using the normalized

standard deviation (NSD) averaged over the various

ROIs:

NSD ¼ 1

R

XR

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

P
j2r

lj � �lr
� �2r
�lr

0
BB@

1
CCA

2

ð17Þ

where lj denotes the estimated activity at voxel j (for a

particular iteration number).

Three-dimensional simulations and analysis

Using the developed tools as discussed in the previous

section, we performed simulations of our mathematical

phantom in the HRRT scanner. A span of 3 and maximum

ring difference of 67 were considered. Three different

positions were included in the study, with incremental

motions each one translating by 7.5 mm along both

transaxial directions and 10 mm along the axial direction.

Reconstructions were performed using the OSEM algo-

rithm with 16 subsets. Six different areas in the brain

(caudate, putamen, grey, white, cerebellum and brain

stem) were quantitatively analysed, and the NMSE

values (for different iterations) were determined as given

by Equation 16, and plotted against the average ROI

NSD. The true ROI mr values were obtained from the

known phantom volumes.

Results and discussion
Two-dimensional simulations and analysis

The resulting noise (NSD) versus bias (NMSE) plots

are depicted in (Fig. 4a and b). We have repeatedly

observed that the FPMM method does not perform

well. Alternatively, the proposed SMMM–CAC/

PAC methods perform well, with the latter exhibiting

improved NSD versus NMSE performance. Visually, a

similar improved performance may be observed, as shown

in Fig. 5.

Fig. 3

(a) Mathematical brain phantom developed and used in this work.
(b) HRRT scanner geometry used in the combined SimSET/GATE
simulation for the HRRT scanner.
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Three-dimensional simulations and analysis

The resulting noise versus bias plots are shown in Fig. 6.

The proposed approach (especially when including

modelling of modified attenuation factors due to

presence of motion) performs favourably compared to

the case with no motion correction. Nevertheless, one

observes that, compared to the case with no motion, an

increasing number of iterations is required to achieve

similar bias performance, thus resulting in poorer noise

versus bias trade-off curves. This can be attributed to the

fact that, in this approach, the data is not explicitly

corrected for motion, and rather the motion information

is incorporated in the reconstruction task of the

contaminated data-sets. Use of Bayesian MAP reconstruc-

tion (with some optimum values for variables b and d,

which were defined in Equations 14 and 15) results in

somewhat improved noise versus bias trade-off curves,

and this remains an area that needs to be further

investigated and optimized.

Figure 7 depicts transaxial/coronal/sagittal slices for

various reconstructions. Similar conclusions as above can

be drawn. An overall observation we have made [10] is

Fig. 4
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Resulting plots of NSD (noise) versus NMSE (bias) with different
number of iterations (in the range 1–18) for (a) 2 million and (b) 10
million simulated events (increasing iterations typically lower bias but
increase noise, resulting in the well-known noise versus bias trade-off;
such trade-off curves allow comparison of different reconstruction
methods, as is also done in this work, independent of such parameters
as iteration number).

Fig. 5

(a) True image, and the reconstructed images after 10 iterations (24 subsets) using (b) no motion correction, and the (c) SMMM-CAC and (d)
SMMM-PAC methods. Simulation contained 10 million events in the sinogram.

Fig. 6
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bias trade-off). Simulation contained 77 million events in the sinogram.
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that convergence is relatively slower in this approach, as

compared with event-driven methods (i.e., the latter

event-driven approach performs [10] very similarly to the

case of no motion, whereas this is not the case in the

current approach), though the approach presented has

the advantage of being easily applicable to all scanners in

the field, not requiring the list-mode acquisition cap-

ability or specialized hardware to achieve event-driven

correction.

Conclusion
We have proposed and investigated a motion correction

method applicable to any PET scanner in the field

(i.e., without the need for specialized hardware modifica-

tion and/or access to the list-mode acquisition capability).

It has been demonstrated that in the case of motion-

contaminated data, accurate incorporation of tracked

motion information into the system matrix of the

expectation maximization algorithm yields quantitatively

and qualitatively improved images. At the same time, we

have shown that quantification is further improved if the

effect of motion-contamination on the attenuation factors

is further modelled and incorporated in the reconstruc-

tion task.
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